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Abstract: With a general classification, there are two types of networks in the world: Biological and non-biological 

networks. We are unable to change the structure of biological networks. However, for networks such as social 

networks, technological networks and transportation networks, the architectures of non-biological networks are 

designed and can be changed by people. Networks can be classified as random networks, small-world networks and 

scale-free networks. However, we have problems with small-world networks and scale free networks. As some 

authors ask, “how small is a small-world network and how does it compare to other models?” Even the issue of 

scale-free networks are whether abundant or rare is still debated. Our main goal in this study is to investigate 

whether biological and non-biological networks have basic defining features. Especially if we can determine the 

properties of biological networks in a detailed way, then we may have the chance to design more robust and efficient 

non-biological networks. However, this research results shows that discussions on the properties of biological 

networks are not yet complete. 
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Öz: Genel bir sınıflandırmayla, dünyada iki tür ağ vardır: Biyolojik ve biyolojik olmayan ağlar. Biyolojik ağların 

yapısı değiştirilememektedir. Ancak sosyal ağlar, teknolojik ağlar ve ulaşım ağları gibi biyolojik olmayan ağların 

mimarileri tasarlanabilir ve bu ağlar insanlar tarafından değiştirilebilir. Ağlar; rassal ağlar, küçük dünya ağları ve 

ölçekten bağımsız ağlar olarak sınıflandırılabilir. Ancak küçük dünya ağları ve ölçekten bağımsız ağlar ile ilgili 

sorunlarımız vardır. Bazı yazarların sorduğu gibi, “Küçük dünya ağları ne kadar küçüktür ve diğer modeller ile 

karşılaştırıldığında nasıldır?”. Ölçekten bağımsız ağların yaygın mı yoksa nadir mi olduğu konusu halen 

tartışılmaktadır. Bu çalışmadaki temel amaç biyolojik ve biyolojik olmayan ağların temel tanımlayıcı özelliklere 

sahip olup olmadığının araştırılmasıdır. Özellikle biyolojik ağların özelliklerini detaylı bir şekilde belirleyebilirsek, 

daha sağlam ve etkili biyolojik olmayan ağları tasarlama şansımız olabilir. Ancak bu araştırma sonuçları, biyolojik 

ağların özelliklerine ilişkin tartışmaların henüz tamamlanmadığını göstermektedir.  

Anahtar Kelimeler: Biyolojik Ağlar, Biyolojik Olmayan Ağlar, Ölçekten Bağımsız Ağlar, Küçük Dünya Ağları, Ağ 

Modelleri 

JEL Sınıflandırması: D85, O31, C10 

1. Introduction 

Roughly 20 years ago multidisciplinary network science was born.  Paul Erdős and Alfréd Rényi, 

two Hungarian mathematicians introduced random networks in 1959. In those years, people 
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thought that all networks were random. Although this was very surprising, the thought that the 

networks were random lasted forty years.  Then, two articles (Barabási and Albert 1999; Watts 

and Strogatz 1998) published a few years before the 2000s drastically changed this 40-year 

understanding and the network science community got acquainted with small world hypothesis 

and scale-free concepts. However, even as a result of all these developments, approximately 20 

years later, discussions continue about both the concept of the small world and the concept of 

scale-free, and it is seen that a definite consensus on these concepts has not been achieved yet. 

It is not even possible to compare biological and non-biological networks in terms of “time”. 

We have to emphasize that biological networks are started long time ago and formed in very long 

periods of time. Protein-protein interaction (PPI) networks, genetic regulatory networks, food-

web, neural networks are included in biological networks. We can easily distinguish whether a 

network is biological network or not. However, we do not have sufficient and detailed 

information about the differences between these two types. In fact, people did not know exactly 

how networks were formed until the 2000s. They designed and constructed their networks largely 

by trial and error.  

Researchers interested in network science argue that networks continue to function within a 

certain set of rules. Therefore, network models (type) were established in order to determine 

these operating rules. If the models of networks are known, better information can be obtained 

about the behavior of networks, as well as making analyzes and experiments on real-life networks 

can be easily performed. There are three network models known so far. These are; 

1. Random Networks : Erdős-Rényi Model (ER) 

2. Small-World Network  : Watts-Strogatz Model (WA) 

3. Scale-Free Networks:  : Barabási-Albert Model (BA) 

With regard to these models, we should add that in a single real network, it is generally 

examined whether a single model is valid or not. However, Figure 1 tells us that a normal brain 

network can be thought of as a combination of different models in terms of hierarchy, order and 

degree diversity dimensions. In short, Figure 1 shows us that we need to be careful that reality 

can be more complex than we think. Stam (2014) focuses on exploiting the small-world and 

scale-free features of brain networks in order to get a comprehensive understanding of various 

brain disorders through a combination of three different models (Khaluf et al. 2017).  
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Figure 1. Combination of three different types of network models in brain networks 

Source: (Khaluf et al. 2017) 

This article tries to summarize the differences between biological and non-biological 

networks within the framework of the three models we have mentioned. Learning these 

differences in a detailed way, can enable us to take advantage of biological networks that are 

much better in robustness than non-biological networks. In addition, focusing on these 

differences can bring us new perspectives on the design of human-made networks. Our article 

tries to make a comparison within the same framework after mentioning some basic concepts and 

discussions within the framework of models. The study will end with a results section. 

2. Robustness and Scale-Invariant Concepts 
 

"Robust", which means oak tree in Latin, is the symbol of strength and longevity in the ancient 

world (A. Barabási 2016; p:4). In the world of complex, for both biological and non-biological 

networks, networks work with mutual interaction. Stable living systems, such as the brain and 

cellular networks are organized by interconnected networks. In such an environment, failure of 

nodes in one of the networks to function may cause disruption in other networks that this network 

interacts in the exchange of information. However, networks with robustness feature can avoid 

such effects. Even if some components of many natural and social systems fail, we can say that 

these systems are robust if they have an extraordinary ability to maintain their basic functions (A. 

Barabási 2016). We know that, a broader degree distribution increases the vulnerability of 

interdependent networks to random failure, and this fact should be taken into account when 

designing robust networks (Buldyrev et al. 2010). 



Gursakal, N., Ugurlu, E., Goncer Demiral, D. / Journal of Yasar University, 2021, 16/61, 330-347 

333 

 

One of the most important questions about the organization of natural systems is this; "How 

can these systems be so stable if they are interconnected to each other?” The answer to this 

question is as follows; "If the connections are established by hubs and the connections between 

the networks are moderately convergent, the system is stable and resistant to failure" (Reis et al. 

2014). How can we achieve this aim? It may be achieved through implementation of scale-

invariant features in our engineered systems. The issue here is how to achieve this through a 

decentralized and self-organized way. The challenge was resolved by many systems in the natural 

world; however, we, human beings, still have a long way to go (Khaluf et al. 2017).        

If an object looks "roughly" the same on any scale it is said to be self-similar. Self-similarity 

and scale-invariant are nearly the same concepts.  Scale-invariant systems appear with some 

stable features at different length or time scales. Scale-invariant features may be observed at 

molecular, cellular and organism levels in neuroscience and social networks. Natural systems 

obtain a scale-invariant collective behavior characterized by a system-level integration at a higher 

grade. Brambilla et al. (2013) reported that these systems are characterized by three features that 

engineers would benefit from replicating in decentralized designs including scalability, 

robustness, and adaptivity. Robustness and scalability directly appear from large-scale systems 

that achieve collective objectives that do not depend on global information. On the other hand, 

achieving flexibility in artificial self-organizing systems remains as a challenge (Khaluf et al. 

2017).  

3. Random Networks 
 

Random network model has been introduced by Hungarian Mathematicians Paul Erdős and 

Alfréd Rényi and called ER model (Figure 2). If we have N nodes and if we connect every pair of 

nodes with probability p, we will have a random graph. One of the most basic features of random 

networks is that the nodes in these networks are not very different from each other in terms of 

connectivity. This model is the first model that explains us how networks form. When we ask the 

question to what extent this model explains real-life networks, other questions come to mind. 

Regardless, it took another 40 years before someone asked whether in Manhattan/New York City 

cable networks randomly go somewhere. 
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Figure 2. A random network (N=25, p= 0.3) 

 

We can see in Figure 3 how Figure 1 changes the model only in terms of randomness. This 

dimension is named as “order” on the horizontal axis in Figure 1. 

 
Figure 3. How increasing randomness changes the type of a model? 

Source: (Watts and Strogatz 1998) 

If we evaluate biological networks in terms of random network model; biological network 

patterns are more heterogeneous than simple models presented by random networks (Bansal, 

Khandelwal, and Meyers 2009). According to Proulx, Promislow, and Phillips (2005) 

heterogeneity, non-trivial clustering coefficient, community structure and assortative mixing are 

the most important features seen in biological networks. Although the ER model is simple and 

straightforward, it cannot bear the characteristics of the degree distribution and clustering 

coefficients observed in biological networks (Almaas, Vazquez, and Barabási 2013). It is obvious 

that biological networks are significantly different from random networks; and often present 

ubiquitous characteristics in terms of their structure and organization (Zhu, Gerstein, and Snyder 

2007).  
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4. Small World Networks 
 

In 1967, a sociologist named Steve Milgram introduced the concept of six degrees of separation. 

Milgram (1967) wrote and confirmed the words “the world is small” used in daily life with his 

experiments. It is determined by his study that there are six steps as a median between two people 

who do not know each other. Much later, in digital media such as Facebook, this distance shrinks 

towards four steps. Using a regular network and rewiring you can generate a small world 

network. Regular networks ‘rewired’ to reveal increasing amounts of disorder. It was detected 

that these systems may be highly clustered like regular lattices, and appear with small 

characteristic path lengths such as random graphs. They are called ‘small-world’ networks (Watts 

and Strogatz 1998). It was stressed out that the small-world is a relevant and popular 

phenomenon in many features of natural and man-made complex networks (Zamora-lópez and 

Brasselet 2019; Figure 4). 

The main difference between random networks and small world networks is that in small 

word networks, two nodes are connected by a shorter path in small word networks than the same 

size random network. In small world networks, the distance between any pair of nodes, increases 

slowly (logarithmically) with the number of nodes in the network. 

Small world networks can be seen in biological and non-biological networks. Collaboration 

among film actors network, the power grid network in the Western United States, the neural 

network of a worm species of Caenorhabditis elegance, are examples of small world networks 

(Watts and Strogatz 1998). Metabolic networks are small world networks and the network 

diameter does not appear to vary between different organisms. But on the contrary, we can also 

find sources stating that metabolic networks are scale-free because of their preferential 

attachment feature (Alm and Arkin 2003). And also, in the studies of Tanaka (2005) and Jeong et 

al. (2000) it is stated that metabolic networks have the characteristic of scale-free networks.  

Small world network features have also been observed in brain networks (Bassett and 

Bullmore 2006), generally measured as high clustering and a short path length (Sporns 2013). As 

it has been seen in Figure 1, whether the brain really is a small world network remains unclear, 

although there is some evidence (Hilgetag and Goulas 2015). Another problem in small world 

networks is the size of small-world network, and comparison with others.  We should also 

emphasize that a reliable and comparable quantification of the average path length of networks 

persists as an open challenge over the years.  
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Figure 4. Small world network (N= 100, 4, p=0.03)  

 

In a small world network, nodes tend to form triangles and this makes the network robust. But 

there is an inverse relationship between robustness and small world effect and vice versa (Peng et 

al. 2016).  

5. Scale-Free Networks 

In 1999, Barabási and Albert explained the principle of preferential attachment and how this 

principle works in scale-free networks (Barabási and Albert 1999). It is also shown on Figure 5. 

For instance, scale-freeness include the distributions of the sizes of cities, earthquakes, solar 

flares, moon craters, wars and people’s personal fortunes,  all appear to follow power laws 

(Newman 2005). As we know, most networks grow in time. The probability of a new node 

connecting to a node with k links is proportional to k, and in this case, a node with many 

connections will have mode connections over time and activates the phenomenon that rich 

becomes richer. The degree distribution of scale-free networks conforms to the power law; 

P(k) ~ k-λ                                                                                        (1) 

Exponent λ most of the times ranges between 2 and 3, this kind of network lacks a 

characteristic scale, hence such networks are called scale-free networks (Bullmore and Sporns 

2009). 

 
Figure 5.  Scale-free network (N=100) 
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6. Are Scale-Free Networks So Abundant In Nature? 
 

In biological networks the most characteristic feature is the presence of many hubs and many 

nodes have few connections which convenient for power-law. Another important feature of scale-

free networks are also to be in the small world networks class (Amaral et al. 2000). Because they 

have clustering coefficients much larger than random networks (Watts and Wu 2002) and their 

diameter increases logarithmically with the number of vertices n. The small world feature of 

networks enables faster communication between different nodes. In addition, it is known that 

scale- free networks are robust to random attacks. All these properties are very important for 

biological networks (Khanin and Wit 2006). 

However many biological networks exhibit the topological characteristics of scale-free 

networks with their preferential attachment feature, we want to deal with two questions. The first 

one is; “Are scale-free networks so abundant or rare?” and second one is “Even if scale-free 

networks are common, are there differences in these parameters of natural and man-made 

networks?”. We should point out that there are no clear answers for these questions yet and all we 

do is to list these views one after another. 

Some researchers ask that they focus on answering questions, which remain to be unanswered 

in this field of research including why scale-free networks are so abundant in nature 

(cosnet.bifi.es, 2013). Although software class diagrams, electronic circuits are detected as scale-

free, some researchers have argued the opposite of this idea, claiming that scale-free networks are 

not ubiquitous phenomenon. In addition, they argue that they do not have a good basis 

empirically to analyze and model the structure of real networks (Broido and Clauset 2019).  

Some authors have expressed that, in many cases hypothesized distributions are not tested 

rigorously against the data. This naturally leaves open the possibility that apparent power-law 

behavior is, in some cases at least, the result of wishful thinking (Clauset, Shalizi, and Newman 

2009).  

Some researches state that scale-free networks are abundant and their application to a 

representative collection of degree sequences in real-world networks confirms that they are not 

rare (Voitalov et al. 2019); however some say they are not. It is stated by Broido and Clauset 

(2019) that direct or indirect evidence is insufficient for the prevalence of scale-free structure in 

most of the biological networks. Broido and Clauset used five categories of scale-freeness from 

‘super-weak’ to ‘strongest’. They found that 57% the data sets belong to at least some kind of 

scale-free class; however, only 4% belong to the ‘strongest’ category. Broido and Clauset stated 
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that biological and technological networks may reach the “strongest” level whereas social 

networks may barely be “weakly” scale-free. 

 However, Khanin and Wit (2006) concluded that the number of connections in biological 

networks are quite different from the power law distribution, so they are not scale-free networks. 

The study conducted by Stumpf, Wiuf, and May (2005) also supports Khanin and Wit (2006). 

Apart from all these studies, let us emphasize that another aspect of the debate about whether 

biological networks are scale-free is about the α  parameter. According to Broido and Clauset 

(2019) studies’ the distribution of median α parameters significantly differs in five categories of 

evidence for scale-free formation 

Another issue about scale-free structure is its rare or not. If strongly scale-free structure is 

empirically rare (Broido and Clauset 2019), how can they be “universal”? But again one point 

that confuses us in the Broido and Clauset's approach. In this approach, taxonomy of scale-free 

network definitions is used. How do we decide whether a data set is suitable for a particular 

distribution or not? By making classifications according to certain criteria (Broido and Clauset’s 

approach use certain criteria) or by applying statistical hypothesis testing? For instance, we do 

not say as a result of hypothesis testing that if any dataset has a poor normal or a strong normal 

distribution. A dataset may or may not comply with a normal distribution. Only the level of 

significance may be altered in  the merit of fit tests or if we should say that distributions of which 

tests passed at a significance level of 1% are strong, and the tests of which passed by 5% are 

poor. It is obviously the opposite. This classification problem may be resolved by neural 

networks. Xin, Zhang, and Shao (2020) report that Convolutional Neural Network (CNN) was 

used to find the differences between small-world and scale-free networks for network 

classification problem. Another study utilizing machine learning detected that Gaussian Naive 

Bayes and Random Forest classifiers may estimate the collections of real-world networks by 

accuracy rates of 92.8% and 92.3%,  respectively (Canning et al. 2017).  

7. Some Comparisons 

Table 1 contains the evaluation of random, small world and scale independent networks with 

biological and non-biological networks. A summary of the features we touched on while 

introducing the models is available in this table. The table, which includes the main features of 

the models in terms of understanding the difference from each other, also includes the degree 

distributions that are very important for the models. 
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Table 1. Two-Way Table of Network Models For Biological and Non-Biological Networks 
Network 

Models 
Biological Networks Non-Biological Networks Main Feature Degree distribution 

Random 

Networks 

It has been demonstrated that real world 

networks do not have the characteristics of 

ER networks. The probability of any two 
nodes connecting with each other may not be 

constant in real world networks (Khaluf et 

al. 2017). ER is not a good model for 
biological networks with respect to degree 

distribution. 

It has been demonstrated 
that real world networks do 

not have the characteristics 

of ER networks. The 
probability of any two 

nodes connecting with 

each other may not be 
constant in real world 

networks (Khaluf et al. 

2017) 

 

Undirected, small 

clustering 
coefficient with 

high average path. 

For small networks 

Binomial 

 
For large networks 

Poisson. 

Small-World 

Networks 

As a principle, a scale-free, small-world 

behavior may basically appear from the 

types of genetic evolutionary events that we 
are used to do including gene duplication, 

point mutation, and gene loss (Aloy and 

Russell 2004) 
 

Small world networks are 
seen in non-biological 

networks. For example, 

Facebook from social 
networks shows the 

characteristics of small 

world networks with an 
average of 4.74 steps 

between two nodes. 

High clustering 

coefficients with 
short average path 

lengths. 

 

Small-world 

networks differs 

from other synthetic 

networks. The 

characteristics of the 

degree distribution 
change as the p 

value increases, 

which shows the 
degree of 

randomness, 

varying between 0 
and 1. The common 

feature of various 

studies is that the 
distance between 

any two nodes 

increases 
logarithmically as 

the network expands 

(Huang, Sun, and 
Lin 2005) 

Scale-free 

networks 

“Scale-free nature of biological networks 

may have to be treated with some 
caution.”(Khanin and Wit 2006). The 

examples obviously indicate that scale-free 

networks ranging between our brains and 
social networks have valuable consequences 

(Rajula, Mauri, and Fanos 2018). Some 

authors (see Chung et al. 2003) discuss that 
the estimated value of the exponent for the 

PPI networks meets 2 < γ < 3. However, 

there are some significant oppositions to this 
claim; and it is stated on statistical grounds 

that the PPI graphs do correspond to power-

law degree distribution category (Tanaka, 
Yi, and Doyle 2005; Khanin and Wit 2006; 

Sreedharan, Turowski, and Szpankowski 

2020) 

Most real 
networks have power-law 

consistent degree 

distributions labeling them 
as scale-free(Albert and 

Barabási 2002); (A.-L. 

Barabási and Albert 1999). 
However according to 

Broido and Clauset (2019) 

in their article, they found 
evidence that scale-free 

networks are rare. It is 

certain that it will be an 
open topic for discussion 

in the following years. 

Preferential 

attachment. 
Power law 

 

Table 2 lists some of the features that can be considered as important differences in biological 

and non-biological networks. In networks, looping is the connection of a node to itself. A 

network loop occurs when moving information from the same source to the same destination in a 

network has more than one active path. There are loops in natural networks but looping is not a 

desired feature in Internet networks.  In fact, retweets in tweet networks and emailing yourself, 

although not very common, are shown as loops in general. However, they are defined as loops, 
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we can say that there are no loops in the majority of non-biological networks since they cannot 

fulfill the loop function exactly in the networks. Although we mentioned that loops are not seen 

in biological networks, we have to emphasize that the same is not true for artificial neural 

networks. Because feedback loops are also used in artificial neural networks. If the output in 

artificial neural networks is not at the expected level, a technique called backpropagation allows 

the artificial neural networks to know this and adjust the neuron layers accordingly. So the error 

doesn't happen again.  

Table 2. Comparison of Biological and Non-Biological Networks  
 Biological networks Non-biological networks 

Loops 

“Since feedback readily found in most 

biological networks, they have a significant 

importance” (Kwon and Cho 2007). 
Feed-forward-loops are common. 

Loops are uncommon. 

Community Structure  

Community Structure is very important to 

determining the structural or functional 

relationships between objects and 
determining the identity of the network. 

Community Structure is very important to 

determining the structural or functional 

relationships between objects and 
determining the identity of the network.  

Assortativity A dichotomy is seen No dichotomy can be seen. 

   

Hierarchy  

Hierarchy is an important property of many 
natural and artificial networks (Mones and 

Vicsek 2012) 

 
The ontology specifically organizes 

biological knowledge about cell components 

and functions hierarchically (Bechtel 2020) 
 

 

Hierarchy is an important property of many 

natural and artificial networks (Mones and 

Vicsek 2012) 
 

Small-world phenomenon It may be detected. It may be detected. 

Diameter 

However, the diameter of the metabolic 

network is similar for all of 43 organisms 

(Jeong et al. 2000). 
 

Mean connectivity of a node is fixed, for all 
non-biological networks analyzed; this 

implies that the diameter of a network 

increases logarithmically with addition of 
new nodes (Jeong et al. 2000). 

 

The empirical ratio of the second to first 

moments ⟨k2⟩/⟨k⟩2 

According to Figure 1 it has been seen that 
in biological networks the empirical ratio of 

the second to first moments ⟨k2⟩/⟨k⟩2 

changes mostly between 10-1 and 101 range. 

 

In social networks, the upper limit of this 
range is exceeded. In terms of the number of 

nodes, social networks cover a much wider 

range than biological networks in Figure 1. 

 

The study of community structure in networks has a long history. The issue of finding 

communities in networks goes back to the 70's. This subject is referred to as graph partitioning in 

mathematic area, community detection and hierarchical clustering in social networks and 

sociology (Newman and Girvan 2004). This feature is also referred to as clustering in some 

places. In addition to the mathematical and statistical inferences of networks, hidden information 

in complex systems can be accessed by determining the community structures of networks. 

Community structure can be displayed in different ways in networks. Figure 6 is a graphical 
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representation of a network with a community structure. In this network, there appears to be less 

intensive inter-community linkages, although there are extensive links within communities.  

 
Figure 6. A graphical representation of a network with a community structure 

Source: (Broido and Clauset 2019) 

 

Many biological and non-biological networks exist divided into communities or we can say 

modules (Atay, 2018). Community structures generally refer to clusters of nodes obtained 

according to some topological properties such as the number of links in the network, their 

density, number of nodes, neighborhood relations. These sub-charts provide very important 

information in determining the structural or functional relationships between objects in real world 

networks and determining the identity of the network. 

If the function of a group of molecules in biological networks is known, one can make 

predictions about the function of other assemblages of molecules that interact with this 

community but whose function is unknown (He et al. 2009). Figure 7 shows the community 

structure of the human brain. According to the figure, it refers to the regions where the human 

brain has five different modularity and each node plays an important role in the flow of 

information. It is observed that intra-community interactions are intense and inter-module 

connections are observed less frequently. He et al. (2009) and  Olesen et al. (2007)  express that 

modularity within a system increases the robustness of the system. It has been found that 

metabolic networks of organisms living in a variable environment are more modular. It is 

important to reveal modules that can be considered functionally meaningful from such biological 

interaction networks. 
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Figure 7. Modular Structure of Human Brain 

Source: (He et al. 2009) 

We know that rich nodes can or cannot have connections between them (Mondragón 2020). If 

nodes in a network establish random connections with other nodes regardless of their degree, 

these networks are “neutral networks”. Conversely, if hub nodes attach to hub nodes, these 

networks are “assortative”. The marriage of famous people with famous people is an example of 

assortative networks. Figure 8 shows that nodes in different biological networks show the same 

dichotomous in degree correlation. This dichotomous discern biological networks from real 

classifying networks such as the internet and social networks (Hao and Li 2011).           

                                                                                                                                 

 
Figure 8. Dichotomous modules. 

Source: (Hao and Li 2011) 
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A. Modules organized around YLR423C YBR160W. Classifying links are indicated in red 

whereas non-classifying links are shown in blue. B. Modules organized around YBR160W. C. 

Two modules organized around YDL239C and YML264C are connected to each other through 

classifying links. D. Classifying hubs are more essential than non-classifying hubs (chi-square 

test). 

In Figure 9, we see moment ratio scaling for various degree sequences. As it can be seen on 

Figure 9, sometimes lognormal distribution enters the stage. De Silva and Stumpf (2005) find that 

for the yeast protein interaction networks (PIN) the lognormal distribution (blue) offers a better 

description of the data than the pure power-law or its heuristic finite-size versions.  

 
Figure 9. Moment ratio scaling. For 3662 degree sequences, the empirical ratio of the second to 

first moments ⟨k2⟩/⟨k⟩2 as a function of network size n, 

Source: (Broido and Clauset 2019) 

Graphical representation of a system actually means that interactions are also dyadic. 

However, many biological networks do not conform to this assumption. Therefore, we may need 

to wait before understanding the real differences in biological networks. It is not probable that 

any method or mode of thinking may complete an analysis; however, rather than combining tools 

from topology, statistics, and other fields may support our capability to derive biological 

understanding and pinpoint biological mechanisms (Blevins and Bassett 2020). 

Barabási, Albert, and Jeong (1999), and Erdős and Rėnyi (1959) indicated that networks are 

created by random processes including homogeneous node sets in their mathematical evaluation. 

However, changes and variations exist in life. Proulx, Promislow, and Phillips (2005) state that 

three basic properties of biological networks should be considered to improve biological network 

models as follows; 1) Networks may lose nodes or new nodes may be added to networks; 2) 

Features of the nodes in the network may change; and 3) External factors may affect the structure 
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of the network. It should be remembered that characteristics of the entities (i.e. genes, species) 

forming biological networks may affect the dynamics of network formation. 

8. Results 

In this paper, we aimed to compare biological and non-biological networks based on the three 

models, which are random networks, small-world networks, scale-free networks. And also we 

compared some of the basic properties of biological and non-biological networks. Among these 

features, there were similarities and differences. We think it is important to highlight these 

features in order to better understand the structure of biologic and non-biologic networks and to 

shed light on future studies. 

As a result of our work, we saw that there are very different and sometimes even opposite 

ideas about biological and non-biological networks are occurred on studies. We find particularly 

surprising and thought-provoking studies on whether scale-free networks are common or rare. 

The exact judgments that biological networks present a scale-free network model in the past are 

increasingly replaced doubt. Therefore, biological networks scale-free structure inferences should 

be require more examined. 

We think that with the advancement of science and technology, this research makes a 

prediction that "unknowns" or "well-known mistakes" about the biological and non-biological 

networks may emerge over time. Depending on researches and the changing world order, perhaps 

different network models will be defined in the coming years. 
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