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Abstract 
In this study, the multiplicative Volterra integral equation is defined by using the 

concept of multiplicative integral. The solution of multiplicative Volterra integral 

equation of the second kind is researched by using the successive approximations 

method with respect to the multiplicative calculus and the necessary conditions for the 

continuity and uniqueness of the solution are given. The main purpose of this study is 

to investigate the relationship of the multiplicative integral equations with the 

multiplicative differential equations. 
Keywords: Multiplicative calculus; Multiplicative differential equations; 

Multiplicative Volterra integral equations; Successive approximations method. 

 

1. Introduction 

Grossman and Katz [10] have built non-Newtonian calculus between years 1967-1970 as an 

alternative to classic calculus. They have set an infinite family of calculus, including classic, geometric, 

harmonic, quadratic, bigeometric, biharmonic and biquadratic calculus. Also, they defined a new kind 

of derivative and integral by using multiplication and division operations instead of addition and 

subtraction operations. Later, the new calculus that establish in this way is named multiplicative calculus 

by Stanley [16]. Multiplicative calculus provide different point of view for applications in science and 

engineering. It is discussed and developed by many researchers. Stanley [16] developed multiplicative 

calculus, gave some basic theorems about derivatives, integrals and proved infinite products in this 

calculus. Aniszewska [1] used the multiplicative version of Runge-Kutta method for solving 

multiplicative differential equations. Bashirov, Mısırlı and Özyapıcı [2] demonstrated some applications 

and usefulness of multiplicative calculus for the attention of researchers in the branch of analysis. Rıza, 

Özyapıcı and Mısırlı [14] studied the finite difference methods for the numerical solutions of 

multiplicative differential equations and Volterra integral equations. Mısırlı and Gurefe [13] developed 

multiplicative Adams Bashforth-Moulton methods to obtain the numerical solution of multiplicative 

differential equations. Bashirov, Rıza [4] discussed multiplicative differentiation for complex valued 

functions and Bashirov, Norozpour [6] extended the multiplicative integral to complex valued functions. 

Bashirov [5] studied double integrals in the sense of multiplicative calculus. Bhat et al. [7] defined 

multiplicative Fourier transform and found the solution of multiplicative differential equations by 

applying multiplicative Fourier transform. Bhat et al. [8] defined multiplicative Sumudu transform and 

solved some multiplicative differential equations by using multiplicative Sumudu transform. For more 

details see in [1-10, 13, 14, 16-20]. 
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Integral equations have used for the solution of many problems in applied mathematics, 

mathematical physics and engineering since the 18th century. The integral equations have begun to enter 

the problems of engineering and other fields because of the relationship with differential equations and 

so their importance has increased in recent years. The reader may refer for relevant terminology on the 

integral equations to [11, 12, 15, 21, 22]. 

 

Now, we will give some necessary definitions and theorems in multiplicative calculus as follows: 

 

Definition 1. Let 𝑓  be a function whose domain is ℝ the set of real numbers and whose range is a 

subset of ℝ. The multiplicative derivative of the 𝑓 at 𝑥 is defined as the limit 

 
𝑑∗𝑓(𝑥)

𝑑𝑥
= 𝑓∗(𝑥) = lim

ℎ→0
(
𝑓(𝑥+ℎ)

𝑓(𝑥)
)

1

ℎ
.  

The limit is also called ∗-derivative of  𝑓 at 𝑥, briefly.  

 

If  𝑓  is a positive function on an open set 𝐴 ⊆ ℝ and its classical derivative 𝑓′(𝑥) exists, then its 

multiplicative derivative also exists and 

 𝑓∗(𝑥) = 𝑒
[
𝑓′(𝑥)

𝑓(𝑥)
]
= 𝑒(𝑙𝑛∘𝑓)

′(𝑥) 

where  𝑙𝑛 ∘ 𝑓(𝑥) = 𝑙𝑛𝑓(𝑥). Moreover, if 𝑓 is multiplicative differentiable and 𝑓∗(𝑥) ≠ 0, then its 

classical derivative exists and 

𝑓′(𝑥) = 𝑓(𝑥) ⋅ 𝑙𝑛𝑓∗(𝑥) [16]. 

 

The multiplicative derivative of 𝑓∗ is called the second multiplicative derivative and it is denoted 

by 𝑓∗∗. Likewise, the 𝑛-th multiplicative derivative can be defined of 𝑓 and denoted by 𝑓∗(𝑛) for 𝑛 =

0,1,2, ... . If 𝑛-th derivative 𝑓(𝑛)(𝑥) exists, then its 𝑛-th multiplicative derivative 𝑓∗(𝑛)(𝑥)  also exists 

and  

𝑓∗(𝑛)(𝑥) = 𝑒(𝑙𝑛∘𝑓)
(𝑛)(𝑥), 𝑛 = 0,1,2,…  [2]. 

 

Definition 2. The multiplicative absolute value of 𝑥 ∈ ℝ denoted with the symbol |𝑥|∗ and defined 

by 

|𝑥|∗ = {
𝑥,         𝑥 ≥ 1  
1

𝑥
,         𝑥 < 1.

 

 

Theorem 1. Let 𝑓 and 𝑔 be multiplicative differentiable functions. Then the functions 𝑐. 𝑓, 𝑓. 𝑔, 𝑓 +

𝑔,
𝑓
𝑔⁄ , 𝑓𝑔 are multiplicative differentiable where 𝑐 is an arbitrary constant and their multiplicative 

derivative can be shown as 

(1)   (𝑐𝑓)∗(𝑥) = 𝑓∗(𝑥) 

(2)   (𝑓𝑔)∗(𝑥) = 𝑓∗(𝑥)𝑔∗(𝑥) 

(3)   (𝑓 + 𝑔)∗(𝑥) = 𝑓∗(𝑥)
𝑓(𝑥)

𝑓(𝑥)+𝑔(𝑥)𝑔∗(𝑥)
𝑔(𝑥)

𝑓(𝑥)+𝑔(𝑥) 

(4)   (
𝑓

𝑔
)
∗
(𝑥) =

𝑓∗(𝑥)

𝑔∗(𝑥)
 

(5)    (𝑓𝑔)∗(𝑥) = 𝑓∗(𝑥)𝑔(𝑥)𝑓(𝑥)𝑔
′(𝑥) 

(6) [𝑓∗(𝑥)]𝑛 = [𝑓𝑛(𝑥)]∗ for 𝑛 ∈ ℝ  [16]. 
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Theorem 2. (Multiplicative Mean Value Theorem) If the function 𝑓 is continuous on [𝑎, 𝑏] and is 

*-differentiable on (𝑎, 𝑏), then there exits 𝑎 < 𝑐 < 𝑏 such that 

𝑓∗(𝑐) = (
𝑓(𝑏)

𝑓(𝑎)
)

1

𝑏−𝑎
   [3]. 

 

Definition 3. Let 𝑓 be a function with two variables, then its multiplicative partial derivatives are 

defined as 

𝜕∗𝑓(𝑥,𝑦)

𝜕𝑥
= 𝑓𝑥

∗(𝑥, 𝑦) = 𝑒
𝜕

𝜕𝑥
𝑙𝑛(𝑓(𝑥,𝑦))

     and     
𝜕∗𝑓(𝑥,𝑦)

𝜕𝑦
= 𝑓𝑦

∗(𝑥, 𝑦) = 𝑒
𝜕

𝜕𝑦
𝑙𝑛(𝑓(𝑥,𝑦))

 [5].  

 

Theorem 3. (Multiplicative Chain Rule) Suppose that 𝑓 be a function of two variables 𝑦 and 𝑧 with 

continuous multiplicative partial derivatives. If  𝑦 and 𝑧 are differentiable functions on (𝑎, 𝑏) such that 

𝑓(𝑦(𝑥), 𝑧(𝑥)) is defined for every 𝑥 ∈ (𝑎, 𝑏), then 

𝑑∗𝑓(𝑦(𝑥), 𝑧(𝑥))

𝑑𝑥
= 𝑓𝑦

∗(𝑦(𝑥), 𝑧(𝑥))
𝑦′(𝑥)

𝑓𝑧
∗(𝑦(𝑥), 𝑧(𝑥))

𝑧′(𝑥)
 [2]. 

 

Definition 4. Let 𝑓 be a positive function and continuous on the interval [𝑎, 𝑏], then it is 

multiplicative integrable or briefly ∗-integrable on [𝑎, 𝑏] and  

∗ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝑒∫ ln(𝑓(𝑥))𝑑𝑥
𝑏

𝑎   [16]. 

 

Theorem 4. If 𝑓 and 𝑔 are integrable functions on [𝑎, 𝑏] in the sense of multiplicative, then 

(1)  ∗ ∫ (𝑓(𝑥)𝑘)
𝑑𝑥𝑏

𝑎
= (∗ ∫ (𝑓(𝑥))

𝑑𝑥𝑏

𝑎
)
𝑘

  

(2)  ∗ ∫ (𝑓(𝑥)𝑔(𝑥))
𝑑𝑥𝑏

𝑎
=∗ ∫ (𝑓(𝑥))

𝑑𝑥𝑏

𝑎
∗ ∫ (𝑔(𝑥))

𝑑𝑥𝑏

𝑎
 

(3)  ∗ ∫ (
𝑓(𝑥)

𝑔(𝑥)
)
𝑑𝑥𝑏

𝑎
=
∗∫ (𝑓(𝑥))

𝑑𝑥𝑏

𝑎

∗∫ (𝑔(𝑥))
𝑑𝑥𝑏

𝑎

 

(4)  ∗ ∫ (𝑓(𝑥))
𝑑𝑥𝑏

𝑎
=∗ ∫ (𝑓(𝑥))

𝑑𝑥𝑐

𝑎
∗ ∫ (𝑓(𝑥))

𝑑𝑥𝑏

𝑐
 

where 𝑘 ∈ ℝ  and 𝑎 ≤ 𝑐 ≤ 𝑏 [2,3]. 

 

Theorem 5. (Fundamental Theorem of Multiplicative Calculus) If the function 𝑓 has multiplicative 

derivative on [𝑎, 𝑏] and 𝑓∗ is multiplicative integrable on [𝑎, 𝑏] , then  

∗ ∫𝑓∗(𝑥)𝑑𝑥
𝑏

𝑎

=
𝑓(𝑏)

𝑓(𝑎)
  [2,3]. 

 

Definition 5. The equation of the form 

 𝑦∗(𝑥) = 𝑓(𝑥, 𝑦(𝑥))  

including the multiplicative derivative of 𝑦 is called first order multiplicative differential equation. It is 

equivalent to the ordinary differential equation 𝑦′(𝑥) = 𝑦(𝑥) ln 𝑓(𝑥, 𝑦(𝑥)). Similarly, 𝑛-th order 

multiplicative differential equation is defined by 𝐹 (𝑥, 𝑦, 𝑦∗, … , 𝑦∗(𝑛−1), 𝑦∗(𝑛)(𝑥)) = 1, (𝑥, 𝑦) ∈ ℝ ×

ℝ+ [2,3]. The equation of the form 
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(𝑦∗(𝑛))
𝑎𝑛(𝑥)

(𝑦∗(𝑛−1))
𝑎𝑛−1(𝑥)

…(𝑦∗∗)𝑎2(𝑥)(𝑦∗)𝑎1(𝑥)𝑦𝑎0(𝑥) = 𝑓(𝑥)     

that 𝑓 is a positive function, is called multiplicative linear differential equation. If the exponentials 𝑎𝑛(𝑥) 

are constants, then the equation called as multiplicative linear differential equation with constant 

exponentials; if not it is called as multiplicative linear differential equation with variable exponentials 

[17]. 

 

2. Multiplicative Volterra Integral Equations 

An equation in which an unknown function appears under one or more signs of multiplicative 

integration is called a multiplicative integral equation (MIE), if the multiplicative integral exists. The 

equation  

𝑢(𝑥) = 𝑓(𝑥)  ∗ ∫[𝑢(𝑡)]𝐾(𝑥,𝑡)
𝑑𝑡

𝑥

𝑎

 

where 𝑓(𝑥) and 𝐾(𝑥, 𝑡)  are known functions, 𝑢(𝑥) is unknown function, is called linear multiplicative 

Volterra integral equation (LMVIE) of the second kind. The function 𝐾(𝑥, 𝑡) is the kernel of 

multiplicative Volterra integral equation. If 𝑓(𝑥) = 1, then the equation takes the form 

𝑢(𝑥) = ∗ ∫[𝑢(𝑡)]𝐾(𝑥,𝑡)
𝑑𝑡

𝑥

𝑎

 

and it is called LMVIE of the first kind. 

 

Example 1. Show that the function 𝑢(𝑥) = 𝑒2𝑥  is a solution of the MVIE 𝑢(𝑥) = 𝑒𝑥 ∗ ∫ [(𝑢(𝑡))
1

𝑥]
𝑑𝑡

𝑥

0
. 

Solution. Substituting the function 𝑒2𝑥  in place of 𝑢(𝑥) into the right side of the equation, we obtain  

𝑒𝑥  ∗ ∫ [(𝑢(𝑡))
1

𝑥]
𝑑𝑡

𝑥

0
= 𝑒𝑥  ∗ ∫ [(𝑒2𝑡)

1

𝑥]
𝑑𝑡

𝑥

0
 = 𝑒𝑥  𝑒∫ ln 𝑒

2𝑡
𝑥 𝑑𝑡

𝑥

0 = 𝑒𝑥  𝑒∫
2𝑡

𝑥
𝑑𝑡

𝑥

0  = 𝑒𝑥 𝑒
2

𝑥
∙
𝑡2

2
|
0

𝑥

= 𝑒2𝑥 = 𝑢(𝑥)  

So, this means that the function 𝑢(𝑥) = 𝑒2𝑥  is a solution of the MVIE.  

 

2.1. The Successive Approximation Method For Solving Multiplicative Volterra Integral 

Equations 

 

Theorem 6. Consider LMVIE of the second kind as 

𝑢(𝑥) = 𝑓(𝑥)  ∗ ∫ [𝑢(𝑡)]𝐾(𝑥,𝑡)
𝑑𝑡𝑥

0
.                                                                                                                       (1) 

If 𝑓(𝑥) is positive and continuous on [0, 𝑎] and 𝐾(𝑥, 𝑡) is continuous on the rectangle 0 ≤ 𝑡 ≤ 𝑥 and 

0 ≤ 𝑥 ≤ 𝑎, then there exists an unique continuous solution of (1) as 

𝑢(𝑥) = ∏ 𝜑𝑛(𝑥)
∞
𝑛=0 = 𝑒∑ 𝑙𝑛𝜑𝑛(𝑥)

∞
𝑛=0   

such that the series ∑ 𝑙𝑛𝜑𝑛(𝑥)
∞
𝑛=0  is absolute and uniform convergent where 

  𝜑0(𝑥) = 𝑓(𝑥) , 𝜑𝑛(𝑥) =∗ ∫ [ 𝜑𝑛−1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡𝑥

0
, 𝑛 = 1,2, … . 

 

Proof: Take the initial approximation as  

𝑢0(𝑥) = 𝑓(𝑥) =   𝜑0(𝑥) .                                                                                                                               (2) 
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If we write 𝑢0(𝑥)  instead of 𝑢(𝑥) in equation (1), then we get the new function showed with 𝑢1(𝑥)  as 

𝑢1(𝑥) = 𝑓(𝑥)  ∗ ∫[𝑢0(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡.

𝑥

0

                                                                                                                    (3) 

Since the multiplicative integral which is in equation (3) depends on variable 𝑥, we can show it with  

𝜑1(𝑥) =∗ ∫[𝑢0(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

=∗∫[𝜑0(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

 

and write the equation (3) as follow 

𝑢1(𝑥) = 𝑓(𝑥)𝜑1(𝑥) = 𝜑0(𝑥)𝜑1(𝑥)                                                                                                                 (4) 

by using (2). Therefore the third approximation is obtained as 

𝑢2(𝑥) = 𝑓(𝑥)  ∗ ∫[𝑢1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡.

𝑥

0

 

By the equation (4), we find 

𝑢2(𝑥) = 𝑓(𝑥)  ∗ ∫[𝜑0(𝑡). 𝜑1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

 

           = 𝑓(𝑥)   ∗ ∫([𝜑0(𝑡)]
𝐾(𝑥,𝑡)[𝜑1(𝑡)]

𝐾(𝑥,𝑡))
𝑑𝑡

𝑥

0

 

           = 𝑓(𝑥)  ∗ ∫[𝜑0(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

 ∗ ∫[𝜑1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

. 

If we set 𝜑2(𝑥) =∗ ∫ [𝜑1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡𝑥

0
, then  𝑢2(𝑥) = 𝜑0(𝑥) 𝜑1(𝑥) 𝜑2(𝑥). In a similar way, we get  

𝑢𝑛(𝑥) = 𝜑0(𝑥) 𝜑1(𝑥) 𝜑2(𝑥) …  𝜑𝑛(𝑥)                                                                                                            (5) 

where 

 𝜑0(𝑥) = 𝑓(𝑥) , 𝜑𝑛(𝑥) =∗ ∫ [ 𝜑𝑛−1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡𝑥

0
,  𝑛 = 1,2, … . 

Continuing this process, we get the series 

𝑢(𝑥) = 𝜑0(𝑥) 𝜑1(𝑥) 𝜑2(𝑥) …  𝜑𝑛(𝑥). … =∏𝜑𝑛(𝑥)

∞

𝑛=0

= 𝑒∑ 𝑙𝑛𝜑𝑛(𝑥)
∞
𝑛=0 .                                                  (6) 

From (5) and (6), it is clear that  lim
𝑛→∞

𝑢𝑛 (𝑥) = 𝑢(𝑥). 

Assume that 𝐹 = 𝑚𝑎𝑥
𝑥∈[0,𝑎]

𝑓(𝑥) and 𝐾 = 𝑚𝑎𝑥
0≤𝑡≤𝑥≤𝑎

|𝐾(𝑥, 𝑡)|. Then we find 

𝜑0(𝑥) = 𝑓(𝑥) ≤ 𝐹 

𝜑1(𝑥) =∗ ∫[𝜑0(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

= 𝑒∫ 𝐾(𝑥,𝑡)𝑙𝑛𝜑0(𝑡)𝑑𝑡
𝑥

0 ≤ 𝑒∫ |𝐾(𝑥,𝑡)| |𝑙𝑛𝜑0(𝑡)|𝑑𝑡
𝑥

0 = 𝑒∫ |𝐾(𝑥,𝑡)| 𝑙𝑛|𝜑0(𝑡)|∗𝑑𝑡
𝑥

0

≤ 𝑒𝐾.𝑙𝑛𝐹.𝑥 

𝜑2(𝑥) =∗ ∫[𝜑1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

= 𝑒∫ 𝐾(𝑥,𝑡)𝑙𝑛𝜑1(𝑡)𝑑𝑡
𝑥

0 ≤ 𝑒𝐾.𝑙𝑛𝐹 ∫ |𝐾(𝑥,𝑡)|.𝑡𝑑𝑡
𝑥

0 ≤ 𝑒𝐾
2.𝑙𝑛𝐹 ∫ 𝑡𝑑𝑡

𝑥

0 = 𝑒𝑙𝑛𝐹.𝐾
2.
𝑥2

2!  

⋮ 

𝜑𝑛(𝑥) ≤ 𝑒
𝑙𝑛𝐹.

𝐾𝑛𝑥𝑛

𝑛! . 
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Also, we can see that |𝑙𝑛𝜑𝑛(𝑥)| = 𝑙𝑛|𝜑𝑛(𝑥)|∗ ≤ 𝑙𝑛𝐹 
𝐾𝑛𝑎𝑛

𝑛!
 for = 1,2,… . Because of  |𝑙𝑛𝜑𝑛(𝑥)| ≤

𝑙𝑛𝐹 
𝐾𝑛𝑎𝑛

𝑛!
  , the series ∑ 𝑙𝑛𝜑𝑛(𝑥)

∞
𝑛=0  is absolute and uniform convergence from the Weierstrass 𝑀-test. 

Since each terms of this series are continuous, the function which this series convergences uniformly is 

continuous. Hence 𝑢(𝑥) is continuous function. Now, we will show 𝑢(𝑥) is a solution of the equation 

(1). Since  𝜑𝑛(𝑥) =∗ ∫ 𝜑𝑛−1(𝑡)
𝐾(𝑥,𝑡)𝑑𝑡𝑥

0
 and 𝜑0(𝑥) = 𝑓(𝑥), we find  

𝜑0(𝑥)∏𝜑𝑛(𝑥)

𝑁

𝑛=1

= 𝑓(𝑥)∏(∗∫𝜑𝑛−1(𝑡)
𝐾(𝑥,𝑡)𝑑𝑡

𝑥

0

)

𝑁

𝑛=1

 

∏𝜑𝑛(𝑥)

𝑁

𝑛=0

= 𝑓(𝑥) ∗ ∫(∏𝜑𝑛−1(𝑡)

𝑁−1

𝑛=1

)

𝐾(𝑥,𝑡)𝑑𝑡𝑥

0

 

∏𝜑𝑛(𝑥)

𝑁

𝑛=0

= 𝑓(𝑥) ∗ ∫(∏𝜑𝑛(𝑡)

𝑁

𝑛=0

)

𝐾(𝑥,𝑡)𝑑𝑡𝑥

0

                                                                                                   (7) 

From (6) and (7), we obtain 

𝑢(𝑥) = lim
𝑁→∞

∏𝜑𝑛(𝑥)

𝑁

𝑛=0

= lim
𝑁→∞

𝑓(𝑥) 𝑒∫ 𝐾(𝑥,𝑡)∑ 𝑙𝑛𝜑𝑛(𝑡)
𝑁
𝑛=0 𝑑𝑡

𝑥

0 = 𝑓(𝑥) 𝑒
∫ 𝐾(𝑥,𝑡) lim

𝑁→∞
(∑ 𝑙𝑛𝜑𝑛(𝑡)
𝑁
𝑛=0 )𝑑𝑡

𝑥

0  

          = 𝑓(𝑥) 𝑒∫ 𝐾(𝑥,𝑡)𝑙𝑛𝑒∑ 𝑙𝑛𝜑𝑛(𝑡)
∞
𝑛=0 𝑑𝑡

𝑥

0 = 𝑓(𝑥) 𝑒∫ 𝐾(𝑥,𝑡)𝑙𝑛𝑢(𝑡)𝑑𝑡
𝑥

0 = 𝑓(𝑥)  ∗ ∫𝑢(𝑡)𝐾(𝑥,𝑡)
𝑑𝑡

𝑥

0

. 

by using the uniform convergence of the series ∑ 𝑙𝑛𝜑𝑛(𝑥)
∞
𝑛=0  . This indicates that 𝑢(𝑥) is the solution 

of the equation (1).  Now, we will show the uniqueness of the solution. Assume that 𝑢(𝑥)  and  𝑣(𝑥) are 

different solutions of the equation (1). Since 

𝑢(𝑥) = 𝑓(𝑥)  ∗ ∫[𝑢(𝑡)]𝐾(𝑥,𝑡)
𝑑𝑡

𝑥

0

 

𝑣(𝑥) = 𝑓(𝑥) ∗ ∫[𝑣(𝑡)]𝐾(𝑥,𝑡)
𝑑𝑡

𝑥

0

 

we find 

𝑢(𝑥)

𝑣(𝑥)
= ∗ ∫ [

𝑢(𝑡)

𝑣(𝑡)
]

𝐾(𝑥,𝑡)𝑑𝑡

=

𝑥

0

𝑒∫ 𝐾(𝑥,𝑡)(𝑙𝑛𝑢(𝑡)−𝑙𝑛𝑣(𝑡))𝑑𝑡
𝑥

0 . 

If we set 
𝑢(𝑥)

𝑣(𝑥)
= 𝜙(𝑥),  we can write 𝜙(𝑥) = ∗ ∫ [𝜙(𝑡)]𝐾(𝑥,𝑡)

𝑑𝑡
=

𝑥

0
𝑒∫ 𝐾(𝑥,𝑡)𝑙𝑛𝜙(𝑡)𝑑𝑡

𝑥

0 . Because of 

𝑙𝑛𝜙(𝑥) = ∫ 𝐾(𝑥, 𝑡)𝑙𝑛𝜙(𝑡)𝑑𝑡
𝑥

0
, we find  

|𝑙𝑛𝜙(𝑥)| = |∫ 𝐾(𝑥, 𝑡)𝑙𝑛𝜙(𝑡)𝑑𝑡
𝑥

0

| ≤ ∫ |𝐾(𝑥, 𝑡)||𝑙𝑛𝜙(𝑡)|𝑑𝑡
𝑥

0

≤ 𝐾∫ |𝑙𝑛𝜙(𝑡)|𝑑𝑡
𝑥

0

. 

It is taken as ℎ(𝑥) = ∫ |𝑙𝑛𝜙(𝑡)|𝑑𝑡
𝑥

0
, then we write 

|𝑙𝑛𝜙(𝑥)| ≤ 𝐾ℎ(𝑥) 

|𝑙𝑛𝜙(𝑥)| − 𝐾ℎ(𝑥) ≤ 0. 

By multiplication with 𝑒−𝐾𝑥  both sides of the inequality, then 
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𝑒−𝐾𝑥|𝑙𝑛𝜙(𝑥)| − 𝑒−𝐾𝑥𝐾ℎ(𝑥) ≤ 0 

𝑑

𝑑𝑥
(𝑒−𝐾𝑥ℎ(𝑥)) ≤ 0  

and by integration both sides of this inequality from 0 to 𝑥 we find 

𝑒−𝐾𝑥ℎ(𝑥) − 𝑒−𝐾0ℎ(0) ≤ 0 

𝑒−𝐾𝑥ℎ(𝑥) ≤ 0. 

Since ℎ(𝑥) ≤ 0 and ℎ(𝑥) ≥ 0, we find ℎ(𝑥) = 0. Therefore |𝑙𝑛𝜙(𝑥)| = 0 for every 𝑥 ∈ [0, 𝑎], i.e., 

𝜙(𝑥) = 1 for every 𝑥 ∈ [0, 𝑎]. Thus  𝜙(𝑥) =
𝑢(𝑥)

𝑣(𝑥)
= 1 and we obtain 𝑢(𝑥) = 𝑣(𝑥). This completes the 

proof. 

 

Remark 1.  If the following iterations of method of successive approximations are set by 

𝑢0(𝑥) = 𝑓(𝑥) 

𝑢𝑛(𝑥) = 𝑓(𝑥) ∗ ∫[𝑢𝑛−1(𝑡)]
𝐾(𝑥,𝑡)𝑑𝑡,      𝑛 = 1,2,3,…

𝑥

0

 

for the multiplicative integral equation 

 𝑢(𝑥) = 𝑓(𝑥) ∗ ∫ [𝑢(𝑡)]𝐾(𝑥,𝑡)
𝑑𝑡𝑥

0
 

where 𝑓(𝑥) is positive and continuous on [0, 𝑎] and 𝐾(𝑥, 𝑡) is continuous for 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑡 ≤ 𝑥, 

then the sequence of successive approximations 𝑢𝑛(𝑥) converges to the solution 𝑢(𝑥).  

 

Example 2. Solve the multiplicative Volterra integral equation 

𝑢(𝑥) = 𝑒𝑥 ∗ ∫ [(𝑢(𝑡))
(𝑡−𝑥)

]
𝑑𝑡

𝑥

0

 

with using the successive approximations method.  

 

Solution. Let taken 𝑢0(𝑥) = 𝑒
𝑥, then the first approximation is obtained as 

 𝑢1(𝑥) = 𝑒
𝑥 ∗ ∫ [(𝑒𝑡)(𝑡−𝑥)]

𝑑𝑡𝑥

0
= 𝑒𝑥𝑒∫ 𝑙𝑛(𝑒𝑡.(𝑡−𝑥))𝑑𝑡

𝑥

0 = 𝑒𝑥𝑒∫ 𝑡.(𝑡−𝑥)𝑑𝑡
𝑥

0  = 𝑒
(𝑥−

𝑥3

3!
)
 

and by using this approximation it can be obtained as 

 𝑢2(𝑥) = 𝑒
𝑥 ∗ ∫ [(𝑒

(𝑡−
𝑡3

3!
)
)

(𝑡−𝑥)

]

𝑑𝑡

𝑥

0
= 𝑒

(𝑥−
𝑥3

3!
+
𝑥5

5!
)
. 

By proceeding similarly,  the 𝑛𝑡ℎ approximation is  

𝑢𝑛(𝑥) = 𝑒
(𝑥−

𝑥3

3!
+
𝑥5

5!
−⋯+(−1)𝑛

𝑥2𝑛+1

(2𝑛+1)!
)
. 

Since the expression 𝑥 −
𝑥3

3!
+
𝑥5

5!
−⋯+ (−1)𝑛

𝑥2𝑛+1

(2𝑛+1)!
+⋯  is the Maclaurin series of 𝑠𝑖𝑛𝑥, 

lim
𝑛→∞

𝑢𝑛(𝑥) = 𝑒
𝑠𝑖𝑛𝑥. Therefore the solution of the equation 𝑢(𝑥) = 𝑒𝑠𝑖𝑛𝑥.  
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    3. The Relationship Between Multiplicative Differential Equations 

 
We will investigate the relationship of the multiplicative Volterra integral equations with the 

multiplicative differential equations.  

 

3.1. The Conversion of the Multiplicative Volterra Integral Equations to Multiplicative 

Differential Equations 

 

In this section, we demonstrate the method of converting a multiplicative Volterra integral 

equation into a multiplicative differential equation. For this, we need the Leibniz Formula in the sense 

of multiplicative calculus.  

Firstly, we will give necessary lemma with using proof of multiplicative Leibniz formula. 

 

Lemma 1. Let Ω be an open set in ℝ2. Suppose that 𝑓:Ω → ℝ be a function such that the 

multiplicative partial derivatives 𝑓𝑥𝑦
∗∗(𝑥, 𝑦) , 𝑓𝑦𝑥

∗∗(𝑥, 𝑦) exists in Ω and are continuous, then we have 

𝜕∗

𝜕𝑥
(
𝜕∗

𝜕𝑦
𝑓(𝑥, 𝑦)) =

𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑥
𝑓(𝑥, 𝑦)). 

Proof. Fix 𝑥 and 𝑦. 𝐹(ℎ, 𝑘) is taken as 

𝐹(ℎ, 𝑘) = (
𝑓(𝑥 + ℎ, 𝑦 + 𝑘) 𝑓(𝑥, 𝑦)

𝑓(𝑥, 𝑦 + 𝑘) 𝑓(𝑥 + ℎ, 𝑦)
)

1
ℎ𝑘

 

By using the multiplicative mean value theorem, we find 

𝐹(ℎ, 𝑘) = (
𝑓(𝑥 + ℎ, 𝑦 + 𝑘) 𝑓(𝑥, 𝑦)

𝑓(𝑥, 𝑦 + 𝑘) 𝑓(𝑥 + ℎ, 𝑦)
)

1
ℎ𝑘

=

(

 
 
(

𝑓(𝑥 + ℎ, 𝑦 + 𝑘)
𝑓(𝑥, 𝑦 + 𝑘)

𝑓(𝑥 + ℎ, 𝑦)
𝑓(𝑥, 𝑦)

)

1
𝑘

)

 
 

1
ℎ

= (
𝜕∗

𝜕𝑦
(
𝑓(𝑥 + ℎ, 𝑦+𝜆1𝑘)

𝑓(𝑥, 𝑦+𝜆1𝑘)
))

1
ℎ

 

               =
𝜕∗

𝜕𝑦
((
𝑓(𝑥 + ℎ, 𝑦+𝜆1𝑘)

𝑓(𝑥, 𝑦+𝜆1𝑘)
)

1
ℎ

) =
𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑥
𝑓(𝑥+𝜆2ℎ, 𝑦+𝜆1𝑘)) 

and 

𝐹(ℎ, 𝑘) = (
𝑓(𝑥 + ℎ, 𝑦 + 𝑘) 𝑓(𝑥, 𝑦)

𝑓(𝑥, 𝑦 + 𝑘) 𝑓(𝑥 + ℎ, 𝑦)
)

1
ℎ𝑘

=

(

 
 
(

𝑓(𝑥 + ℎ, 𝑦 + 𝑘)
𝑓(𝑥 + ℎ, 𝑦)

𝑓(𝑥, 𝑦 + 𝑘)
𝑓(𝑥, 𝑦)

)

1
ℎ

)

 
 

1
𝑘

= (
𝜕∗

𝜕𝑥
(
𝑓(𝑥+𝜆3ℎ, 𝑦 + 𝑘)

𝑓(𝑥+𝜆3ℎ, 𝑦)
))

1
𝑘

 

               =
𝜕∗

𝜕𝑥
((
𝑓(𝑥+𝜆3ℎ, 𝑦 + 𝑘)

𝑓(𝑥+𝜆3ℎ, 𝑦)
)

1
𝑘

) =
𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑦
𝑓(𝑥+𝜆3ℎ, 𝑦+𝜆4𝑘)) 

for some 0 < 𝜆1, 𝜆2, 𝜆3, 𝜆4 < 1  which all of them depend on 𝑥, 𝑦, ℎ, 𝑘. Therefore,  

𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑥
𝑓(𝑥+𝜆2ℎ, 𝑦+𝜆1𝑘)) =

𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑦
𝑓(𝑥+𝜆3ℎ, 𝑦+𝜆4𝑘)) 

for all ℎ and 𝑘. Taking the limit ℎ, 𝑘 → 0 and using the assumed continuity of both partial derivatives, 
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it gives    

𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑥
𝑓(𝑥, 𝑦)) =

𝜕∗

𝜕𝑦
(
𝜕∗

𝜕𝑦
𝑓(𝑥, 𝑦)). 

 

Theorem 7. (Multiplicative Leibniz Formula) Let 𝐴, 𝐼 ⊆ ℝ be open set and  𝑓 be a continuous 

function on 𝐴 × 𝐼 into ℝ. If 𝑓𝑥
∗ exists and is continuous on 𝐴 × 𝐼,  ℎ(𝑥), 𝑣(𝑥) are continuously 

differentiable functions of 𝐴 into 𝐼, then we have  

𝑑∗

𝑑𝑥
(∗ ∫ 𝑓(𝑥, 𝑡)𝑑𝑡

𝑣(𝑥)

ℎ(𝑥)

) = ∗ ∫ 𝑓𝑥
∗(𝑥, 𝑡)𝑑𝑡

𝑣(𝑥)

ℎ(𝑥)

 
𝑓(𝑥, 𝑣(𝑥))

𝑣′(𝑥)

𝑓(𝑥, ℎ(𝑥))
ℎ′(𝑥)

  

 

Proof. Let 𝑓(𝑥, 𝑡) =
𝜕∗

𝜕𝑡
𝐹(𝑥, 𝑡) = 𝐹𝑡

∗(𝑥, 𝑡). Hence we can write ∗ ∫ 𝑓(𝑥, 𝑡)𝑑𝑡
𝑣(𝑥)

ℎ(𝑥)
=∗ ∫ 𝐹𝑡

∗(𝑥, 𝑡)𝑑𝑡
𝑣(𝑥)

ℎ(𝑥)
. 

Since     ∗ ∫ 𝑓(𝑥, 𝑡)𝑑𝑡
𝑣(𝑥)

ℎ(𝑥)
=
𝐹(𝑥,𝑣(𝑥))

𝐹(𝑥,ℎ(𝑥))
 , we find 

𝑑∗

𝑑𝑥
(∗ ∫ 𝑓(𝑥, 𝑡)𝑑𝑡

𝑣(𝑥)

ℎ(𝑥)

) =
𝑑∗

𝑑𝑥
(
𝐹(𝑥, 𝑣(𝑥))

𝐹(𝑥, ℎ(𝑥))
) =

𝑑∗

𝑑𝑥
𝐹(𝑥, 𝑣(𝑥))

𝑑∗

𝑑𝑥
𝐹(𝑥, ℎ(𝑥))

 

by using properties of multiplicative derivative. Therefore we get 

𝑑∗

𝑑𝑥
(∗ ∫ 𝑓(𝑥, 𝑡)𝑑𝑡

𝑣(𝑥)

ℎ(𝑥)

) =
𝐹𝑥
∗(𝑥, 𝑣(𝑥))

1
 [𝐹𝑣(𝑥)

∗ (𝑥, 𝑣(𝑥))]
𝑣′(𝑥)

𝐹𝑥
∗(𝑥, ℎ(𝑥))

1
 [𝐹ℎ(𝑥)

∗ (𝑥, ℎ(𝑥))]
ℎ′(𝑥)

                                                                      (8) 

with multiplicative chain rule. By using Lemma 1, we obtain 

𝑑∗

𝑑𝑥∗
(∗ ∫ 𝑓(𝑥, 𝑡)𝑑𝑡

𝑣(𝑥)

ℎ(𝑥)

) =∗ ∫ (
𝜕∗

𝜕𝑡
𝐹𝑥
∗(𝑥, 𝑡))

𝑑𝑡𝑣(𝑥)

ℎ(𝑥)

𝑓(𝑥, 𝑣(𝑥))
𝑣′(𝑥)

𝑓(𝑥, ℎ(𝑥))
ℎ′(𝑥)

 

                                           =∗ ∫ (
𝜕∗

𝜕𝑡
(
𝜕∗

𝜕𝑥
𝐹(𝑥, 𝑡)))

𝑑𝑡

𝑓(𝑥, 𝑣(𝑥))
𝑣′(𝑥)

𝑓(𝑥, ℎ(𝑥))
ℎ′(𝑥)

𝑣(𝑥)

ℎ(𝑥)

 

                                           =∗ ∫
𝜕∗

𝜕𝑥
(
𝜕∗

𝜕𝑡
𝐹(𝑥, 𝑡))

𝑑𝑡𝑣(𝑥)

ℎ(𝑥)

𝑓(𝑥, 𝑣(𝑥))
𝑣′(𝑥)

𝑓(𝑥, ℎ(𝑥))
ℎ′(𝑥)

 

                                           =∗ ∫
𝜕∗

𝜕𝑥
(𝐹𝑡
∗(𝑥, 𝑡))

𝑑𝑡

𝑣(𝑥)

ℎ(𝑥)

 
𝑓(𝑥, 𝑣(𝑥))

𝑣′(𝑥)

𝑓(𝑥, ℎ(𝑥))
ℎ′(𝑥)

 

                                           =∗ ∫ 𝑓𝑥
∗(𝑥, 𝑡)𝑑𝑡

ℎ(𝑥)

𝑣(𝑥)

 
𝑓(𝑥, 𝑣(𝑥))

𝑣′(𝑥)

𝑓(𝑥, ℎ(𝑥))
ℎ′(𝑥)

 . 

from the equality (8). This completes the proof. 
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Example 3. Show that the multiplicative integral equation 𝑢(𝑥) = sin𝑥 ∗ ∫ ([𝑢(𝑡)]𝑥 tan 𝑡)𝑑𝑡
𝑥

0
  

can be transformed to a multiplicative differential equation.  

 

Solution. If we consider the equation 𝑢(𝑥) = sin𝑥  ∗ ∫ ([𝑢(𝑡)]𝑥tan𝑡)𝑑𝑡
𝑥

0
  and differentiate it by 

using multiplicative Leibniz formula, we write  

𝑢∗(𝑥) =
𝑑∗

𝑑𝑥
(sin𝑥) 

𝑑∗

𝑑𝑥
(∗ ∫([𝑢(𝑡)]𝑥 tan𝑡)𝑑𝑡

𝑥

0

)  

            = 𝑒
𝑐𝑜𝑠 𝑥
𝑠𝑖𝑛 𝑥  ∗ ∫ [

𝜕∗

𝜕𝑥
([𝑢(𝑡)]𝑥 tan 𝑡)]

𝑑𝑡
𝑥

0

(𝑢(𝑥)𝑥 tan𝑥)𝑥
′

(𝑢(0)𝑥 tan0)0
′  

            = 𝑒cot𝑥 ∗ ∫[𝑢(𝑡)tan 𝑡]𝑑𝑡
𝑥

0

𝑢(𝑥)𝑥 tan𝑥 

To take derivative is continued until the expression gets rid of the integral sign. Hence, we obtain 

𝑢∗∗(𝑥) =
𝑑∗

𝑑𝑥
(𝑒cot𝑥)

𝑑∗

𝑑𝑥
(∗ ∫[𝑢(𝑡)tan 𝑡]𝑑𝑡

𝑥

0

)
𝑑∗

𝑑𝑥
(𝑢(𝑥)𝑥 tan𝑥) 

              = 𝑒−𝑐𝑜𝑠𝑒𝑐
2𝑥 ∗ ∫[1]𝑑𝑡

𝑥

0

(𝑢(𝑥)tan𝑥)𝑥
′

(𝑢(0)tan0)0
′ 𝑒
((𝑥.𝑡𝑎𝑛𝑥)′ 𝑙𝑛𝑢(𝑥)+

𝑢′(𝑥)
𝑢(𝑥)

 𝑥 𝑡𝑎𝑛𝑥)
 

              = 𝑒−𝑐𝑜𝑠𝑒𝑐
2𝑥 [𝑢(𝑥)]tan𝑥  𝑒

(𝑙𝑛𝑢(𝑥)(𝑥 𝑡𝑎𝑛𝑥)
′
+
𝑢′(𝑥)

𝑢(𝑥)
 𝑥 𝑡𝑎𝑛𝑥)

  

              = 𝑒−𝑐𝑜𝑠𝑒𝑐
2𝑥 [𝑢(𝑥)](2tan𝑥+𝑥 𝑠𝑒𝑐

2𝑥)  (𝑒
𝑢′(𝑥)

𝑢(𝑥) )

𝑥𝑡𝑎𝑛𝑥

 

              = 𝑒−𝑐𝑜𝑠𝑒𝑐
2𝑥 [𝑢(𝑥)](2tan𝑥+𝑥 𝑠𝑒𝑐

2𝑥) [𝑢∗(𝑥)]𝑥 tan𝑥 . 

 

Thus the multiplicative integral equation is equivalent to the multiplicative differential equation                              

𝑢∗∗(𝑥) = 𝑒−𝑐𝑜𝑠𝑒𝑐
2𝑥 𝑢(𝑥)(2tan𝑥+𝑥 𝑠𝑒𝑐

2𝑥). [𝑢∗(𝑥)]𝑥 tan𝑥 . 

 

3.2. The Conversion of the Multiplicative Linear Differential Equations to Multiplicative 

Integral Equations  

 

In this section, we prove that the multiplicative linear differential equation with constant or 

variable exponentials is converted to MVIE. We need to following theorem for converting 𝑛𝑡ℎ order 

multiplicative differential equation to MVIE.  

 

Theorem 8. If   𝑛  is a positive integer and  𝑎 is a constant with 𝑥 ≥ 𝑎, then we have 

∗ ∫…(𝑛)…

𝑥

𝑎

∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡
𝑥

𝑎

=∗ ∫ [(𝑢(𝑡))
(𝑥−𝑡)(𝑛−1)

(𝑛−1)! ]

𝑑𝑡𝑥

𝑎
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Proof. Let 

𝛪𝑛 =∗ ∫[𝑢(𝑡)]
(𝑥−𝑡)(𝑛−1)

𝑑𝑡
𝑥

𝑎

 .                                                                                                                                  (9) 

If it is taken 𝐹(𝑥, 𝑡) = [𝑢(𝑡)](𝑥−𝑡)
(𝑛−1)

, we can write that  

 

𝑑∗𝛪𝑛
𝑑𝑥

=∗ ∫𝐹𝑥
∗(𝑥, 𝑡)𝑑𝑡

𝑥

𝑎

[𝐹(𝑥, 𝑥)]1

[𝐹(𝑥, 𝑎)]0
 

          =∗ ∫𝐹𝑥
∗(𝑥, 𝑡)𝑑𝑡

𝑥

𝑎

            

by using the multiplicative Leibniz formula to equation (9). Then we find  

𝑑∗𝛪𝑛
𝑑𝑥

=∗ ∫ (𝑒
𝜕
𝜕𝑥
𝑙𝑛𝐹(𝑥,𝑡)

)
𝑑𝑡

𝑥

𝑎

                 

         =∗ ∫ (𝑒(𝑛−1)(𝑥−𝑡)
(𝑛−2) 𝑙𝑛𝑢(𝑡))

𝑑𝑡
𝑥

𝑎

 

         =∗ ∫ (𝑒
𝑙𝑛([𝑢(𝑡)](𝑛−1)(𝑥−𝑡)

(𝑛−2)
)
)
𝑑𝑡

𝑥

𝑎

 

         =∗ ∫ ([𝑢(𝑡)](𝑛−1)(𝑥−𝑡)
(𝑛−2)

)
𝑑𝑡
.

𝑥

𝑎

 

Hence we get  

𝑑∗𝛪𝑛
𝑑𝑥

= (∗ ∫([𝑢(𝑡)](𝑥−𝑡)
(𝑛−2)

)
𝑑𝑡

𝑥

𝑎

)

(𝑛−1)

= (𝛪𝑛−1)
(𝑛−1)                                                                            (10) 

where  𝑛 > 1 .  Since  𝛪1(𝑥) =∗ ∫ 𝑢(𝑡)𝑑𝑡
𝑥

𝑎
 for 𝑛 = 1, then we can write 

𝑑∗𝛪1
𝑑𝑥

=
𝑑∗

𝑑𝑥
(∗ ∫(𝑢(𝑡))

𝑑𝑡

𝑥

𝑎

) = 𝑢(𝑥).                                                                                                                 (11) 

If it is taken multiplicative derivative of the equation (10) by using multiplicative Leibniz formula, then 

𝑑∗∗𝛪𝑛

𝑑𝑥(2)
=
𝑑∗

𝑑𝑥
(∗ ∫([𝑢(𝑡)](𝑥−𝑡)

(𝑛−2)
)
𝑑𝑡

𝑥

𝑎

)

(𝑛−1)

                    

           = (
𝑑∗

𝑑𝑥
(∗ ∫ ([𝑢(𝑡)](𝑥−𝑡)

(𝑛−2)
)
𝑑𝑡

𝑥

𝑎

))

(𝑛−1)
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           = (∗ ∫ [
𝜕∗

𝜕𝑥
 ([𝑢(𝑡)](𝑥−𝑡)

(𝑛−2)
)]
𝑑𝑡 [[𝑢(𝑥)](𝑥−𝑥)

(𝑛−2)
]
1

[[𝑢(𝑎)](𝑥−𝑎)
𝑛−2
]
0  
  

𝑥

𝑎

)

(𝑛−1)

 

           = (∗ ∫(
𝜕∗

𝜕𝑥
 ([𝑢(𝑡)](𝑥−𝑡)

(𝑛−2)
))

𝑑𝑡

   

𝑥

𝑎

)

(𝑛−1)

        

           = (∗ ∫(𝑒

𝜕
𝜕𝑥
 (𝑙𝑛([𝑢(𝑡)](𝑥−𝑡)

(𝑛−2)
))
)

𝑑𝑡

   

𝑥

𝑎

)

(𝑛−1)

 

          = (∗ ∫ [𝑒
(𝑙𝑛((𝑢(𝑡))

(𝑛−2)(𝑥−𝑡)(𝑛−3)

))
]

𝑑𝑡𝑥

𝑎

)

(𝑛−1)

 

          = (∗ ∫ [(𝑢(𝑡))
(𝑛−2)(𝑥−𝑡)(𝑛−3)

]
𝑑𝑡

𝑥

𝑎

)

(𝑛−1)

 

          = (∗ ∫ [(𝑢(𝑡))
(𝑥−𝑡)(𝑛−3)

]
𝑑𝑡

𝑥

𝑎

)

(𝑛−1).(𝑛−2)

 

          = (𝛪𝑛−2)
(𝑛−1)(𝑛−2) .                                 

By proceeding similarly, we obtain 

𝑑∗(𝑛−1)𝛪𝑛

𝑑𝑥(𝑛−1)
= (𝛪1)

(𝑛−1)!  

Hence, we write  

𝑑∗(𝑛)𝛪𝑛

𝑑𝑥(𝑛)
= (
𝑑∗𝛪1
𝑑𝑥
)

(𝑛−1)!

= [𝑢(𝑥)](𝑛−1)! 

from the equation (11). Now, we will take multiplicative integral by considering the above relations.   

 

From the equation (11),   𝛪1(𝑥) =∗ ∫ 𝑢(𝑡)𝑑𝑡
𝑥

𝑎
 . Also, we have   

𝛪2(𝑥) =∗ ∫  𝛪1(𝑥2)
𝑑𝑥2

𝑥

𝑎

=∗ ∫∗ ∫ 𝑢(𝑥1)
𝑑𝑥1𝑑𝑥2

𝑥2

𝑎

𝑥

𝑎

               

where 𝑥1 and 𝑥2 are parameters. By proceeding similarly, we obtain 

𝛪𝑛(𝑥) = (∗ ∫∗ ∫ …∗ ∫ ∗ ∫ 𝑢(𝑥1)
𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛

𝑥2

𝑎

𝑥3

𝑎

𝑥𝑛

𝑎

𝑥

𝑎

)

(𝑛−1)!

 

where 𝑥1, 𝑥2, … , 𝑥𝑛  are parameters. If we write the equation (9) instead of the statement 𝛪𝑛, then it is 

find 
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∗ ∫ [(𝑢(𝑡))
(𝑥−𝑡)𝑛−1

]
𝑑𝑡

𝑥

𝑎

= (∗ ∫∗ ∫ …∗ ∫ ∗ ∫ 𝑢(𝑥1)
𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛

𝑥2

𝑎

𝑥3

𝑎

𝑥𝑛

𝑎

𝑥

𝑎

)

(𝑛−1)!

 

Hence we can write 

(∗ ∫ [(𝑢(𝑡))
(𝑥−𝑡)𝑛−1

]
𝑑𝑡

𝑥

𝑎

)

1
(𝑛−1)!

=∗ ∫∗ ∫ …∗ ∫ ∗ ∫ 𝑢(𝑥1)
𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛

𝑥2

𝑎

𝑥3

𝑎

𝑥𝑛

𝑎

𝑥

𝑎

 

 If it is taken = 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 , therefore we obtain  

∗ ∫…(𝑛)…

𝑥

𝑎

∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡
𝑥

𝑎

=∗ ∫ [(𝑢(𝑡))
(𝑥−𝑡)𝑛−1

(𝑛−1)! ]

𝑑𝑡

.

𝑥

𝑎

 

This completes the proof. 

 

Let the 𝑛𝑡ℎ- order multiplicative linear differential equation  

𝑑∗(𝑛)𝑦

𝑑𝑥(𝑛)
 (
𝑑∗(𝑛−1)𝑦

𝑑𝑥(𝑛−1)
)

𝑎1(𝑥)

(
𝑑∗(𝑛−2)𝑦

𝑑𝑥(𝑛−2)
)

𝑎2(𝑥)

…(
𝑑∗𝑦

𝑑𝑥
)
𝑎𝑛−1(𝑥)

(𝑦)𝑎𝑛(𝑥) = 𝑓(𝑥)                                          (12) 

that given the initial conditions 

𝑦(0) = 𝑐0 , 𝑦
∗(0) = 𝑐1 , 𝑦

∗(𝑛−1)(0) = 𝑐𝑛−1                                                                                                  (13) 

It can be transformed the multiplicative Volterra integral equation. Hence the solution of (12)-(13) 

may be reduced to a solution of some multiplicative Volterra integral equation.  

Take  
𝑑∗(𝑛)𝑦

𝑑𝑥(𝑛)
= 𝑢(𝑥). By integrating both sides of the equality  

𝑑∗

𝑑𝑥
(
𝑑∗(𝑛−1)𝑦

𝑑𝑥(𝑛−1)
) = 𝑢(𝑥), we write 

∗ ∫𝑑∗ (
𝑑∗(𝑛−1)𝑦

𝑑𝑥(𝑛−1)
)

𝑥

0

 = ∗ ∫𝑢(𝑡)𝑑𝑡
𝑥

0

 

              
𝑦∗(𝑛−1)(𝑥)

𝑦∗(𝑛−1)(0)
 = ∗ ∫𝑢(𝑡)𝑑𝑡

𝑥

0

 

              𝑦∗(𝑛−1)(𝑥)  = 𝑐𝑛−1 ∗ ∫𝑢(𝑡)
𝑑𝑡

𝑥

0

 

By proceeding similarly, we find 

∗ ∫𝑑∗ (
𝑑∗(𝑛−2)𝑦

𝑑𝑥(𝑛−2)
)

𝑥

0

=∗∫(𝑐𝑛−1 ∗ ∫𝑢(𝑡)
𝑑𝑡

𝑥

0

)

𝑑𝑡𝑥

0

 

              
𝑦∗(𝑛−2)(𝑥)

𝑦∗(𝑛−2)(0)
=∗ ∫ 𝑐𝑛−1

𝑑𝑡 ∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

𝑥

0

 

              
𝑦∗(𝑛−2)(𝑥)

𝑐𝑛−2
= 𝑒∫ 𝑙𝑛 𝑐𝑛−1𝑑𝑡

𝑥

0 ∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0
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𝑦∗(𝑛−2)(𝑥)

𝑐𝑛−2
= (𝑐𝑛−1)

𝑥 ∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

 

              𝑦∗(𝑛−2)(𝑥) = 𝑐𝑛−2 (𝑐𝑛−1)
𝑥 ∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡

𝑥

0

𝑥

0

 

∗ ∫𝑑∗ (
𝑑∗(𝑛−3)𝑦

𝑑𝑥(𝑛−3)
)

𝑥

0

=∗∫[(𝑐𝑛−1)
𝑥. 𝑐𝑛−2]

𝑑𝑡

𝑥

0

∗ ∫∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

𝑥

0

 

              𝑦∗(𝑛−3)(𝑥) = 𝑐𝑛−3 (𝑐𝑛−2)
𝑥 (𝑐𝑛−1)

𝑥2 ∗ ∫∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

𝑥

0

 

                                                                        ⋮ 

 𝑦∗ = 𝑐1 (𝑐2)
𝑥 (𝑐3)

𝑥2 …(𝑐𝑛−2)
𝑥(𝑛−3)  (𝑐𝑛−1)

𝑥(𝑛−2) ∗ ∫. . . (𝑛 − 1). . .∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡
𝑥

0

𝑥

0

 

Hence, we get 

𝑦 = 𝑐0 (𝑐1)
𝑥 (𝑐2)

𝑥2 …(𝑐𝑛−1)
𝑥(𝑛−1) ∗ ∫…(𝑛)… ∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡

𝑥

0

𝑥

0

 

If we take into account the above expressions, the multiplicative linear differential equation (12) is 

written as follows 

𝑢(𝑥) [(𝑐𝑛−1)
𝑎1(𝑥)(∗ ∫𝑢(𝑡)𝑑𝑡

𝑥

0

)

𝑎1(𝑥)

] [(𝑐𝑛−2)
𝑎2(𝑥) (𝑐𝑛−1)

𝑥 𝑎2(𝑥)(∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

)

𝑎2(𝑥)

]⋯ 

[(𝑐0)
𝑎𝑛(𝑥) (𝑐1)

𝑥𝑎𝑛(𝑥) (𝑐2)
𝑥2𝑎𝑛(𝑥). … . (𝑐𝑛−1)

𝑥𝑛−1𝑎𝑛(𝑥)     (∗ ∫…(𝑛)…∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡
𝑥

0

𝑥

0

)

𝑎𝑛(𝑥)

] = 𝑓(𝑥) 

𝑢(𝑥) (𝑐0)
𝑎𝑛(𝑥) (𝑐1)

𝑥 𝑎𝑛(𝑥)+𝑎𝑛−1(𝑥)…(𝑐𝑛−1)
𝑥𝑛−1𝑎𝑛(𝑥)+⋯+𝑎1(𝑥)(∗ ∫𝑢(𝑡)𝑑𝑡

𝑥

0

)

𝑎1(𝑥)

(∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

)

𝑎2(𝑥)

 …  

(∗ ∫…(𝑛)…∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡
𝑥

0

𝑥

0

)

𝑎𝑛(𝑥)

= 𝑓(𝑥)                                                                                                   (14) 

If we set  

𝑎1(𝑥) + 𝑎2(𝑥) 𝑥 + ⋯+ 𝑎𝑛(𝑥) 𝑥
𝑛−1 = 𝑓𝑛−1(𝑥) 

𝑎2(𝑥) + 𝑎3(𝑥) 𝑥 +⋯+ 𝑎𝑛(𝑥) 𝑥
𝑛−2 = 𝑓𝑛−2(𝑥) 

⋮ 

𝑎𝑛−1(𝑥) + 𝑎𝑛(𝑥) 𝑥 = 𝑓1(𝑥) 

𝑎𝑛(𝑥) = 𝑓0(𝑥) 
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and 

𝐹(𝑥) =
𝑓(𝑥)

(𝑐0)
𝑓0(𝑥) (𝑐1)

𝑓1(𝑥)…(𝑐𝑛−1)
𝑓𝑛−1(𝑥)

   

 

then we can edit the equation (14) in the form as follows  

𝑢(𝑥) (∗ ∫𝑢(𝑡)𝑑𝑡
𝑥

0

)

𝑎1(𝑥)

(∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0

)

𝑎2(𝑥)

…(∗ ∫…(𝑛)…∗ ∫𝑢(𝑡)𝑑𝑡…𝑑𝑡
𝑥

0

𝑥

0

)

𝑎𝑛(𝑥)

= 𝐹(𝑥) . 

By using Theorem 8, we get  

𝑢(𝑥) (∗ ∫𝑢(𝑡)𝑑𝑡
𝑥

0

)

𝑎1(𝑥)

(∗ ∫[𝑢(𝑡)𝑥−𝑡]𝑑𝑡
𝑥

0

)

𝑎2(𝑥)

…(∗ ∫𝑢(𝑡)
(𝑥−𝑡)𝑛−1

(𝑛−1)!
𝑑𝑡

𝑥

0

)

𝑎𝑛(𝑥)

= 𝐹(𝑥). 

Then we find the equation 

𝑢(𝑥) ∗ ∫(𝑢(𝑡)
[𝑎1(𝑥)+(𝑥−𝑡)𝑎2(𝑥)+⋯+𝑎𝑛(𝑥)

(𝑥−𝑡)𝑛−1

(𝑛−1)!
]
)

𝑑𝑡𝑥

0

= 𝐹(𝑥). 

If we put  𝐾(𝑥, 𝑡) = 𝑎1(𝑥) + (𝑥 − 𝑡)𝑎2(𝑥) + ⋯+ 𝑎𝑛(𝑥)
(𝑥−𝑡)𝑛−1

(𝑛−1)!
 as the kernel function, then the 

equation (12) is turned into  

𝑢(𝑥) ∗ ∫𝑢(𝑡)𝐾(𝑥,𝑡)
𝑑𝑡

𝑥

0

= 𝐹(𝑥) 

which is a MVIE of the second kind. 

 

Example 4. Form a multiplicative Volterra integral equation corresponding to the multiplicative 

differential equation   
𝑑∗2𝑦(𝑥)

𝑑𝑥(2)
= 𝑦(𝑥)𝑐𝑜𝑠𝑥  with the initial conditions 𝑦(0) = 1, 𝑦∗(0) = 1. 

Solution. Let 
𝑑∗2𝑦(𝑥)

𝑑𝑥(2)
= 𝑢(𝑥). Then we write 

∗ ∫𝑑∗𝑦∗
𝑥

0

=∗∫𝑢(𝑡)𝑑𝑡
𝑥

0

 

𝑦∗(𝑥)

𝑦∗(0)
=∗ ∫𝑢(𝑡)𝑑𝑡

𝑥

0

 

𝑦∗(𝑥) =∗ ∫𝑢(𝑡)𝑑𝑡
𝑥

0

. 

Therefore we find 

∗ ∫𝑦∗(𝑡)𝑑𝑡
𝑥

0

=∗∫∗ ∫𝑢(𝑡)𝑑𝑡
𝑥

0

𝑥

0
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𝑦(𝑥)

𝑦(0)
=∗ ∫∗ ∫𝑢(𝑡)𝑑𝑡

𝑥

0

𝑥

0

 

𝑦(𝑥) =∗ ∫[𝑢(𝑡)(𝑥−𝑡)]
𝑑𝑡

𝑥

0

 

If we replace the equation 𝑦(𝑥) =∗ ∫ [𝑢(𝑡)(𝑥−𝑡)]
𝑑𝑡𝑥

0
 into the given multiplicative differential equation, 

we obtain 𝑢(𝑥) =∗ ∫ [𝑢(𝑡)𝑐𝑜𝑠 𝑥 (𝑥−𝑡)]
𝑑𝑡𝑥

0
. 

 

4. Conclusion 

 
In this paper, the multiplicative Voltterra integral equation is defined by using the concept of 

multiplicative integral. The solution of multiplicative Volterra integral equation is obtained with the 

successive approximations method. The multiplicative Leibniz formula is proved and the multiplicative 

Volterra integral equation is converted to a multiplicative differential equation by aid of multiplicative 

Leibniz formula. The multiplicative linear differential equation with constant or variable exponentials 

is converted to a multiplicative Volterra integral equation is proved. 
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