MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES

https://doi.org/10.36753/mathenot.795582 9 (4) 176-184 (2021) - Research Article ISSN: 2147-6268 ©MSAEN

On Some Classes of Series Representations for $1/\pi$ and π^2

Hakan Küçük* and Sezer Sorgun

Abstract

We propose some classes of series representations for $1/\pi$ and π^2 by using a new WZ-pair. As examples, among many others. we prove that

$$\frac{3}{2} \sum_{n=1}^{\infty} \frac{n}{16^n (n+1)(2n-1)} {\binom{2n}{n}}^2 = \frac{1}{\pi},$$
$$1 - \frac{1}{4} \sum_{n=0}^{\infty} \frac{3n+2}{(n+1)^2} {\binom{2n}{n}}^2 \frac{1}{16^n} = \frac{1}{\pi}$$

and

$$4\sum_{n=0}^{\infty} \frac{1}{(n+1)(2n+1)} \frac{4^n}{\binom{2n}{n}} = \pi^2.$$

Furthermore, our results lead to new combinatorial identities and binomial sums involving harmonic numbers.

Keywords: Ramanujan-type series; binomial sums; gamma function; digamma function; combinatorial identities; Legendre's duplication formula.

AMS Subject Classification (2020): Primary: 33C05; 33C20; 33C90; Secondary: 05A19.

^tCorresponding author

1. Introduction

In 1914 in his famous paper [25] Indian genius mathematician Srinivasa Ramanujan proposed 17 extraordinary series for $1/\pi$ without giving a complete proof. The most well known two of them were as follows:

$$\frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!}{4^{4n}(n!)^4} \frac{1103 + 26390n}{99^{4n}} = \frac{1}{\pi}$$

and

$$\frac{1}{16}\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n^3}{(1)_n^3} \frac{42n+5}{64^n} = \frac{1}{\pi}.$$

Here $(a)_n$ stands for the Pochhammer symbol defined by

$$(a)_0 = 1$$
 and $(a)_n = a(a+1)(a+2)...(a+n-1)$, $n \ge 1$

Ramanujan's series for $1/\pi$ have not received much interest from mathematical community until 1985. In 1985 Gosper used one of Ramanujan's series to calculate 17,526,100 digits of π , which is at that time was a world record [2]. In 1987 Peter and Jon Borwein [5] provided rigorous proofs of all 17 of Ramanujan's series for $1/\pi$ for the first time and also offered many new series representations for this constant; see [3, 4, 6]. J. Guillera provided the proofs of 11 of Ramanujan series by using the *WZ*-method [19, Tables I,II]. At about the same time as the Borweins were devising their proofs, David and Gregory Chudnovsky [9] derived new series representations for $1/\pi$ and used the following their Ramanujan-type series

$$\frac{1}{\pi} = 12 \sum_{n=0}^{\infty} (-1)^n \frac{(6n)!}{(n!)^3(3n)!} \frac{13591409 + 545140134n}{640320^3n + 3/2}$$

to calculate 2,260,331,336 digits of π , which was a world record even in 1989. It should be remarked that before Ramanujan in 1859 G. Bauer [1], and in 1905 W. L. Glaisher [10] had given series representations for $1/\pi$. The studies on Ramanujan-like series for $1/\pi$ are continuing intensively today, too and recently, many new series of this type have been published, see for example [7,8,11-23]. The aim of this paper is to derive new classes of series representations for $1/\pi$ and π^2 by using the *WZ*-method. Our results enable us to establish infinity many of new Ramanujan type series for the constants $1/\pi$ and π^2 . Our results also lead to some new combinatorial identities involving harmonic numbers. The remainder of this paper organized as follows. In the next section, we explain how the *WZ*-method works briefly. In Section 3, we present our main theorems. In the final section choosing particular values for a free parameter, we offer many series representations for the constants $1/\pi$ and π^2 . In this paper we shall frequently use the generalized binomial coefficient

$$\binom{s}{t} = \frac{\Gamma(s+1)}{\Gamma(t+1)\Gamma(s-t+1)}$$

where *t* and *s* are real numbers which are not negative integers, and the Legendre's duplication formula for the classical gamma function $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ (x > 0)

$$\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}, \ n \in \mathbb{N} \cup \{0\}.$$
(1.1)

2. The WZ-method (Wilf-Zeilberger Method)

In this section we want to explain the WZ-method briefly. A discrete function A(n,k) is hypergeometric if both

$$\frac{A(n+1,k)}{A(n,k)}$$
 and $\frac{A(n,k+1)}{A(n,k)}$

are rational functions in both n and k. A pair (F,G) of hypergeometric functions is said to be a WZ- pair (Wilf-Zeilberger pair) if for all $k \in \mathbb{Z}$ and n = 0, 1, 2, ... they satisfy

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k).$$
(2.1)

In this case Wilf and Zeilberger [24, Chapter 7] and [27] proved that there exists a rational function C(n,k) such that G(n,k) = C(n,k)F(n,k). Wilf and Zeilberger called C(n,k) as certificate of the pair (F,G). Summing on $n \ge 0$ both sides of (2.1), one gets

$$\sum_{n=0}^{\infty} \{G(n,k+1) - G(n,k)\} = \sum_{n=0}^{\infty} \{F(n+1,k) - F(n,k)\} = \lim_{n \to \infty} F(n,k) - F(0,k).$$
(2.2)

In most applications it is usually very easy to evaluate F(0, k) and $\lim_{n\to\infty} F(n, k)$. So, taking particular values for k in (2.2), we can obtain many identities. We can also sum both sides of (2.1) over k's and in this case we get

$$\sum_{k=0}^{\infty} \{F(n+1,k) - F(k)\} = \sum_{k=0}^{\infty} \{G(n,k+1) - G(n,k)\} = \lim_{k \to \infty} G(n,k) - G(n,0) = \sum_{k=0}^{\infty} \{G(n,k) - G(n,0)\} = \sum_{k=0}^{\infty} \{G(n,k+1) - G(n,k)\} = \sum_{k=0}^{\infty} \{G$$

If G(n,0) = 0 and $\lim_{k\to\infty} G(n,k) = 0$, we get

$$\sum_{k=0}^{\infty} \{F(n+1,k) - F(n,k)\} = 0 \ (n = 0, 1, 2, 3, \ldots),$$

which implies that $\sum_{k=0}^{\infty} F(n,k)$ is a constant. Let us say $\sum_{k=0}^{\infty} F(n,k) = C$. Usually, it is very easy to evaluate this constant by choosing a particular value for k (usually k=0), in other cases we evaluate it by taking the limit as $k \to \infty$. Please refer to [24] and [27] for more information about the WZ-method.

3. Main results

In this section we collect our main results.

Theorem 3.1. Let a be any real number, which is not zero and a negative integer. Then we have

$$\sum_{n=0}^{\infty} \frac{(3n+2a+1)\Gamma(n+1/2)\Gamma(n+a+1)}{(n+a)\Gamma(n+2)\Gamma(n+a+3/2)} = \frac{4\sqrt{\pi}\Gamma(a)}{\Gamma(a+1/2)} - \frac{2}{a}.$$
(3.1)

Proof. Consider the following discrete function.

$$F(n,k) = \frac{1}{2\pi} \frac{(n+2a)\Gamma(k+1/2)\Gamma(n-k+1/2)\Gamma(n+a+1)\Gamma(a+1/2)}{(k+a)(n-k+a)\Gamma(a)\Gamma(k+1)\Gamma(n-k+1)\Gamma(n+a+1/2)}.$$
(3.2)

The package EKHAD [24] allows us to obtain the companion

$$G(n,k) = \frac{-1}{2\pi} \frac{(3n+2a-2k+3)\Gamma(n-k+3/2)\Gamma(n+a+1)\Gamma(k+1/2)\Gamma(a+1/2)}{(n-k+a+1)(n+1)\Gamma(k)\Gamma(a)\Gamma(n+a+3/2)\Gamma(n-k+2)},$$
(3.3)

where $k \in \mathbb{Z}$ and $n \in \mathbb{N} \cup \{0\}$. That is, (F, G) is a WZ-pair, so that, we have

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k).$$
(3.4)

Summing over n both sides of (3.4), we get

$$\sum_{n=0}^{\infty} \{F(n+1,k) - F(n,k)\} = \sum_{n=0}^{\infty} \{G(n,k+1) - G(n,k)\}$$

or

$$\sum_{n=0}^{\infty} \{G(n,k+1) - G(n,k)\} = \lim_{n \to \infty} F(n,k) - F(0,k).$$
(3.5)

By Stirling's formula $n! \sim n^n e^{-n} \sqrt{2\pi n}$, we can easily find that

$$\lim_{n \to \infty} \frac{(n+2a)\Gamma(n-k+1/2)\Gamma(n+a+1)}{(n-k+a)\Gamma(n-k+1)\Gamma(n+a+1/2)} = 1,$$
(3.6)

which yields

$$\lim_{n \to \infty} F(n,k) = \frac{1}{2\pi} \frac{\Gamma(k+1/2)\Gamma(a+1/2)}{(k+a)\Gamma(a)\Gamma(k+1)}$$

We therefore have

$$\sum_{n=0}^{\infty} \{G(n,k+1) - G(n,k)\} = \frac{1}{2\pi} \frac{\Gamma(k+1/2)\Gamma(a+1/2)}{(k+a)\Gamma(a)\Gamma(k+1)} - F(0,k),$$
(3.7)

For k = 0 this immediately gives

$$\sum_{n=0}^{\infty} \{G(n,1) - G(n,0)\} = \frac{1}{2\pi} \frac{\Gamma(1/2)\Gamma(a+1/2)}{\Gamma(a+1)} - 1.$$

But since G(n,0) = 0 and $\Gamma(1/2) = \sqrt{\pi}$, we get

$$\sum_{n=0}^{\infty} G(n,1) = \frac{1}{2\sqrt{\pi}} \frac{\Gamma(a+1/2)}{\Gamma(a+1)} - 1$$

or by (3.3)

$$\sum_{n=0}^{\infty} \frac{(3n+2a+1)\Gamma(n+1/2)\Gamma(n+a+1)}{(n+a)\Gamma(n+2)\Gamma(n+a+3/2)} = \frac{4\sqrt{\pi}\Gamma(a)}{\Gamma(a+1/2)} - \frac{2}{a}.$$

If we substitute a = m - 1/2 ($m \in \mathbb{Z}$) in (3.1), we get

Corollary 3.2. *Let m be any integer. Then, we have*

$$\sum_{n=0}^{\infty} \frac{3n+2m}{(n+1)(2n+2m-1)} \binom{2n}{n} \binom{2n+2m}{n+m} \frac{1}{16^n} = \frac{4^{m+1}\Gamma(m+1/2)}{\sqrt{\pi}(2m-1)\Gamma(m)} - \frac{4^{m+1}}{2(2m-1)}\frac{1}{\pi}.$$
(3.8)

In particular, if *m* is zero or a negative integer, we have

$$\frac{2-4m}{4^{m+1}}\sum_{n=0}^{\infty}\frac{3n+2m}{(n+1)(2n+2m-1)}\binom{2n}{n}\binom{2n+2m}{n+m}\frac{1}{16^n} = \frac{1}{\pi}.$$
(3.9)

Theorem 3.3. Let *a* be any real number, which is not a negative integer, then we have

$$\sum_{k=0}^{n} \binom{2k}{k} \binom{2n-2k}{n-k} \frac{1}{k+a} = \frac{2^{2n}\Gamma(a)\Gamma(n+a+1/2)}{\Gamma(n+a+1)\Gamma(a+1/2)}.$$
(3.10)

Proof. let *F* and *G* be as in (3.3) and (3.4). Summing both sides (3.4) on k = 0, 1, 2, ..., we get

$$\sum_{k=0}^{\infty} \{F(n+1,k) - F(n,k)\} = \lim_{k \to \infty} G(n,k) - G(n,0).$$

By using Stirling formula it is very easy to see that $\lim_{k\to\infty} G(n,k) = 0$. Clearly, we also have G(n,0) = 0. Then for all n = 0, 1, 2, ..., we get

$$\sum_{k=0}^{\infty} F(n,k) = \sum_{k=0}^{\infty} F(n+1,k) = \sum_{k=0}^{\infty} F(n+2,k) = \cdots,$$

which implies that $\sum_{k=0}^{\infty} F(n,k)$ is a constant. Let $\sum_{k=0}^{\infty} F(n,k) = A$. We can evaluate the constant A by setting n = 0, so that we obtain

$$A = \sum_{k=0}^{\infty} F(0,k) = \frac{1}{2\pi} \frac{2a\Gamma(a+1)\Gamma(a+1/2)}{\Gamma(a)\Gamma(a+1/2)} \sum_{k=0}^{\infty} \frac{\Gamma(k+1/2)\Gamma(-k+1/2)}{(k+a)(a-k)\Gamma(k+1)\Gamma(1-k)}.$$

Notice that this sum is zero for k = 1, 2, ... except k = 0. Hence we get

$$A = \frac{1}{\pi} \frac{\Gamma(a+1)a}{\Gamma(a)} \frac{\Gamma(1/2)^2}{a^2} = \frac{1}{\pi} \frac{\Gamma(a+1)a}{\Gamma(a+1)} \frac{\pi}{a} = 1$$

Hence, we conclude that for all n = 0, 1, 2, ...

$$\sum_{k=0}^{\infty} F(n,k) = 1$$

From this identity, by the help of (1.1), we obtain

$$\sum_{k=0}^{n} \frac{\Gamma(k+1/2)\Gamma(n-k+1/2)}{(k+a)(n-k+a)\Gamma(k+1)\Gamma(n-k+1)} = \frac{2\pi\Gamma(a)\Gamma(n+a+1/2)}{(n+2a)\Gamma(n+a+1)\Gamma(a+1/2)}.$$

$$\sum_{k=0}^{n} \binom{2k}{k} \binom{2n-2k}{n-k} \frac{1}{(k+a)(n-k+a)} = \frac{2^{2n+1}\Gamma(a)\Gamma(n+a+1/2)}{(n+2a)\Gamma(n+a+1)\Gamma(a+1/2)}.$$
(3.11)

Since

$$\frac{1}{(k+a)(n-k+a)} = \frac{1}{n+2a} \left(\frac{1}{k+a} + \frac{1}{n-k+a} \right),$$

we get from (3.11)

$$\sum_{k=0}^{n} \binom{2k}{k} \binom{2n-2k}{n-k} \frac{1}{k+a} = \frac{4^{n}\Gamma(a)\Gamma(n+a+1/2)}{\Gamma(n+a+1)\Gamma(a+1/2)},$$

which is the desired result.

Corollary 3.4. Let a be any real number, which is not zero and a negative integer. Then we have

$$\sum_{n=0}^{n} \frac{\binom{2n}{n}}{4^n(n+a)} = \frac{\sqrt{\pi}\Gamma(a)}{\Gamma(a+1/2)}$$
(3.12)

Proof. Multiplying by $\sqrt{n}4^{-n}$ both sides of (3.10) and taking infinity the upper bound of the summation, we get

$$\sum_{k=0}^{\infty} \binom{2k}{k} \frac{\sqrt{n}}{4^n} \binom{2n-2k}{n-k} \frac{1}{k+a} = \frac{\Gamma(a)}{\Gamma(a+1/2)} \frac{\sqrt{n}\Gamma(n+a+1/2)}{\Gamma(n+a+1)}.$$
(3.13)

Since, by Stirling's formula,

$$\lim_{n \to \infty} \frac{\sqrt{n}}{4^n} \binom{2n-2k}{n-k} = \frac{4^{-k}}{\sqrt{\pi}} \quad \text{and} \quad \lim_{n \to \infty} \frac{\sqrt{n}\Gamma(n+a+1/2)}{\Gamma(n+a+1)} = 1,$$

the proof follows from (3.13) by letting taking the limit of both ides as $n \to \infty$.

Corollary 3.5. Let a be a non-zero real number such that 2a is not a negative integer. Then we have

$$\sum_{n=0}^{\infty} \binom{2n+2a}{n+a} \frac{4^{-n}}{n+2a} = \frac{\sqrt{\pi}2^{2a-1}\Gamma(a)}{\Gamma(a+1/2)}$$
(3.14)

Proof. From (3.11), we have

$$\sum_{k=0}^{n} \frac{\binom{2k}{k}}{4^{k}(k+a)} \cdot \frac{\binom{2n-2k}{n-k}}{4^{n-k}(n-k+a)} = \frac{2\Gamma(a)\Gamma(n+a+1/2)}{(n+2a)\Gamma(n+a+1)\Gamma(a+1/2)}.$$
(3.15)

Summing both sides (3.15) over n, it follows that

$$\sum_{n=0}^{\infty} \Big(\sum_{k=0}^{n} \frac{\binom{2k}{k}}{4^k (k+a)} \cdot \frac{\binom{2n-2k}{n-k}}{4^{n-k} (n-k+a)} \Big) = \frac{2\Gamma(a)}{\Gamma(a+1/2)} \sum_{n=0}^{\infty} \frac{\Gamma(n+a+1/2)}{(n+2a)\Gamma(n+a+1)}$$

Since the left side is a Cauchy product of two series, we conclude

$$\left(\sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{4^n(n+a)}\right)^2 = \frac{2\Gamma(a)}{\Gamma(a+1/2)} \sum_{n=0}^{\infty} \frac{\Gamma(n+a+1/2)}{(n+2a)\Gamma(n+a+1)}.$$

Now the proof follows from (3.12) by the help of (1.1). the result by using (3.4).

Remark 3.6. The identity (3.12) can also be obtained from the Gauss hypergeometric series but we want to give a proof because of the method we used can be employed in other places.

4. Applications

4.1 Series for $1/\pi$

Taking particular values for m in (3.7) and (3.8) we can obtain many series for $1/\pi$ by the help of the duplication formula (1.1).

Example 1. If we set m = 0 in (3.9), we get

$$\frac{3}{2}\sum_{n=1}^{\infty} \frac{n}{16^n(n+1)(2n-1)} \binom{2n}{n}^2 = \frac{1}{\pi}$$

Example 2. If we set m = -1 in (3.9), we get

$$\frac{3}{4}\sum_{n=0}^{\infty}\frac{n(3n-2)}{16^n(2n-3)(2n-1)(n+1)}\binom{2n}{n}^2=\frac{1}{\pi}.$$

Example 3. If we set m = -2 in (3.9), we get

$$\frac{5}{8} \sum_{n=0}^{\infty} \frac{(2n+3)(3n+2)(2n+1)}{(n+1)(n+2)(n+3)(2n-1)} {\binom{2n}{n}}^2 \frac{1}{16^n} = \frac{1}{\pi}.$$

Example 4. If we set m = -3 in (3.9), we get

$$\frac{21}{6}\sum_{n=0}^{\infty}\frac{(2n+5)(2n+3)(2n+1)}{(2n-1)(n+4)(n+3)(n+2)}\binom{2n}{n}^2\frac{1}{16^n}=\frac{1}{\pi}$$

Example 5. If we set m = -4 in (3.9), we get

$$\frac{9}{32}\sum_{n=0}^{\infty}\frac{(3n+4)(2n+7)(2n+5)(2n+3)(2n+1)}{(2n-1)(n+5)(n+4)(n+3)(n+2)(n+1)}\binom{2n}{n}^2\frac{1}{16^n}=\frac{1}{\pi},$$

Example 6. If we set m = 1 in (3.8), we get

$$1 - \frac{1}{4} \sum_{n=0}^{\infty} \frac{3n+2}{(n+1)^2} \binom{2n}{n}^2 \frac{1}{16^n} = \frac{1}{\pi}$$

Example 7. If we set m = 2 in (3.8), we get

$$\frac{3}{2} - \frac{3}{8} \sum_{n=0}^{\infty} \frac{(2n+1)(3n+4)}{(n+1)^2(n+2)} \binom{2n}{n}^2 \frac{1}{16^n} = \frac{1}{\pi}.$$

Example 8. If we set m = 3 in (3.8), we get

$$\frac{15}{8} - \frac{15}{16} \sum_{n=0}^{\infty} \frac{(2n+1)(2n+3)}{(n+1)^2(n+3)} \binom{2n}{n}^2 \frac{1}{16^n} = \frac{1}{\pi}.$$

Example 9. If we set m = 4 in (3.8), we get

$$\frac{35}{16} - \frac{7}{32} \sum_{n=0}^{\infty} \frac{(2n+1)(2n+3)(2n+5)(3n+8)}{(n+2)(n+3)(n+4)(n+1)^2} \binom{2n}{n}^2 \frac{1}{16^n} = \frac{1}{\pi}.$$

4.2 Series for π^2

Taking particular values for *a* in (3.14) we can obtain many series for π^2 . **Example 1.** Setting a = 1/2 in (3.14) we get

$$4\sum_{n=0}^{\infty} \frac{1}{(n+1)(2n+1)} \frac{4^n}{\binom{2n}{n}} = \pi^2.$$

Example 2. If we set a = 3/2 in (3.14), we get

$$16\sum_{n=0}^{\infty} \frac{n+1}{(n+3)(2n+1)(2n+3)} \frac{4^n}{\binom{2n}{n}} = \pi^2$$

Example 3. If we set a = 5/2 in (3.14), we get

$$\frac{128}{3}\sum_{n=0}^{\infty}\frac{(n+1)(n+2)}{(n+5)(2n+1)(2n+3)(2n+5)}\frac{4^n}{\binom{2n}{n}}=\pi^2.$$

Example 4. If we set a = 7/2 in (3.14), we get

$$\frac{512}{5} \sum_{n=0}^{\infty} \frac{(n+1)(n+2)(n+3)}{(n+7)(2n+1)(2n+3)(2n+5)(2n+7)} \frac{4^n}{\binom{2n}{n}} = \pi^2$$

4.3 Combinatorial identities involving harmonic numbers

Differentiating w.r.t a both sides of (3.10), we get

$$\sum_{k=0}^{n} \binom{2k}{k} \binom{2n-2k}{n-k} \frac{1}{(k+a)^2} = \frac{\binom{2n+2m}{n+m}}{m\binom{2m}{m}} \{\psi(a) + \psi(n+a+1/2) - \psi(n+a+1) - \psi(a+1/2)\},$$
(4.1)

where $\psi(x) = \Gamma'(x)/\Gamma(x)$ is the digamma function. Substituting particular values for *a* in (4.1) and using the following duplication formula for the digamma function

$$\psi\left(n+\frac{1}{2}\right) = 2\psi(2n) - 2\log 2 - \psi(n) = -\gamma + 2H_{2n} - H_n - 2\log 2,$$

where $\gamma = 0.57721...$ is the Euler constant, we obtain the following combinatorial identities involving harmonic numbers.

Example 1. If we substitute a = 1/2 in (4.1), we get

$$\sum_{k=0}^{n} \binom{2k}{k} \binom{2n-2k}{n-k} \frac{1}{(2k+1)^2} = \frac{16^n \{H_{2n+1} - H_n\}}{(2n+1)\binom{2n}{n}}.$$
(4.2)

Example 2. If we substitute $a = m \in \mathbb{N}$ in (4.1), we get

$$\sum_{k=0}^{n} \binom{2k}{k} \binom{2n-2k}{n-k} \frac{1}{(k+m)^2} = \frac{2\binom{2m+2n}{m+n}}{\binom{2m}{m}} \left(H_{m+n} + H_{2m} - H_m - H_{2m+2n} + \frac{1}{2m}\right).$$

Example 3.

$$\sum_{n=0}^{\infty} \frac{2^n \{H_{2n+1} - H_n\}}{(2n+1)\binom{2n}{n}} = \frac{\pi}{4} \log 2 + G_2$$

where *G* is the Catalan constant defined by $G = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2}$. We want to give a proof of this identity. Summing both sides of (4.2), after dividing by 8^n , we get

$$\sum_{n=0}^{\infty} \frac{2^n \{H_{2n+1} - H_n\}}{(2n+1)\binom{2n}{n}} = \sum_{n=0}^{\infty} \sum_{k=0}^n \frac{\binom{2k}{k}}{8^k (2k+1)^2} \frac{\binom{2n-2k}{n-k}}{8^{n-k}} = \sum_{k=0}^{\infty} \frac{\binom{2k}{k}}{8^k (2k+1)^2} \sum_{k=0}^{\infty} \frac{\binom{2k}{k}}{8k}.$$
(4.3)

By [3, pg. 386], we have

$$\sum_{k=0}^{\infty} \frac{\binom{2k}{k}}{8k} = \sqrt{2}$$
(4.4)

and

$$\sum_{k=0}^{\infty} \frac{\binom{2k}{k}}{2k+1} x^{2k} = \frac{\arcsin(2x)}{2x}.$$
(4.5)

Integrating both sides of (4.5) over $(0, \sqrt{2}/4)$, and making the change of variable $\arcsin(2x) = u$, we get

$$\frac{1}{2\sqrt{2}}\sum_{n=0}^{\infty}\frac{\binom{2n}{n}}{8^n(2n+1)^2} = \frac{1}{2}\int_0^{\pi/4} u\cot u du.$$
(4.6)

From [26, pg. 44,45] we have

$$\int_0^{\pi/4} u \cot u \, du = \frac{\pi}{8} \log 2 + \frac{G}{2}.$$
(4.7)

Combining the identities (4.3)-(4.7), the result is obtained.

References

- [1] G. Bauer, Von den coefficienten der reihen von kugelfunctionen einer variabeln, J. Reine Angew. Math., 56(1859) 101-121.
- [2] N.D. Baruah, B. C. Berndt and H. H. Chan, Ramanujan's Series for 1/π: A Survey. Amer. Math. Monthly, Vol. 116, No. 7 (Aug. Sep., 2009), pp. 567-587.
- [3] J. M. Borwein and P. B. Borwein, Pi and the AGM: A study in Analytic Number Theory and Computational Complexity, Wiley, New York, 1987.
- [4] J. M. Borwein and P. B. Borwein, Class number three Ramanujan type series for $1/\pi$, J. Comput. Appl. Math., 46(1993) 281-290.
- [5] J. M. Borwein and P. B. Borwein, More Ramanujan-type series for $1/\pi$, In Ramanujan Revisited, G. E. Andrews, R. A. Askey, B. C. Berndt, K. G Ramanathan and R. A. Rankin (edts), Academic Press, Boston, 1988, 359-374.
- [6] J. M. Borwein and P. B. Borwein, Ramanujan's rational and algebraic series for $1/\pi$, J. Indian Math. Soc., 51(1987), 147-160.
- [7] , H. H. Chan, S. H. Chan and Z. Liu, Domb's numbers and Ramanujan-Sato type series for $1/\pi$, Adv. Math., v.186, no.2, 2004, 396-410.
- [8] H. H. Chan, J. Wan and W. Zudilin, Legendre polynomials and Ramanujan-type series for $1/\pi$, Israel J. of Math., v.194, no.1, 2013, 183-207.
- [9] D. V. Chudnovsky and G. V. Chudnovsky, In Rmanujan Revisited, Proceedings of the centenary Conference (Urbana-Champaign), G. E. Andrews, R. A. Askey, B. C. Berndt, K. G Ramanathan and R. A. Rankin (edts), Academic Press, Boston, 1988, 375-472.
- [10] J. W. L. Glaisher, On series for $1/\pi$ and $1/\pi^2$, Quart., J. Pure Appl. Math., 37(1905) 173-198.
- [11] J. Guillera, Dougall's ${}_5F_4$ sum and the WZ algorithm, Ramanujan J. v.46, no.3, no.1, 2018, 667-675.
- [12] J. Guillera, Proofs of some Ramanujan series for $1/\pi$ using a program due to Zeilberger, J. Difference Equ. Appl., v.24, no.10, 2018, 1643-1648.
- [13] J. Guillera, Ramanujan series with shift, J. Aust. Math. Soc., 2019 in press.
- [14] J. Guillera, A family of Ramanujan-Orr formulas for $1/\pi$, Integral Transforms Spec. Funct., v.26, no.7, 2015, 531-538.
- [15] J. Guillera, Ramanujan series upside-down, J. Aust. Math. Soc., v.97, no.1, 2014, 78-106.
- [16] J. Guillera, More hypergeometric identities related to Ramanujan-type series, Ramanujan J., v.32, no.1, 2013, 5-22.
- [17] J. Guillera, A new Ramanujan-like series for $1/\pi^2$, Ramanujan J. v.26, no.3, 2011, 369-374.
- [18] J. Guillera, On WZ-pairs which prove Ramanujan series, Ramanujan J., v.22, no.3, 2010, 249-259.

- [19] J. Guillera, Hypergeometric identities for 10 extended Ramanujan-type series, Ramanujan J., v.15, no.2, 2008, 219-234.
- [20] J. Guillera, Some binomial series obtained by the WZ-method, Adv. in Appl.Math., v.29, no.4, 2002, 599-603.
- [21] J. Guillera, A method for proving Ramanujan's series for $1/\pi$, Ramanujan J., 2019, in press.
- [22] Z-G Liu, Summation formula and Ramanujan type series, J. Math. Anal. Appl., v.389, no.2, 2012, 1059-1065.
- [23] Z-G Liu, Gauss summation and Ramanujan-type series for $1/\pi$, Int. J. Number Theory, v.8, no.2, 2012, 289-297.
- [24] M. Petkovšek, H. S. Wilf and D. Zeilberger, A=B, A. K. Peters, Ltd., Wellesley, Mass., 1996.
- [25] S. Ramanujan, Modular equations and approximations to π , Quart. J. Math (Oxford) 45(1914) 350-372.
- [26] H. M. Srivastava, J. Jhoi, Zeta and *q*-zeta Functions and Associated Series and Integrals, Elsevier, 2012.
- [27] H. S. Wilf and D. Zeilberger, Rational functions certify combinatorial identities, J. Amer. Math. Soc. 3 (1990), 147-158.

Affiliations

HAKAN KÜÇÜK

ADDRESS: Nevşehir Hacı Bektaş Veli University, Dept. of Mathematics, 50300, Nevşehir-Turkey. E-MAIL: hakankucuk1979@gmail.com ORCID ID:0000-0002-8596-1112

SEZER SORGUN ADDRESS: Nevşehir Hacı Bektaş Veli University, Dept. of Mathematics, 50300, Nevşehir-Turkey. E-MAIL: srgnrzs@gmail.com ORCID ID:0000-0001-8708-1226