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Abstract: 
 

This study is concerned with experimental curves of: hardness, residual stress 

and concentration of nitrogen at the precipitation layer at alloy steels after gas 

nitriding. The purpose of this treatment is that through experimental curves to 

identify the relationship and causality between hardness, on one side, and on the 

other, residual stress respectively concentration of nitrogen. Comparing the 

shape and slope of these curves we can conclude that, concentration of diffused 

nitrogen on the steel lattice, respectively ferrite, is a cause of increased hardness 

at the precipitation layer. More to the point, as a result of nitrogen diffusion, 

residual stress emerge which cause increase of hardness. The intensity and slope 

of the curves of hardness depends on the intensity and slope of the nitrogen 

concentration respectively residual stress. 

  
 

1. Introduction 
 
With the aim of improving the physical 

characteristics of iron materials, and more 

specifically of steels, various methods are used, and 

one of them is nitriding [1-8]. This process takes 

place in temperatures of over 500
0
C and in solid, 

liquid or gas environments [9]. Irrespective of the 

environment in which nitriding takes place, the aim 

is almost the same: enriching the steel’s surface 

with atomic nitrogen. As a result of the diffusion 

(enrichment) of the nitride on the surface of the 

material, physical changes occur within it and these 

are noticeably improved by the conditions of 

application of different equipment [10-14]. In this 

paper we deal with the results of nitriding of two 

types of steel in gas environments. Specifically, we 

have researched the effect of nitriding on 16MnCr5 

and 31CrMoV9 steel in the temperatures of 550
0
C 

and 590
0
C and over two periods of time, giving a 

total of eight samples. 

2. Method 

The nitriding process was carried out in an air 

dopped ammonia atmosphere with the nitriding 

potentials as given in Table 1, while the nitriding 

period was chosen such that comparable layers of 

nitriding could be obtained for different 

temperatures as in Table 2. 

Before the samples were investigated 

experimentally they were prepared 

metallographically with grinding and polishing of 

their surface. The details of specimen preparation 

are given in our earlier papers [11, 15]. The 

chemical analysis of the samples was carried out 

with a spark emission spectroscopy (Jobin Yvon, 

model JY-132F), and the results are listed in Table 

3. The experimental research methods were: 

Vickers method for hardness measurements, 

Electron Probe Micro-Analysis (EPMA) for 
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nitrogen-depth profiling, and X-ray diffraction 

(XRD) method for residual stress analysis. 

Hardness measurement were performed on polished 

cross-sections of nitrided specimens by using a 

PCE Leco hardness tester under a load of 0.9807 N 

(HV0.1). The distance between two succsesive 

measuring points was 50 µm. For comparison 

purposes, five more hardness measurements were 

taken outside of the nitrided area, i.e., in the matrix. 

Nitrogen concentration-depth profiles were 

determined with a Joel JXA-8900RL microanalyser 

operated at 20 kV and 40 nA. EPMA measurements 

were performed on polished cross-section of 

nitrided specimens, perpendicular to the surface, 

starting at the surface and moving in 5 µm 

increments towards the depth. Residual stresses 

were evaluated with XRD by using a Huber 

diffractometer with Cr-Kα radiation on the {211} 

diffraction plane of α-Fe. The sin
2ψ method [16-18] 

was used with the following measuring conditions: 

voltage/current X-ray tube parameters 40 kV/30 

mA, measuring interval sin
2
 = 0 to 0.5, 

measuring step width sin
2
 = 0.1, measuring time 

interval 10-20 s, α-Fe elastic constants E(211) = 220 

GPa and (211) = 0.8. 
 

 
Table 1. Nitriding parameters 

Temp./ °C 
The atmosphere of 

nitriding 

Nitriding 

potential, K
n
 

550 Air dopped ammonia 

gas 

3 

590 Air dopped ammonia 

gas 

2.82 

 

 
Table 2. Sample labelling, nitriding temperature and 

time 

Temp./ °C  Time /h Sample label 

16MnCr5 31CrMoV9 

550 
9 16-9 31-9 

64 16-15 31-15 

590 
4 16-17 31-17 

36 16-23 31-23 

 

3. Results and Discussions 

For each sample we found experimental curves for 

strength (HV), residual stress (RS), and the profile 

of distribution of nitrogen (N). Subsequently, with 

the aim of comparing the experimental results, we 

presented the curves jointly in a graphic. In order to 

for the comparison to be clearer, we normed the 

maximal values of HV, RS and N as 1 so that on 

the y axis we can see the relative impact of these 

values on depth. The results were displayed in 

figüre 1-8. 

4. Conclusions 

The intensity of curve N is in proportion with that 

of RS and HV. The more nitride diffuses in the 

steel network (the greater the intensity of curve N) 

the higher the intensity of residual stress RS. This is 

the case because during nitriding, deformation 

occurs to the steel network which produces stress in 

(negative) pressure. Likewise, the intensity of the 

residual stress RS is comparable with that of HV. In 

this assessment we consider that the diffusion of 

nitrogen causes residual stress in the network and 

as a result an increase occurs in the HV strength of 

the steel. Since the diffusion of nitrogen depends on 

the nitriding conditions it is possible to change the 

physical characteristics of steel and in this specific 

case by using the parameters of nitriding – time, 

temperature, nitriding potential and the type of 

steel. 

 

 

Table 3.  Chemical composition (in wt.%) of  steels. The 

difference to 100 wt.% is Fe 

 16MnCr5 31CrMoV9 

C 0.18 0.29 

Cr 0.71 2.17 

Mn 1.06 0.70 

V 0.001 0.15 

Mo 0.009 0.27 

Si 0.31 0.26 

S 0.026 0.004 

P 0.028 0.016 

Al 0.088 0.022 

 

 

Figure 1. HV, RS and N curves for sample of 16_9 (see 

table 2) 
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Figure 2. HV, RS and N curves for sample of 16_15 (see 

table 2) 

 
Figure 3. HV, RS and N curves for sample of 16_17 (see 

table 2) 

 
Figure 4. HV, RS and N curves for sample of 16_23 (see 

table 2) 

 

 

 

 

 
Figure 5. HV, RS and N curves for sample of 31_9 (see 

table 2) 

 

 
Figure 6. HV, RS and N curves for sample of 31_15 (see 

table 2) 

 
Figure 7. HV, RS and N curves for sample of 31_17 (see 

table 2) 
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Figure 8. HV, RS and N curves for sample of 31_23 (see 

table 2) 
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