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Abstract

The aim of this paper is to investigate the concept of regional observability, precisely regional reconstruction
of the initial state, for a semilinear Caputo type time-fractional di�usion system. The approaches attempted
in this work are both based on �xed point techniques that leads to a successful algorithm which is tested by
numerical examples.
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1. Introduction

"An apparent paradox from which one day useful consequences will be drawn", the answer that Leibniz

gave when l'Hospital had asked him about the meaning of
dn

dxn
f(x) when n =

1

2
, and then fractional calculus

was born.
Even-though fractional calculus is approximately 300 years of age, it only caught so much attention in the
last 25 years or so, the main reason being, its capability of a better describing of real world phenomena.
In fact a lot of works show that non-integer order ordinary and partial di�erential equations present, most
times, better modeling systems than integer order ones, for instance in [6] the authors presented a model
of beam heating process, and with experimental setup (thermo-electrical module), theoretical results were
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veri�ed and a high degree of accuracy was obtained in the experimental ones. Also the modeling of the
ultra-capacitor is given in [8], and in [7] both examples of the heat beam process and the ultra-capacitor are
given. More information on fractional calculus can be found in [1, 12, 13, 14, 22, 24, 32, 35, 36, 37, 39, 40]

Control theory is an important and very active branch of mathematics which serves as a link between
theoretical mathematics and its applications in the real world where most processes are modeled by nonlinear
distributed parameter systems, which explains the big interest of researchers in the study (Controllability,
Observability, Stability...) of nonlinear and semilinear systems. As for the study of linear systems, there
exists a very wide literature for integer order system, see [9] - [34] and the references therein, whereas for
fractional order systems there is a much less literature, see [17, 26, 29, 30, 38] and the references therein.

Most works in control theory precisely in observability deal with state estimation in the whole evolution
domain, namely Ω, of the considered system (global observability) [34], but in the 90's the regional observ-
ability concept was born by professor El Jai et al. [31], and was after that developed by others, its purpose
is to estimate the initial state of a given system only in a subregion ω ⊂ Ω, with positive Lebesgue measure,
several works have treated this notion for various kind of systems [3, 4, 5, 18, 20, 23]. The main reason for
introducing such a concept is its applicability to non observable systems in the whole domain.

Here we give an extension of the results of regional observability of semilinear systems to time-fractional
semilinear systems. We make two approaches in order to reconstruct the initial state in ω, the �rst one
consists of reconstructing the trajectory of the system in ω, "y(t)|ω", than substituting t with 0, we get the
wanted result (the direct approach), while the second one, where we make some assumptions so that the
dynamic of the system generates an analytical semigroup on the state space, gives directly the initial state
in ω as a �xed point of a function to be de�ned later.

This manuscript is organized as follows. In the second section we give some introductory notions and
useful tools for a better comprehension of the manuscript, as for the third section we introduce the considered
system, the de�nition of its mild solution and we also talk about regional observability. The fourth section
deals with the direct approach whereas in the �fth one we present the analytical approach , and just before
the conclusion, we give, in section six an algorithm for the regional reconstruction of the initial state also as
two numerical results.

2. Preliminary Notes

We layout, in this section, some de�nitions and properties, which will be used all over this manuscript.
We will start with the de�nition of the Caputo left fractional derivative.

De�nition 2.1. [2] The left sided fractional derivative of order α ∈ ]0, 1[ in Caputo's sense of y(x, t) with
respect to t, is given by the following expression

C
Dα

0+y(x, t) =
1

Γ(1− α)

∫ t

0
(t− s)−α ∂

∂s
y(x, s)ds.

For two Banach spaces E and F we denote the space of all linear bounded mappings de�ned from E to
F by L (E,F ) and L (E) := L (E,E), also we mean by Lp (0, T ;E) (resp. Lploc (0, T ;E)), the space of all
vector-valued functions f going from the interval [0, T ] to E, which are measurable, such that ‖f(.)‖E is in
Lp (0, T ) (resp. Lploc (0, T )).

The two following propositions show, respectively, the existence of the convolution between an operator
and a vector-valued function, and the Young inequality for this convolution [41].

Proposition 2.2. [41] Let E and F be two Banach spaces. Let's consider v ∈ L1
loc(0, T ;E) and T : [0, T ]→

L(E,F ) be strongly continuous. Then the convolution

(T ∗ v)(t) :=

∫ t

0
T (t− s)v(s)ds,

exists (in the Bochner sense) and is a continuous function (T ∗ v : [0, T ]→ F ).
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The previous convolution (∗) is called the Laplace convolution operator.

Proposition 2.3. [41] With the same considerations as in the previous proposition. Let's consider p, q, r ≥ 1

such that
1

q
+

1

p
= 1 +

1

r
.

If T ∈ Lp(0, T ;L(E,F )) and v ∈ Lq(0, T ;E), then T ∗ v ∈ Lr(0, T ;F ) and we have

‖T ∗ v‖
L
r

(0,T ;F )
≤ ‖v‖

L
q

(0,T ;E)
.‖T ‖

L
p

(0,T ;L(E,F ))
.

For more information about vector-valued analysis see [21, 41].

For a linear operator A, the set σ(A) :=

{
λ ∈ C

∣∣∣∣(A− λId)−1 exists

}
is called the resolvant set and

R(λ,A) := (A− λId)−1, for all λ in σ(A), is called the resolvant of A.
An important type of C0-semigroup is the analytic one, especially in nonlinear systems. Before we give its
de�nition, we need to de�ne the following sector ∆θ :=

{
z ∈ C

∣∣ |arg(z)| < θ , z 6= 0
}
, where θ ∈]0, π[.

De�nition 2.4. [21] Let {S(t)}t≥0 be a C0-semigroup on a Banach space E. We say that {S(t)}t≥0 is an
analytic semigroup if there exists θ in ]0, π[ such that {S(t)}t≥0 can be extended to the sector ∆θ and it
satis�es the following properties :

i- S(0) = IdE.

ii- S(w + z) = S(w)S(z), ∀z, w ∈ ∆θ ∪ {0}.

iii- lim
z→0
z∈∆θ

S(z)x = 0, ∀x ∈ E.

iv- z −→ S(z) is analytic from ∆θ to L(E) .

Here is a useful characterization of an analytic semigroup.

Proposition 2.5. [28] Let A be a densely de�ned, linear closed operator from E to itself. If we assume that
A enjoys the following conditions :

i- For some θ ∈]
π

2
, π[, we have that ∆θ ⊂ σ(A).

ii- ∃M0 > 0 such that the resolvant R(λ,A) satis�es the estimate

‖R(λ,A)‖L(E,E)
≤ M0

|λ|
, ∀λ ∈ ∆θ. (1)

Then, A generates an analytic semigroup on E.

We now introduce the notion of fractional powers for operators.

De�nition 2.6. [21] Let A : D(A) ⊂ E −→ E be a linear, possibly unbounded, operator that generates a
C0-semigroup {S(t)}t≥0 on E. Let's consider α ∈]0, 1[, The fractional power, of order α, of A is de�ned by,

(−A)−α : D ((−A)−α) ⊂ E −→ E

y 7−→ 1

Γ(α)

∫ +∞

0
tα−1S(t)dt,

where D ((−A)−α) =

{
x ∈ E

∣∣ ∫ +∞

0
tα−1S(t)dt < +∞

}
is its domain of de�nition. By de�nition A0 =

IdE.
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The operator (−A)−α is in fact injective and eventually invertibly bounded, from X into Im((−A)−α),
for all α in ]0, 1[ see [28]. Hence (−A)α can be de�ned as the inverse of (−A)−α, where D((−A)α) :=
Im((−A)−α) see [33].

Before we �nish the current section, let's introduce the Following weighted Lebesgue space, for all q ≥ 1
and α ≤ 1

L
q

α−1
[0, T ] =

{
f : [0, T ] −→ K measurable

∣∣∣∣ ∫ T

0
|tα−1f(t)|qdt < +∞

}
,

which is a Banach space endowed with the norm

‖f‖
L
q
α−1

[0,T ]
=

[∫ T

0
|tα−1f(t)|qdt

] 1
q

.

Remark 2.7. For all q ≥ 1, we have the following inclusions,

L
q

α−1
[0, T ] ⊂ Lq [0, T ] and L

p

α−1
[0, T ] ⊂ Lq

α−1
[0, T ], ∀p ≥ q.

3. Considered System

Let Ω be an open bounded subset on Rn, with smooth boundary Γ = ∂Ω and ]0, T ] a time interval. Let's
denote Q = Ω× ]0, T ] and Σ = Γ× ]0, T ]. Consider the following fractional semi-linear evolution equation :

C
Dα

0+y(x, t) = Ay(x, t) +Ny(x, t) in Q , α ∈ ]0, 1[ ,
y(ξ, t) = 0 in Σ,
y(x, 0) = y0(x) ∈ L2(Ω) in Ω,

(2)

together with the output function :
z(t) = Cy(., t). (3)

Where :

∗ C
Dα

0+ is the left sided fractional derivative in Caputo's sense.
∗ y0 is the initial state.
∗ A is a linear, second order, di�erential operator which generates a C0-semigroup {S(t)}t≥0 on the state

Space L2(Ω).
∗ C is a linear operator (operator of observation) from L2(Ω) into O

(the observation space).
∗ N is a nonlinear operator, assumed to be de�ned to ensure the existence and uniqueness of a mild

solution of the system (2) in L
2
(0, T ;L2(Ω)) see [25, 42, 43].

Without loss of generality we denote y(., t) = y(t).

We associate with the system (2), the following linear system
C
Dα

0+y(t) = Ay(t), t ∈ ]0, T ] ,
y(ξ, t) = 0, in Σ,
y(0) = y0 ∈ L2(Ω).

(4)

We call a mild solution of (2) any function y ∈ C
(
0, T ;L2(Ω)

)
which is written as follows [25, 42, 43]:

y(t) = Sα(t)y0 +

∫ t

0
(t− τ)α−1Hα(t− τ)Ny(τ)dτ, in [0, T ] , (5)
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where Sα(t) =

∫ ∞
0
Wα(θ)S(tαθ)dθ, and Hα(t) = α

∫ ∞
0

θWα(θ)S(tαθ)dθ.

The function Wα is called "The Mairandi function", and it is written as follows :

Wα(θ) =
∞∑
n=1

(−θ)n−1

Γ(n)Γ(1− αn)
=

1

α
θ−1− 1

α %α(θ−
1
α ), θ ≥ 0, (6)

where %α is a probability density function de�ned on ]0,+∞[ by :

%α(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nα−1 Γ(nα+ 1)

n!
sin(nπα). (7)

Remark 3.1. The Mairandi function is an alternating series, hence its sign is the same as its �rst term,

which is
1

Γ(1)Γ(1− α)
> 0, thus Wα(θ) > 0.

The Mairandi function satis�es the following

Proposition 3.2. [25, 43] For all v ≥ −1, we have :∫ ∞
0

θvWα(θ)dθ =
Γ(1 + v)

Γ(1 + αv)
. (8)

Let ω be a subregion of Ω with positive Lebesgue measure, we de�ne the restriction operator χω :
L

2
(Ω) −→ L

2
(ω) for all y ∈ L2

(Ω) by χωy = y|ω and we denote by χ∗ω its adjoint. We decompose the initial
state to two parts : ỹ0 = χωy0, the restriction of y0 in ω or the initial state in ω (to be reconstructed), and
y0, the residual (undesired) part of y0, we then have y0 = χ∗ωỹ0 + χ∗Ω\ωy0.

We introduce the operator Lα(.) : L
2
(0, T ;L2(Ω)) −→ L

2
(0, T ;L2(Ω)), de�ned as follows :

∀x ∈ L2
(0, T ;L2(Ω)), ∀t ∈ [0, T ] , Lα(t)x =

∫ t

0
(t− s)α−1Hα(t− s)x(s)ds.

The solution of the system (2) can be written

y(t) = Sα(t)χ∗ωỹ0 + Sα(t)χ∗Ω\ωy0 + Lα(t)Ny. (9)

The observability operator can be given by

Kα : L
2
(Ω) −→ L

2
(0, T ;O)

x 7−→ Kαx,

for all t ∈ [0, T ], (Kαx)(t) = CSα(t)x, and let Kω
α = Kαχ

∗
ω.

If C is unbounded, we assume that it is an admissible observation operator for Sα, that is :

∃N > 0, satisfying

∫ T

0
‖(Kαv)(t)‖2Odt ≤ N‖v‖2L2(Ω)

, ∀v ∈ L2(Ω).

Remark 3.3. If C is bounded, then it is an admissible observation operator.

The condition of admissibility on C gives us the wright to extend the operator CSα(t) to a bounded
linear operator from L2(Ω) to O, see [11, 16].
In both cases (bounded or not) the adjoint operator of Kα, can be written

(Kα)∗ : D((Kα)∗) ⊂ L2
(0, T ;O) −→ X

z∗ 7−→
∫ T

0
S∗α(s)C∗z∗(s)ds,
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De�nition 3.4. [19] The system (4)-(3) is said to be approximately observable in ω (or approximately ω-
observable) if and only if

Im(χωK∗α) = L
2
(ω).

This de�nition is equivalent to Ker(Kα
ω ) = {0}.

The operator
(
K

ω

α

)†
:=
[(
K

ω

α

)∗ (
K

ω

α

)]−1 (
K

ω

α

)∗
, called the pseudo inverse of K

ω

α , is well de�ned if the system
(4)-(3) is approximately ω-observable [10].

De�nition 3.5. We say that the system (2), augmented with the measurements (3), is initially continuously
observable in ω, if it is possible to reconstruct y(0)|ω , depending on z in a continuous way.

Problem : Considering any system (2), with the output (3), in [0, T ], can we reconstruct the initial
state ỹ0 in ω ?

4. Direct Approach

For ω ⊂ Ω, we assume that (4)-(3) is approximately ω-observable. We de�ne the following mapping

Φ : L
2
(0, T ;L2(Ω)) −→ L

2
(0, T ;L2(Ω))

y 7−→ Φ(y),

Φ(y)(t) = Sα(t)χ∗ω (Kω
α )†
(
z(.)− CSα(.)χ∗Ω\ωy − CLα(.)Ny

)
+Sα(t)χ∗Ω\ωy + Lα(t)Ny,

(10)

for all t in [0, T ] , where y is in L
2
(Ω \ ω), such that χωy = 0.

Proposition 4.1. The initial state of (2) in ω is the restriction in ω of a �xed point of Φ at t = 0.

Proof. We have
y(.) = Sα(.)χ∗ωỹ0 + Sα(.)χ∗Ω\ωy0 + Lα(.)Ny. (11)

By applying the operator C, we get

z(.) = CSα(.)χ∗ωỹ0 + CSα(.)χ∗Ω\ωy0 + CLα(.)Ny.

Which gives
Kω
α ỹ0 = z(.)− CSα(.)χ∗Ω\ωy0 − CLα(.)Ny,

and, since (4)-(3) is approximately ω-observable, by applying the pseudo inverse of K
ω

α , we have

ỹ0 = (Kω
α )†
(
z(.)− CSα(.)χΩ\ωy0 − CLα(.)Ny

)
. (12)

Substituting (12) in (11), we get

∀t ∈ [0, T ] , y(t) = Sα(t)χ∗ω (Kω
α )†
(
z(.)− CSα(.)χ∗Ω\ωy0 − CLα(.)Ny

)
+Sα(t)χ∗Ω\ωy0 + Lα(t)Ny

= Φ(y)(t).

(13)

Thus y(.) is a �xed point of Φ, and

y(0)|ω = (Kω
α )†
(
z(.)− CSα(.)χ∗Ω\ωy0 − CLα(.)Ny

)
.

For the next result we suppose that Φ has a unique �xed point y∗(.), for example if Φ is a strict contraction.



K. Zguaid, F.Z. El Alaoui, A.Boutoulout., Adv. Theory Nonlinear Anal. Appl. 5 (2021), 580�599. 586

Proposition 4.2. If the following condition is satis�ed,(
z(.)− CSα(.)χ∗Ω\ωy − CLα(.)Ny∗

)
∈ Im(Kω

α ). (14)

Then y∗(0)|ω is the estimated initial state of (2) in ω.

Proof. We have
y∗(t) = Φ(y∗)(t), ∀t ∈ [0, T ] ,

thus
Cy∗(t) =

(
Kω
α (Kω

α )†
(
z(.)− CSα(.)χ∗Ω\ωy − CLα(.)Ny∗

))
(t)

+CSα(t)χ∗Ω\ωy + CLα(t)Ny∗ , ∀t ∈ [0, T ] ,

by virtue of (14), we have

∃v ∈ L2
(ω) such that z(.)− CSα(.)χ∗Ω\ωy − CLα(.)Ny∗ = K

ω

αv,

then by applying
(
K

ω

α

)†
we get(
K

ω

α

)† (
z(.)− CSα(.)χ∗Ω\ωy − CLα(.)Ny∗

)
=
(
K

ω

α

)†
K

ω

αv = v,

thus
K

ω

α

(
K

ω

α

)† (
z(.)− CSα(.)χ∗Ω\ωy − CLα(.)Ny∗

)
= K

ω

αv

= z(.)− CSα(.)χ∗Ω\ωy − CLα(.)Ny∗,

which gives, for all t

Cy∗(t) = z(t)− CSα(t)χ∗Ω\ωy − CLα(t)Ny∗ + CSα(t)χ∗Ω\ωy + CLα(t)Ny∗ = z(t),

then
Cy∗(.) = z(.),

and we have
y∗(0)|ω = (Kω

α )†
(
z(.)− CSα(.)χ∗Ω\ωy − CLα(.)Ny∗

)
.

In all the previous results we worked with the residual part being any function in L
2
(Ω \ ω), so we can

take y0 = 0 for the rest of this work.

5. Analytical Approach

In this section, we shall use another approach where we make some assumptions that will allow our
dynamic, A, to generate an analytic semigroup and −A to have a fractional power of order α ∈]0, 1[. Both
of these consequences play an important role in the resolution of semilinear evolution systems. In fact the
bene�t of working with a dynamic that generates an analytic semigroup is that it provides good information
one has on the behavior of the solution at time t −→ 0+, whereas, fractional powers of −A allow us to
de�ne interpolation spaces ,between D(A) and L2(Ω), in which might lie the solution of our system, since,
for semilinear systems, the solution might not live in the evolution space, in our case L2(Ω).

We make the following assumptions on the operator A :

i- ∃θ ∈]
π

2
, π[, ∃b > 0, such that

∆θ − b :=

{
z ∈ C

∣∣∣∣|arg(z + b)| < θ

}
⊂ σ(A).
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ii- ∃M1 > 0, such that R(λ,A) satis�es

‖R(λ,A)‖L(X,X)
≤ M1

1 + |λ|
, ∀λ ∈ ∆θ − b.

The conditions (i) and (ii) provide us with some useful consequences, see [28]. The �rst consequence is
that the fractional power of the operator −A, of order α ∈]0, 1[, is well de�ned and D((−A)α) is dense in
L2(Ω). The second one is that, using proposition (2.5), A generates an analytic semigroup, denoted again
by {S(t)}t≥0, on the state space L2(Ω), in fact one can see that if (i) is satis�es then ∆θ ⊂ σ(A) and if (ii)
is veri�ed, (1) is also true.
For any α in ]0, 1[ we denote, Xα := D((−A)α) in which we de�ne the following norm ‖x‖Xα := ‖(−A)αx‖.
Since (−A)α is bounded then ‖.‖Xα is equivalent to the graph norm. In addition to the fact that (−A)α is
closed, we get that Xα, endowed with the norm ‖.‖Xα , is a Banach space.

Remark 5.1. The sequence (D((−A)α))0≤α≤1 is a set of interpolation spaces between D(A) and L2(Ω) (i.e.

D((−A)0) = L2(Ω), D((−A)1) = D(A) and for 0 < α < β < 1 we have D((−A)β) ⊂ D((−A)α)).

Remark 5.2. For the fractional power of −A, it is possible to choose a di�erent value from the order of
derivation of the state in (2), one can reprove the upcoming results with a slight change in the expression of
some constants, we kept the same order to simplify the calculations.

For the operator N we need to make the following hypotheses :

iii- ∃ q, p, r ≥ 1 verifying
1

q
+

1

p
= 1 +

1

r
such that :

∗) ∃g1 ∈ L
r

α−1
[0, T ], ∀θ ≥ 0,∀t ∈ ]0, T ] , ||S(tαθ)||L(X,Xα)

≤ |g1(t)|.

∗∗) The nonlinear operator N : L
r
(0, T ;Xα) −→ L

p
(0, T ;L2(Ω)) is well de�ned and satis�es

•N(0) = 0.
•||Nx−Ny||

L
p

(0,T ;L2(Ω))
≤ k(||x||, ||y||)||x− y||

L
r

(0,T ;Xα)
,

∀x, y ∈ Lr(0, T ;Xα).
with
k : R+ × R+ −→ R+ such that k(θ1, θ2) −−−−−→

θ1,θ2→0
0.

(15)

Even-though the condition (iii)-(**) on the operator N might seem harsh, yet, it can actually be achieved
as shown in [27], in fact it was used to obtain the exact global observability of semilinear classical systems,
also in [15] we �nd that this condition on N is valid for an important classes of systems, such as the Burgers'
equation.

Proposition 5.3. If (iii)-(*) is satis�ed, we have

∀t ∈ [0, T ] , ∀θ ≥ 0 ‖Sα(t)‖L(X,Xα)
≤ |g1(t)| and ||Hα(t)||L(X,Xα)

≤ |g1(t)|
Γ(α)

.

Proof. Let's consider t ∈ [0, T ] and θ ≥ 0, then for the �rst inequality we have

||Sα(t)||
L(L2(Ω),Xα)

≤
∫ ∞

0
|Wα(θ)| ||S(tαθ)||

L(L2(Ω),Xα)
dθ

≤ |g1(t)|
∫ ∞

0
Wα(θ)dθ,
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remark (3.1) implies that |Wα(θ)| =Wα(θ), and by using (8), we get

||Sα(t)||
L(L2(Ω),Xα)

≤ |g1(t)|.

As for the second

||Hα(t)||
L(L2(Ω),Xα)

≤ α

∫ ∞
0

θ|Wα(θ)| ||S(tαθ)||
L(L2(Ω),Xα)

dθ

≤ |g1(t)|α
∫ ∞

0
θWα(θ)dθ,

again by (8), we deduce that ||Hα(t)||
L(L2(Ω),Xα)

≤ |g1(t)|
Γ(α)

.

The goal here is to study the regional reconstruction problem for (2)-(3) in V = Im(χωK
∗
α), which is a

Banach space endowed with the norm ||.||V = ||Kω
α (.)||

L
2

(0,T ;O)
.

Let's put f(t) = tα−1Hα(t), which gives Lα(t)x = (f ∗ x)(t),
We have the following propositions.

Proposition 5.4. The following inequality is satis�ed

||f(.)||
L
q
(0,T ;L(L2(Ω),Xα))

≤
||g1(.)||

L
q
α−1 [0,T ]

Γ(α)
. (16)

Proof. We have

||f(.)||
L
q
(0,T ;L(L2(Ω),Xα))

=

[∫ T

0
‖tα−1Hα(t)‖q

L(X,Xα)
dt

] 1
q

,

then

||f(.)||
L
q
(0,T ;L(L2(Ω),Xα))

=

[∫ T

0
tq(α−1)‖Hα(t)‖q

L(X,Xα)
dt

] 1
q

,

using proposition 5.3, we get

||f(.)||
L
q
(0,T ;L(L2(Ω),Xα))

≤ 1

Γ(α)

[∫ T

0
|tα−1g1(t)|qLq [0,T ]dt

] 1
q

,

�nally

||f(.)||
L
q
(0,T ;L(L2(Ω),Xα))

≤ 1

Γ(α)
||g1(.)||

L
q
α−1

[0,T ]
.

Proposition 5.5. If the system (4) augmented by (3) is approximately observable, then the embedding
V ↪→ X(ω) := L

2
(ω), is continuous.

That is
∃κ > 0, such that ‖y0‖X(ω)

≤ κ‖y0‖V , ∀y0 ∈ V.

Proof. Let's consider y0 ∈ V , then

‖y0‖X(ω)
=
∣∣∣∣∣∣(Kω

α )†Kω
αy0

∣∣∣∣∣∣
X(ω)

≤
∣∣∣∣∣∣(Kω

α )†
∣∣∣∣∣∣
L(L

2
(0,T ;O),X(ω))

‖Kω
αy0‖

L
2

(0,T ;O)
,

and the fact that the operator (Kω
α )† is bounded comes from the admissibility condition of C, then

∃κ > 0, ∀y0 ∈ V, ‖y0‖X(ω)
≤ κ‖y0‖V .
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Using (9) we set
φỹ0 (y(.)) = Sα(.)χ∗ωỹ0 + Lα(.)Ny. (17)

We shall now, in the following proposition, show the existence of a set (ball) of admissible initial states in
ω, in the sense that they give a unique solution of (2) in a ball of L

r
(0, T ;Xα).

Theorem 5.6. Assume that (iii)-(*) and (15) hold, the following results are satis�ed.

1 . There exists positive numbers a,m = m(a), sucht that :
∀ỹ0 ∈ B(0,m) ⊂ V, the function φỹ0 has a unique �xed point, solution of (2), in B(0, a) ⊂ Lr(0, T ;Xα).

2 . The mapping
h : B(0,m) −→ B(0, a)

ỹ0 7−→ y(.),
(18)

"which for every initial state ỹ0 in ω gives us the corresponding unique solution of (2)", satis�es the
Lipschitz condition.

Remark 5.7. The constants a and m(a) are not unique, in fact
∀b ≤ a,∃ m(b) such that the pair (b,m(b)) satisfy the last proposition.

Proof. :
1 . We have k(θ1, θ2) −−−−−→

θ1,θ2→0
0, then ∃ a > 0, ∃ν > 0 such that

k(θ1, θ2) < ν <
Γ(α)

||g1(.)||
L
q
α−1

[0,T ]

∀θ1, θ2 ≤ a,

which gives

Sup
θi≤a

k(θ1, θ2) ≤ ν < Γ(α)

||g1(.)||
L
q
α−1

[0,T ]

,

then

D1 :=

||g1(.)||
L
q
α−1

[0,T ]

Γ(α)
Sup
θi≤a

k(θ1, θ2) < 1.

∀x, y ∈ B(0, a), we have :

||φỹ0 (x(.))− φỹ0 (y(.))||
L
r

(0,T ;Xα)
= ||Lα(.)(Nx−Ny)||

L
r

(0,T ;Xα)

= ||(f ∗ (Nx−Ny))(.)||
L
r

(0,T ;Xα)

≤ ||f(.)||
L
q
(0,T ;L(L2(Ω),Xα))

.||Nx−Ny||
L
p

(0,T ;L2(Ω))
,

using (16) and (15), we get

||φỹ0 (x(.))− φỹ0 (y(.))||
L
r

(0,T ;Xα)
≤
||g1(.)||

L
q
α−1

[0,T ]

Γ(α)
k(||x||, ||y||)||x− y||

L
r

(0,T ;Xα)

≤
||g1(.)||

L
q
α−1

[0,T ]

Γ(α)
Sup
θi≤a

k(θ1, θ2)||x− y||
L
r

(0,T ;Xα)

≤ D1||x− y||
L
r

(0,T ;Xα)
.
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Thus φỹ0 is a strict contraction.

Let's now show that φỹ0

(
B(0, a)

)
⊂ B(0, a).

Let y be an element in B(0, a), then

||φỹ0 (y(.))||
L
r

(0,T ;Xα)
≤ ||Sα(.)χ∗ωỹ0||

L
r

(0,T ;Xα)
+ ||Lα(.)Ny||

L
r

(0,T ;Xα)

≤ ||ỹ0||X(ω)
.||g1(.)||

L
r

[0,T ]

+||f(.)||
L
q
(0,T ;L(L2(Ω),Xα))

.||Ny||
L
p

(0,T ;L2(Ω))

≤ κ||ỹ0||V .||g1(.)||
L
r

[0,T ]

+

||g1(.)||
L
q
α−1

[0,T ]

Γ(α)
Sup
θ1≤a

k(θ1, 0).a,

then if m =
a

||g1(.)||
L
r

[0,T ]
κ

1−
||g1(.)||

L
q
α−1

[0,T ]

Γ(α)
Sup
θ1≤a

k(θ1, 0)


we have

ỹ0 ∈ B(0,m) =⇒ φỹ0 (y(.)) ∈ B(0, a).

Let's show that m is positive, in fact we have

||g1(.)||
L
q
α−1

[0,T ]

Γ(α)
Sup
θ1≤a

k(θ1, 0) ≤ D1 =

||g1(.)||
L
q
α−1

[0,T ]

Γ(α)
Sup
θi≤a

k(θ1, θ2) < 1,

which leads to

1−
||g1(.)||

L
q
α−1

[0,T ]

Γ(α)
Sup
θ1≤a

k(θ1, 0) > 0,

hence m > 0.
We deduce, from the Banach �xed point theorem, that φỹ0 has a unique �xed point in B(0, a).

2 . Let x and y be two solutions of (2) with initial states in ω, respectively, x̃0 and ỹ0 , we have :

h(x̃0)− h(ỹ0) = x(.)− y(.) = Sα(.)χ∗ω(x̃0 − ỹ0) + Lα(.)(Nx−Ny),

then
||h(x̃0)− h(ỹ0)||

L
r

(0,T ;Xα)
≤ ||Sα(.)χ∗ω(x̃0 − ỹ0)||

L
r

(0,T ;Xα)

+||Lα(.)(Nx−Ny)||
L
r

(0,T ;Xα)

≤ ||x̃0 − ỹ0||X(ω)
.||g1(.)||

L
r

[0,T ]

+D1||x− y||
L
r

(0,T ;Xα)

≤ κ||x̃0 − ỹ0||V .||g1(.)||
L
r

[0,T ]

+D1||h(x̃0)− h(ỹ0)||
L
r

(0,T ;Xα)
,
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which gives

||h(x̃0)− h(ỹ0)||
L
r

(0,T ;Xα)
≤
κ||g1(.)||

L
r

[0,T ]

1−D1
||x̃0 − ỹ0||V .

Finally, h is Lipschitz continuous.

In the next result we show that the initial state in ω (ỹ0) is a solution of a �xed point problem, keeping
in mind that the measurements are in a ball of L

2
(0, T ;O).

The solution of (2) can be written as

y(.) = Sα(.)χ∗ωỹ0 + Lα(.)Ny,

applying the observation operator, we get

z(.) = CSα(.)χ∗ωỹ0 + CLα(.)Ny,

or equivalently,
K

ω

α ỹ0 = z(.)− CLα(.)Ny,

and since the system (4)-(3) is approximately ω-observable, we obtain

ỹ0 =
(
K

ω

α

)†
(z(.)− CLα(.)Ny) ,

We set
Φz(ỹ0) =

(
K

ω

α

)†
(z(.)− CLα(.)h(ỹ0)) , (19)

then ỹ0 can be seen as a �xed point of Φz(.).

If the system (4) is approximately ω-observable and (15) hold, we have the following result

Theorem 5.8. Let's assume that

H1 . ∀ỹ0 ∈ B(0,m), CLα(.)(Ny) ∈ Im(Kω
α ), where y = h(ỹ0).

H2 . ∃δ > 0, such that
||CLα(.)Ny||

L
2

(0,T ;O)
≤ δ||Ny||

L
p

(0,T ;L
2

(Ω))
.

Then we have the following assertions :

1 . ∃ l and ρ = ρ(a, l,m) > 0, ∀z ∈ B(0, ρ) ⊂ L2
(0, T ;O), Φz(.) has a unique �xed point in B(0,m).

2 . The mapping
h
′

: B(0, ρ) −→ B(0,m)
z 7−→ ỹ0,

(20)

"which, for every measurement (z) in B(0, ρ), associates the unique �xed point of Φz(.)" is Lipschitzian.

Proof. :
1 . As k(θ1, θ2) −−−−−→

θ1,θ2→0
0, ∃ l,∃ν > 0, such that :

k(θ1, θ2) < ν <
1−D1

δκ||g1(.)||
L
r

[0,T ]

∀θ1, θ2 ≤ l,

which gives

Sup
θi≤l

k(θ1, θ2) ≤ ν < 1−D1

δκ||g1(.)||
L
r

[0,T ]

,
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then

D2 = δSup
θi≤l

k(θ1, θ2)
κ||g1(.)||

L
r

[0,T ]

1−D1
< 1.

If a ≤ l, let x̃0, ỹ0 ∈ B(0,m) ⊂ V , then

Φz(ỹ0)− Φz(x̃0) = (Kω
α )† [CLα(.)(Ny −Nx)] ,

hence, we have

||Φz(ỹ0)− Φz(x̃0)||V =
∣∣∣∣∣∣(Kω

α ) (Kω
α )† [CLα(.)(Ny −Nx)]

∣∣∣∣∣∣
L2 (0,T ;O)

,

using (H1), we obtain

||Φz(ỹ0)− Φz(x̃0)||V = ||CLα(.)(Ny −Nx)||
L2 (0,T ;O)

,

and from (H2), we deduce that

||Φz(ỹ0)− Φz(x̃0)||V ≤ δ‖Ny −Nx‖
L
p

(0,T ;L
2

(Ω))

≤ δSup
θi≤l

k(θ1, θ2)
κ||g1(.)||

L
r

[0,T ]

1−D1
‖ỹ0 − x̃0‖V

≤ D2‖ỹ0 − x̃0‖V .

Thus Φz(.) is a strict contraction on B(0,m).

We show now that Φz

(
B(0,m)

)
⊂ B(0,m). Let ỹ0 ∈ B(0,m), we have

‖Φz(ỹ0)‖V = ||z(.)− CLα(.)Ny||
L2 (0,T ;O)

≤ ‖z(.)‖
L2 (0,T ;O)

+ δ.k (‖y‖, 0) ‖y‖
L
r

(0,T ;Xα)
,

and since a ≤ l, we have
‖Φz(ỹ0)‖V ≤ ‖z(.)‖L2 (0,T ;O)

+ a.δSup
θ≤l

k(θ, 0).

Let's set ρ := m− a.δSup
θ≤l

k(θ, 0), which is positive. In fact

δSup
θ≤l

k(θ, 0)
κ||g1(.)||

L
r

[0,T ]

1−D1
≤ D2 = δSup

θi≤l
k(θ1, θ2)

κ||g1(.)||
L
r

[0,T ]

1−D1
< 1,

hence

δSup
θ≤l

k(θ, 0)κ||g1(.)||
L
r

[0,T ]
< 1−D1 ≤ 1−

||g1(.)||
L
q
α−1

[0,T ]

Γ(α)
Sup
θ1≤a

k(θ1, 0),

thus

δSup
θ≤l

k(θ, 0) <
1

κ||g1(.)||
L
r

[0,T ]

1−
||g1(.)||

L
q
α−1

[0,T ]

Γ(α)
Sup
θ1≤a

k(θ1, 0)

 ,
which gives

1

κ||g1(.)||
L
r

[0,T ]

1−
||g1(.)||

L
q
α−1

[0,T ]

Γ(α)
Sup
θ1≤a

k(θ1, 0)

− δSup
θ≤l

k(θ, 0) > 0.
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Then m− a.δSup
θ≤l

k(θ, 0) = δ > 0.

If ‖z(.)‖
L2 (0,T ;O)

≤ ρ, then ‖Φz(ỹ0)‖V ≤ m.
Thus

Φz

(
B(0,m)

)
⊂ B(0,m).

Therefore, by the Banach's �xed theorem, if z ∈ B(0, ρ), the function Φz(.) has a unique �xed point in
B(0,m), which is the initial state in ω.

If l ≤ a, we use the remark (5.7) and reprove the proposition (5.6), for another a ≤ l

2 . Let's consider z1, z2 ∈ B(0, ρ), we have

h
′
(z1)− h′(z2) = Φz1

(
h
′
(z1)

)
− Φz2

(
h
′
(z2)

)
= ỹ01 − ỹ02.

Then
‖h′(z1)− h′(z2)‖V = ‖Φz1

(
h
′
(z1)

)
− Φz2

(
h
′
(z2)

)
‖V

≤ ‖Φz1

(
h
′
(z1)

)
− Φz1

(
h
′
(z2)

)
‖V

+‖Φz1

(
h
′
(z2)

)
− Φz2

(
h
′
(z2)

)
‖V

≤ D2‖h
′
(z1)− h′(z2)‖V + ‖z1 − z2‖L2 (0,T ;O)

.

Which gives ‖h′(z1)− h′(z2)‖V ≤
1

1−D2
‖z1 − z2‖L2 (0,T ;O)

, thus h
′
is Lipschitzian.

6. Numerical Approach

For this section we adopt the same assumptions of the fourth section.
Let's consider the following sequence,{

y0
0

= 0,

yn+1
0

=
(
K

ω

α

)† (
z(.)− CLα(.)Nh(yn

0
)
)
,

and for every n in N, we consider the following fractional system,
C
Dα

0+y
n(x, t) = Ayn(x, t) +Nyn(x, t) in Q , α ∈ ]0, 1[ ,

yn(ξ, t) = 0 in Σ,
yn(x, 0) = yn0 (x) in Ω,

(21)

with the output equation,
zn(t) = Cyn(t).

Theorem 6.1. The sequence {yn0 }n≥0 converges to the desired initial state y0 in ω.

Proof. All we need to show is that yn
0
converges to h

′
(z) in V . Firstly we will show that (yn

0
)
n≥0

is a Cauchy
sequence.
We have,

‖yn+1
0
− yn

0
‖V = ||Φz(y

n
0
)− Φz(y

n−1
0

)||V ,

≤ D2‖yn0 − y
n−1
0
‖V ,

...
≤ D

n

2 ‖y1
0
‖V ,
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hence, ∀m > n > 0

‖ym
0
− yn

0
‖V ≤ ‖ym

0
− ym−1

0
‖V + ‖ym−1

0
− ym−2

0
‖V + · · ·+ ‖yn+1

0
− yn

0
‖V ,

≤ D
m−1

2 ‖y1
0
‖V +D

m−2

2 ‖y1
0
‖V + · · ·+D

n

2 ‖y1
0
‖V ,

≤ D
n

2

1−D2
‖y1

0
‖V ,

which gives that (yn
0
)
n≥0

is a Cauchy sequence and eventually convergent.
Remark that, from the sequence de�nition, we have

∀n ≥ 1, K
ω

α
y
n

0
= z − CLα(.)Nh(y

n−1

0
).

Hence,
‖yn

0
− h′(z)‖V = ‖h′(zn)− h′(z)‖V ,

≤ 1

1−D2
‖zn − z‖L2 (0,T ;O)

,

≤ 1

1−D2
‖z − CLα(.)Nh(y

n

0
)−Kω

α
y
n

0
‖
L2 (0,T ;O)

,

≤ 1

1−D2
‖Kω

α
y
n+1

0
−Kω

α
y
n

0
‖
L2 (0,T ;O)

,

≤ 1

1−D2
‖yn+1

0
− yn

0
‖V ,

≤ D
n

2

1−D2
‖y1

0
‖V .

We deduce that y
n

0
converges to desired initial state in ω.

We set rn(.) = z(.)− CLα(.)Nh(yn−1
0

).
we have

z(.)− zn(.) = z(.)− CLα(.)Nh(yn
0
)−Kω

α
yn

0

= CLα(.)Nh(yn−1
0

)− CLα(.)Nh(yn
0
)

= rn(.)− rn+1(.),

which gives
rn+1(.) = (zn(.)− z(.)) + rn(.).

Thus we obtain the following algorithm,

I Initialization of : ε, α, ω, Sensors...
I r(.) = z(.)− CLα(.)h(0).
I Repeat :

• ỹ0 =
(
K

ω

α

)†
r(.).

• Solve CD
α

0+
y = Ay +Ny ; y(0) = χ∗ωỹ0.

• z̄(.) = Cy.
• r(.) = (z̄(.)− z(.)) + r(.).

I Until ‖z(.)− z̄(.)‖
L2(0,Y ;O)

≤ ε.

Finally ỹ0 corresponds with the initial state on ω.
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Figure 1: Initial and estimated initial state in ω = [0.4 0.75].

Simulations

We give here numerical illustrations for the obtained algorithm. We show, with the same fractional
system, both types of sensors, zonal and pointwise.

Remark 6.2. The results are related to the choice of ω, the sensor's location also as the initial state of the
system.

Let Ω = [0, 1], T = 2 and α ∈ ]0, 1[, we consider the following time-fractional di�usion system,
C
Dα

0+y(x, t)− ∂2

∂x2 y(x, t) =

∞∑
i=1

〈y(., t), ϕi〉2 ϕi(x) in Ω×]0, T ],

y(0, t) = y(1, t) = 0 in[0, T ],
y(x, 0) = y0(x) ∈ D(A) in Ω,

where {ϕi(x) = sin(iπx), i = 1, 2, .....} is an orthonormal basis of the state space L2([0, 1]).

Pointwise Sensor

For this case we consider the order of derivation α = 0.2 and that :
� The subregion ω = [0.4 0.75].
� The measurements are given by means of a pointwise sensor located in b = 0.8, which means z(t) = y(0.8, t).
� The initial state supposedly unknown in ω is y0(x) = 2x(x− 1)(2x− 1).
After 5 iterations of the proposed algorithm we obtain the �gure (1).

The reconstruction error is : ‖y0 − ỹ0‖L2(ω) = 1.21× 10−2.
We remark in �gure (1) that the reconstructed initial state is very close to the initial one in the desired
subregion ω.
The �gure (2) shows the evolution of the reconstruction error in function of the sensor's location, and it is
very clear that the reconstruction error is sensitive to the position of the sensor.

Zonal Sensor

For this case we consider that :
� The order of derivation α = 0.8.
� The subregion ω = [0.2 0.6].
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Figure 2: Error evolution.

� The measurements are given by means of a zonal sensor, with spatial distribution equal to 1, located in
D = [0.1 0.3], which means

z(t) =

∫ 0.3

0.1
y(x, t)dx

.
� The initial state supposedly unknown in ω is y0(x) = 2x(1− x)(2x− 1).
After 7 iterations with the proposed algorithm we obtain the �gure (3).

The reconstruction error is : ‖y0 − ỹ0‖L2(ω) = 9.4× 10−3.
As we can see in �gure (3), the estimated initial state is quite near the actual one.
In order to show that the error changes with the choice of the geometric domain of the sensor, we give the
following table :

Geometric domain of the sensor Error

[0.3,0.5] 5.85× 10−2

[0.5,0.7] 1.3× 10−1

[0.7,0.9] 1.26× 10−1

Table 1: Some values of the reconstruction error for some di�erent considerations of the geometric domain of the sensor.

Table (1) show that the reconstruction error is in�uenced by the placement of the geometric domain of
the sensor.

7. Conclusion

In this paper we shed light on the concept of regional observability of semilinear Caputo type time-
fractional di�usion systems, of order α ∈ ]0, 1]. The two di�erent methods that we gave are both based
on �xed point techniques, and regarding future works, we intend to investigate the same problem with the
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Figure 3: Initial and estimated initial state in ω = [0.2 0.6].
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Hilbert Uniqueness Method (HUM), we also plan to study the regional boundary observability for the same
class of systems.
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