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Abstract: The aim of this paper is to present the extension of a concept related to aggregation operators from spherical fuzzy
sets to generalized spherical fuzzy sets. We first introduce Einstein sum, product and scalar multiplication for generalized spher-
ical fuzzy sets based on Einstein triangular norm and triangular conorm. Then we give the generalized spherical fuzzy Einstein
weighted averaging and generalized spherical fuzzy Einstein weighted geometric operators, namely generalized spherical fuzzy
Einstein aggregation operators, constructed on these operations. After investigating some fundamental properties of these oper-
ators, we develop a model for generalized spherical fuzzy Einstein aggregation operators to solve the multiple attribute group
decision-making problems. Finally, we give a numerical example to demonstrate that the developed method is suitable and effec-
tive for the decision process.
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1 Introduction

In 1965, Zadeh [32] introduced the theory of fuzzy set (FS) in which is discussed the degree of membership (positive-membership) of an element
to a set. FS theory has a wide range of applications in numerous fields such as artificial intelligence, engineering, economics, computer science
and etc. [7]-[32]-[33]-[34]. Also, the study of multi-criteria decision-making was started in fuzzy environment by Bellman and Zadeh [7] in
1970. While the studies and developments in the field of FS theory were continued, Atanassov [6] observed that there are some deficiencies
in this theory and defined the concept of intuitionistic fuzzy set (IFS) as a generalization of FS. Since each element is expressed by a positive-
membership degree and a negative-membership degree in the IFS theory, this theory is a more powerful tool to deal with vagueness than the FS
theory. Then basing on the well-known weighted averaging (WA) operator [16] and the ordered weighted averaging (OWA) operator [30], Xu
[29] investigated some aggregation operators in the intuitionistic fuzzy environment and studied their applications to the multi-criteria decision-
making process. Another idea which is an extension of the FS theory is the soft set (SS) theory introduced by Molodtsov [22] to deal with the
vagueness and uncertainties of many problems that arise in engineering, social science, medical science, economics and etc. A first practical
application of soft sets to the decision-making problems was given by Maji et al. [20]-[21]. They have also initiated the concept of a fuzzy soft
set (FSS) which is a combination of FS and SS and obtained some of its properties. In literature, there are many significant applications of the
SS and FSS theories. (see [5]-[9]-[24]-[25]).

After, Yager [31] extended the IFS theory to Pythagorean fuzzy set (PyFS) theory by considering the condition that the sum of the squares of
its positive-membership and negative-membership degrees is less than or equal to 1. IFS theory and PyFS theory have been successfully used
in many distinct areas, but it is not enough to use these theories when we face human opinions involving more answers of types such as yes,
no, abstain, refusal. Voting in a democratic election is a good example of such a case since the voters may be divided into four groups of those
who: vote for, vote against, abstain, refusal of the voting. So, Cuong [8] proposed the notion of picture fuzzy set (PFS) which is an extension
of IFS. PFS gives the positive-membership degree, the neutral-membership degree and the negative-membership degree of an element to a set.
The PFS theory resolved the voting problem successfully and was applied to decision-making problems by many authors in different ways
[27]-[28]-[3]-[4]-[10]. But there are some situations that PFS theory may not be handled in some uncertain and unstable data. For example, if
a person said their opinions about the situation in terms of yes is 0.7, abstained is 0.3, and no is 0.5, then we obtain that 0.7 + 0.5 + 0.3 � 1.
So PFS theory is not able to handle under such types of cases. To use in these types of situations, Mahmood et al. [19] initiated the concept
of spherical fuzzy set (SFS) and T-spherical fuzzy set (T-SFS) as an extension of FS, IFS and PFS. While in SFS theory the sum of the square
of the three membership degrees is less than or equal to 1, in T-SFS theory the nth power of the three membership degrees is less than or
equal to 1. Also, Mahmood et al. [19] defined some fundamental operations of SFSs and T-SFSs along with spherical fuzzy relations and
presented medical diagnostics and decision-making problems in the SFSs and T-SFSs environments as practical applications. Then, Ashraf and
Abdullah [1] extended different strict Archimedean triangular norms and triangular conorms to aggregate the spherical fuzzy information and
also defined some spherical aggregation operators and applied these operators to multi-criteria group decisionâĂŘmaking problems. Different
types of aggregation operators for SFSs can be found in [2]-[19]-[23]. Later, Jin et al. [17] proposed a new method to solve the spherical
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fuzzy multi-criteria group decision-making problems by investigating logarithmic operations of spherical fuzzy sets. Also, GÃijndogdu and
Kahraman [12]-[13]-[14] extended the TOPSIS, VIKOR and WASPAS methods to the spherical fuzzy environment. Recently, Haque et al.
[15] presented the notion of generalized spherical fuzzy set (GSFS) as an expansion of the SFS in which the sum of the square of the three
membership degrees is less than or equal to 3. They established a new exponential operational law for GSFS and investigated its various
algebraic properties. They also developed a multi-criteria group decision-making method in the generalized spherical fuzzy environment by
using the established exponential operational law. Peng et al. [26] introduced the Pythagorean fuzzy soft set (PyFSS) along with various binary
operations and also proposed an algorithm for decision making. Then, Cuong[8] proposed the notion of picture fuzzy soft set (PFSS) as a
combination of PFS and SS and also discussed various properties and operations in the theory of PFSS. Guleria and Bajaj [11] extend the
concept of PFSS by proposing the T-spherical fuzzy soft set (T-SFSS) along with various aggregation operators and applications.

The main purpose of this paper is to establish the generalized spherical fuzzy Einstein aggregation operators and develop a model for
generalized spherical fuzzy Einstein aggregation operators to solve the multiple attribute group decision-making problems. This paper is
contained in the following sections: In Section 2, we recollect some basic notions and relevant concepts that are used in the main section. In
Section 3, we introduce Einstein sum, product and scalar multiplication for GSFSs based on Einstein triangular norm and triangular conorm.
Then, we give the generalized spherical fuzzy Einstein weighted averaging (GSEWA) and generalized spherical fuzzy Einstein weighted
geometric (GSEWG) operators, namely generalized spherical fuzzy Einstein aggregation operators, constructed on the Einstein sum, product
and scalar multiplication for GSFSs. Also, we investigate some fundamental properties of these operators. In section 4, we develop a model to
solve the multiple attribute group decision-making problems in generalized spherical fuzzy environment. Then, we give a medical treatment
selection problem as an example which demonstrates that the developed method is effective and suitable for the decision-making process.
Finally, we give a brief summary in Section 5.

2 Preliminaries

In this section, we recall some fundamental definitions which will be used in the main sections. Throughout this paper U will denote the set of
the universe.

Definition 1. [6]-[31] Let µ : U → [0, 1] and ν : U → [0, 1] be two mappings. A set I = {< x, µ(x), ν(x) > |x ∈ U} is called
(i) Intuitionistic fuzzy set (IFS) if the condition 0 ≤ µ(x) + ν(x) ≤ 1 hold for all x ∈ U .
(ii) Pythagorean fuzzy set (PyFS) if the condition 0 ≤ µ2(x) + ν2(x) ≤ 1 hold for all x ∈ U .
The values µ(x), ν(x) ∈ [0, 1] denote the degree of positive-membership and negative-membership of x to I , respectively.
The pair I =< µ, ν > where µ, ν ∈ [0, 1] and µ+ ν ≤ 1 (or µ2 + ν2 ≤ 1), is called a intuitionistic fuzzy number (IFN) (or Pythagorean

fuzzy number (PyFN)).

Remark 1. [31] The set of intuitionistic fuzzy numbers is the subset of the set of Pythagorean fuzzy numbers.

Definition 2. [1]-[8]-[15] Let µ : U → [0, 1], ι : U → [0, 1] and ν : U → [0, 1] be three mappings. A setG = {< x, µ(x), ι(x), ν(x) > |x ∈
U} is called

(i) Picture fuzzy set (PFS) if the condition 0 ≤ µ(x) + ι(x) + ν(x) ≤ 1 hold for all x ∈ U .
(ii) Spherical fuzzy set (SFS) if the condition 0 ≤ µ2(x) + ι2(x) + ν2(x) ≤ 1 hold for all x ∈ U .
(ii) Generalized spherical fuzzy set (GSFS) if the condition 0 ≤ µ2(x) + ι2(x) + ν2(x) ≤ 3 hold for all x ∈ U .
The values µ(x), ι(x), ν(x) ∈ [0, 1] denote the degree of positive-membership, neutral-memberhip and negative-membership of x to G,

respectively.
The triplet G =< µ, ι, ν > where µ, ι, ν ∈ [0, 1] and µ2 + ι2 + ν2 ≤ 3 (or µ+ ι+ ν ≤ 1 and µ2 + ι2 + ν2 ≤ 1, resp.), is called a

generalized spherical fuzzy number (GSFN) (or Picture fuzzy number (PFN) and Spherical fuzzy number (SFN), resp.).

Remark 2. [15] (1) The set of spherical fuzzy numbers is the subset of the set of generalized spherical fuzzy numbers and the set of picture
fuzzy numbers is the subset of the set of spherical fuzzy numbers.

(2) In PFN, since the sum of the three membership functions (positive, neutral and negative) is less than or equal to 1, the sum is taken as
linearly and it represents a plane in space. But in the case of SFN and GSFN, it is considered the non-linear form of membership functions
which represents a sphere in space.

Definition 3. [15] Let G =< µ, ι, ν >,G1 =< µ1, ι1, ν1 >, G2 =< µ2, ι2, ν2 > be three GSFNs and a ≥ 0. Then the operations between
generalized spherical fuzzy numbers are defined as follows:

(i) Gc =< ν, ι, µ >,
(ii) G1 ≤ G2 iff µ1 ≤ µ2, ι1 ≥ ι2 and ν1 ≥ ν2,
(iii) G1 = G2 iff G1 ≤ G2 and G2 ≤ G1,
(iv) G1 +G2 =<

√
µ21 + µ22 − µ21µ22, ι1ι2, ν1ν2 >,

(v) aG =<
√

1− (1− µ2)a, ιa, νa >,
(vi) Ga =< µa, ιa,

√
1− (1− ν2)a >.

Lemma 1. [15] Let G1 =< µ1, ι1, ν1 >, G2 =< µ2, ι2, ν2 > be two GSFNs and a, a1, a2 ≥ 0. Then the following properties hold:
(i) G1 +G2 = G2 +G1,
(ii) a(G1 +G2) = aG1 + aG2,
(iii) (a1 + a2)G1 = a1G1 + a2G2,
(vi) (Ga11 )a2 = Ga1a21 .

Definition 4. [15] Let G be the collection of all GSFNs and G ∈ G where G =< µ, ι, ν >.
(i) A score function SF : G → [−1, 1] is defined as SF (G) = 3µ2−2ι2−ν2

3 .

(ii) An accuracy function AF : G → [0, 1] is defined as AF (G) = 1+3µ2−ν2

4 .

228 © CPOST 2020



Definition 5. [15] Let G1 =< µ1, ι1, ν1 > and G2 =< µ2, ι2, ν2 > be two GSFNs. Then the ranking method (comparison technique) as
follows:

(i) If SF (G1) < SF (G2), then G1 < G2,
(ii) If SF (G1) > SF (G2), then G1 > G2,
(iii) SF (G1) = SF (G2), then

(a) AF (G1) < AF (G2), then G1 < G2,
(b) AF (G1) > AF (G2), then G1 > G2,
(c) AF (G1) = AF (G2), then G1 = G2.

3 Generalized Spherical Fuzzy Einstein Aggregation Operators

In this section, we introduce the Einstein sum, product and scalar multiplication for generalized spherical fuzzy sets based on Einstein triangular
norm and triangular conorm. Then we define the generalized spherical fuzzy Einstein weighted averaging and generalized spherical fuzzy
Einstein weighted geometric operators based on these operations. Also, we investigate some fundamental properties of these operators.

Definition 6. Let G =< µ, ι, ν >,G1 =< µ1, ι1, ν1 > and G2 =< µ2, ι2, ν2 > be three GSFNs and a ≥ 0. Then the Einstein operations
are defined over the GSFNs as follow:

(i) G1 ⊕E G2 =

〈√
µ2
1+µ

2
2

1+µ2
1.µ

2
2
,

√
ι21.ι

2
2

1+(1−ι21)(1−ι22)
,

√
ν2
1 .ν

2
2

1+(1−ν2
1 )(1−ν2

2 )

〉
,

(ii) G1 �E G2 =

〈√
µ2
1.µ

2
2

1+(1−µ2
1)(1−µ2

2)
,

√
ι21.ι

2
2

1+(1−ι21)(1−ι22)
,

√
ν2
1+ν

2
2

1+ν2
1 .ν

2
2

〉
,

(iii) a·EG =

〈√
(1+µ2)a−(1−µ2)a

(1+µ2)a+(1−µ2)a
,
√

2ι2a

(2−ι2)a+ι2a ,
√

2ν2a

(2−ν2)a+ν2a

〉
,

(iv) G∧Ea =

〈√
2µ2a

(2−µ2)a+µ2a ,
√

2ι2a

(2−ι2)a+ι2a ,
√

(1+ν2)a−(1−ν2)a

(1+ν2)a+(1−ν2)a

〉
.

Lemma 2. Let G1 =< µ1, η1, ν1 >, G2 =< µ2, η2, ν2 > be two GSFNs and a, a1, a2 ≥ 0. Then the following properties hold:
(i) G1 ⊕E G2 = G2 ⊕E G1,
(ii) a·E(G1 ⊕E G2) = a·EG1 ⊕E a·EG2,
(iii) (a1 + a2)·EG1 = a1·EG1 ⊕E a2·EG2,
(iv) G1 �E G2 = G2 �E G1,
(v) (G1 �E G2)

∧Ea = G∧Ea1 �E G∧Ea2 ,
(vi) G∧Ea1 �E G∧Ea2 = G∧Ea1+a2 ,
(vii) (G∧Ea11 )∧Ea2 = G∧Ea1a21 .

Proof: Proofs of (i) and (iv) are trivial.

(ii) We can write the equation G1 ⊕E G2 =

〈√
µ2
1+µ

2
2

1+µ2
1.µ

2
2
,

√
ι21.ι

2
2

1+(1−ι21)(1−ι22)
,

√
ν2
1 .ν

2
2

1+(1−ν2
1 )(1−ν2

2 )

〉
in the following way:

G1 ⊕E G2 =

〈√
(1+µ2

1)(1+µ
2
2)−(1−µ2

1)(1−µ2
2)

(1+µ2
1)(1+µ

2
2)+(1−µ2

1)(1−µ2
2)
,

√
2.ι21.ι

2
2

(2−ι21)(2−ι22)+ι21.ι22
,

√
2.ν2

1 .ν
2
2

(2−ν2
1 )(2−ν2

2 )+ν
2
1 .ν

2
2

〉
.

If we take s = (1 + µ21)(1 + µ22), t = (1− µ21)(1− µ22), u = ι21.ι
2
2, x = (2− ι21)(2− ι22), y = ν21 .ν

2
2 and z = (2− ν21 )(2− ν22 ), by the

Einstein operational law (ii), we have that

a·E(G1 ⊕E G2) = a·E

〈√
s− t
s+ t

,

√
2u

x+ u
,

√
2y

z + y

〉

=

〈√√√√ (1 + s−t
s+t )

a − (1− s−t
s+t )

a

(1 + s−t
s+t )

a + (1− s−t
s+t )

a
,

√√√√ 2( 2u
x+u )

a

(2− 2u
x+u )

a + ( 2u
x+u )

a
,

√√√√ 2( 2y
z+y )

a

(2− 2y
z+y )

a + ( 2y
z+y )

a

〉

=

〈√
sa − ta
sa + ta

,

√
2ua

xa + ua
,

√
2ya

za + ya

〉

=

〈√
(1 + µ21)

a(1 + µ22)
a − (1− µ21)a(1− µ22)a

(1 + µ21)
a(1 + µ22)

a + (1− µ21)a(1− µ22)a
,

√
2ι2a1 .ι2a2

(2− ι21)a(2− ι22)a + ι2a1 .ι2a2
,

√
2ν2a1 .ν2a2

(2− ν21 )a(2− ν22 )a + ν2a1 ν2a2

〉
.

Also, if we take s1 = (1 + µ21)
a, t1 = (1− µ21)a, u1 = ι2a1 , x1 = (2− ι21)a, y1 = ν2a1 , z1 = (2− ν21 )a, s2 = (1 + µ22)

a, t2 = (1− µ22)a,
u2 = ι2a2 , x2 = (2− ι22)a, y2 = ν2a2 and z2 = (2− ν22 )a, then we have that

a·EG1 =

〈√
s1−t1
s1+t1

,
√

2u1
x1+u1

,
√

2y1
z1+u1

〉
and a·EG2 =

〈√
s2−t2
s2+t2

,
√

2u2
x2+u2

,
√

2y2
z2+u2

〉
.
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By the Einstein operational law (i), we get that

a·EG1 ⊕E a·EG2 =

〈√√√√ ( s1−t1s1+t1
) + ( s2−t2s2+t2

)

1 + ( s1−t1s1+t1
)( s2−t2s2+t2

)
,

√√√√ ( 2u1
x1+u1

)( 2u2
x2+u2

)

1 + (1− 2u1
x1+u1

)(1− 2u2
x2+u2

)
,

√√√√ ( 2y1
z1+y1

)( 2y2
z2+y2

)

1 + (1− 2y1
z1+y1

)(1− 2y2
z2+y2

)

〉

=

〈√
s1s2 − t1t2
s1s2 + t1t2

,

√
2u1u2

x1x2 + u1u2
,

√
2y1y2

z1z2 + y1y2

〉

=

〈√
(1 + µ21)

a(1 + µ22)
a − (1− µ21)a(1− µ22)a

(1 + µ21)
a(1 + µ22)

a + (1− µ21)a(1− µ22)a
,

√
2ι2a1 ι2a2

(2− ι21)a(2− ι22)a + ι2a1 ι2a2
,

√
2ν2a1 ν2a2

(2− ν21 )a(2− ν22 )a + ν2a1 ν2a2

〉

Hence, we satisfy that a·E(G1 ⊕E G2) = a·EG1 ⊕E a·EG2.
The proofs of (iii), (v), (vi) and (vii) can be completed similar to the proof of (ii). �

Definition 7. Let G be a collection of all GSFNs and (G1, G2, ..., Gn) ∈ G n where Gi =< µi, ιi, νi > for all i = 1, 2, ..., n and α =
(α1, α2, ..., αn)

T be the weight vector corresponding to (Gi)
n
i=1 such that αi ≥ 0 for all i and

∑n
i=1 αi = 1. A mapping GSEWAα :

G n → G is said to be a generalized spherical fuzzy Einstein weighted averaging (GSEWA) operator and is defined by

GSEWAα(G1, G2, ..., Gn) = α1·EG1 ⊕E α2·EG2 ⊕E ...αn·EGn = ⊕ni=1αi·EGi (1)

Theorem 1. Let (G1, G2, ..., Gn) ∈ G n. Then the aggregated value GSEWAα(G1, G2, ..., Gn) is also a GSFN and is calculated by

GSEWAα(G1, G2, ..., Gn) =

〈√∏n
i=1(1 + µ2i )

αi −
∏n
i=1(1− µ2i )αi∏n

i=1(1 + µ2i )
αi +

∏n
i=1(1− µ2i )αi

,

√√√√ 2
∏n
i=1 ι

2αi
i∏n

i=1(2− ι2i )αi +
∏n
i=1 ι

2αi
i

,

√√√√ 2
∏n
i=1 ν

2αi
i∏n

i=1(2− ν2i )αi +
∏n
i=1 ν

2αi
i

〉
(2)

Proof The above result given in equation (2) can be proved by using induction method on n as follows:
Step I: For n = 2, we have

GSEWAα(G1, G2) = α1·EG1 ⊕E α2·EG2.

Since α1·EG1 and α2·EG2 are GSFNs, then α1·EG1 ⊕E α2·EG2 is also a GSFN. Then, we obtain

GSEWAα(G1, G2) = α1.EG1 ⊕E α2.EG2

=

〈√
(1 + µ21)

α1 − (1− µ21)α1

(1 + µ21)
α1 + (1− µ21)α1

,

√√√√ 2ι2α1
1

(2− ι21)α1 + ι2α1
1

,

√√√√ 2ν2α1
1

(2− ν21 )α1 + ν2α1
1

〉

⊕E

〈√
(1 + µ22)

α2 − (1− µ22)α2

(1 + µ22)
α2 + (1− µ22)α2

,

√√√√ 2ι2α2
2

(2− ι22)α2 + ι2α2
2

,

√√√√ 2ν2α2
2

(2− ν22 )α2 + ν2α2
2

〉

=

〈√√√√√√
(1+µ2

1)
α1−(1−µ2

1)
α1

(1+µ2
1)
α1+(1−µ2

1)
α1

+
(1+µ2

2)
α2−(1−µ2

2)
α2

(1+µ2
2)
α2+(1−µ2

2)
α2

1 +

[
(1+µ2

1)
α1−(1−µ2

1)
α1

(1+µ2
1)
α1+(1−µ2

1)
α1

][
(1+µ2

2)
α2−(1−µ2

2)
α2

(1+µ2
2)
α2+(1−µ2

2)
α2

] ,
√√√√√√√

2ι
2α1
1

(2−ι21)α1+ι
2α1
1

.
2ι

2α2
2

(2−ι22)α2+ι
2α2
2

1 + [1− 2ι
2α1
1

(2−ι21)α1+ι
2α1
1

][1− 2ι
2α2
2

(2−ι22)α2+ι
2α2
2

]

,

√√√√√√√
2ν

2α1
1

(2−ν2
1 )
α1+ν

2α1
1

.
2ν

2α2
2

(2−ν2
2 )
α2+ν

2α2
2

1 + [1− 2ν
2α1
1

(2−ν2
1 )
α1+ν

2α1
1

][1− 2ν
2α2
2

(2−ν2
2 )
α2+ν

2α2
2

]

〉

=

〈√
(1 + µ21)

α1 .(1 + µ22)
α2 − (1− µ21)α1 .(1− µ22)α2

(1 + µ21)
α1 .(1 + µ22)

α2 + (1− µ21)α1 .(1− µ22)α2
,

√√√√ 2ι2α1
1 .ι2α2

2

(2− ι21)α1 .(2− ι22)α2 + ι2α1
1 .ι2α2

2

,

√√√√ 2ν2α1
1 .ν2α2

2

(2− ν21 )α1 .(2− ν22 )α2 + ν2α1
1 .ν2α2

2

〉

=

〈√√√√∏2
i=1(1 + µ2i )

αi −
∏2
i=1(1− µ2i )αi∏2

i=1(1 + µ2i )
αi +

∏2
i=1(1− µ2)αi

,

√√√√ 2
∏2
i=1 ι

2αi
i∏2

i=1(2− ι2i )αi +
∏2
i=1 ι

2αi
i

,

√√√√ 2
∏2
i=1 ν

2αi
i∏2

i=1(2− ν2i )αi +
∏2
i=1 ν

2αi
i

〉

Hence, the equation (2) hold for n = 2.
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Step II: Now, we suppose that the equation (2) hold for n = k, that is

GSEWAα(G1, G2, ..., Gk) = α1·EG1 ⊕E α2·EG2 ⊕E ...⊕E αk·EGk

=

〈√√√√∏k
i=1(1 + µ2i )

αi −
∏k
i=1(1− µ2i )αi∏k

i=1(1 + µ2i )
αi +

∏k
i=1(1− µ2)αi

,

√√√√ 2
∏k
i=1 ι

2αi
i∏k

i=1(2− ι2i )αi +
∏k
i=1 ι

2αi
i

,

√√√√ 2
∏k
i=1 ν

2αi
i∏k

i=1(2− ν2i )αi +
∏k
i=1 ν

2αi
i

〉

Similarly, we show that the equation (2) hold for n = k + 1. Then, we have

GSEWAα(G1, G2, ..., Gk, Gk+1) = GSEWAα(G1, G2, ..., Gk)⊕E αk+1Gk+1

=

〈√√√√∏k
i=1(1 + µ2i )

αi −
∏k
i=1(1− µ2i )αi∏k

i=1(1 + µ2i )
αi +

∏k
i=1(1− µ2)αi

,

√√√√ 2
∏k
i=1 ι

2αi
i∏k

i=1(2− ι2i )αi +
∏k
i=1 ι

2αi
i

,

√√√√ 2
∏k
i=1 ν

2αi
i∏k

i=1(2− ν2i )αi +
∏k
i=1 ν

2αi
i

〉

⊕E

〈√√√√ (1 + µ2k+1)
αk+1 − (1− µ2k+1)

αk+1

(1 + µ2k+1)
αk+1 + (1− µ2k+1)

αk+1
,

√√√√ 2ι
2αk+1

k+1

(2− ι2k+1)
αk+1 + ι

2αk+1

k+1

,

√√√√ 2ν2α1

k+1

(2− ν2k+1)
αk+1 + ν

2αk+1

k+1

〉

=

〈√√√√√√√√
∏k
i=1(1+µ

2
i )
αi−

∏k
i=1(1−µ2

i )
αi∏k

i=1(1+µ
2
i )
αi+

∏k
i=1(1−µ2)αi

+
(1+µ2

k+1)
αk+1−(1−µ2

k+1)
αk+1

(1+µ2
k+1)

αk+1+(1−µ2
k+1)

αk+1

1 +

(∏k
i=1(1+µ

2
i )
αi−

∏k
i=1(1−µ2

i )
αi∏k

i=1(1+µ
2
i )
αi+

∏k
i=1(1−µ2)αi

)(
(1+µ2

k+1)
αk+1−(1−µ2

k+1)
αk+1

(1+µ2
k+1)

αk+1+(1−µ2
k+1)

αk+1

)

,

√√√√√√√√√
(

2
∏k
i=1 ι

2αi
i∏k

i=1(2−ι2i )αi+
∏k
i=1 ι

2αi
i

)(
2ι

2αk+1
k+1

(2−ι2k+1)
αk+1+ι

2αk+1
k+1

)

1 +

(
1− 2

∏k
i=1 ι

2αi
i∏k

i=1(2−ι2i )αi+
∏k
i=1 ι

2αi
i

)(
1− 2ι

2αk+1
k+1

(2−ι2k+1)
αk+1+ι

2αk+1
k+1

)

,

√√√√√√√√√
(

2
∏k
i=1 ν

2αi
i∏k

i=1(2−ν2
i )
αi+

∏k
i=1 ν

2αi
i

)(
2ν

2αk+1
k+1

(2−ν2
k+1)

αk+1+ν
2αk+1
k+1

)

1 +

(
1− 2

∏k
i=1 ν

2αi
i∏k

i=1(2−ν2
i )
αi+

∏k
i=1 ν

2αi
i

)(
1− 2ν

2αk+1
k+1

(2−ν2
k+1)

αk+1+ν
2αk+1
k+1

)〉 (3)

Thus, the equation (2) hold for n = k + 1. Hence, by induction method the equation (2) hold for all n ∈ N.

Lemma 3. (Idempotency of GSEWAα operator) If Gi = G for all i = 1, 2, ..., n where G =< µ, ι, ν >, Gi =< µi, ιi, νi > and α =
(α1, α2, ..., αn)

T is the weight vector corresponding to (Gi)
n
i=1 such that αi ≥ 0 for all i and

∑n
i=1 αi = 1, then GSEWAα = G.

Proof Let Gi = G for all i = 1, 2, ..., n where G =< µ, ι, ν > and Gi =< µi, ιi, νi >. Suppose that α = (α1, α2, ..., αn)
T is the weight

vector corresponding to (Gi)
n
i=1 such that αi ≥ 0 for all i and

∑n
i=1 αi = 1. SÄřnceGi = G for all i = 1, 2, ..., n, we have that µi = µ, ιi =

ι and νi = ν for all i = 1, 2, ..., n. Then

GSEWAα(G1, G2, ..., Gn) =

〈√∏n
i=1(1 + µ2i )

αi −
∏n
i=1(1− µ2i )αi∏n

i=1(1 + µ2i )
αi +

∏n
i=1(1− µ2)αi

,

√√√√ 2
∏n
i=1 ι

2αi
i∏n

i=1(2− ι2i )αi +
∏n
i=1 ι

2αi
i

,

√√√√ 2
∏n
i=1 ν

2αi
i∏n

i=1(2− ν2i )αi +
∏n
i=1 ν

2αi
i

〉

=

〈√∏n
i=1(1 + µ2)αi −

∏n
i=1(1− µ2)αi∏n

i=1(1 + µ2)αi +
∏n
i=1(1− µ2)αi

,

√
2
∏n
i=1 ι

2αi∏n
i=1(2− ι2)αi +

∏n
i=1 ι

2αi
,

√
2
∏n
i=1 ν

2αi∏n
i=1(2− ν2)αi +

∏n
i=1 ν

2αi

〉

=

〈√
(1 + µ2)

∑n
i=1 αi − (1− µ2)

∑n
i=1 αi

(1 + µ2)
∑n
i=1 αi + (1− µ2)

∑n
i=1 αi

,

√
2ι

∑n
i=1 2αi

(2− ι2)
∑n
i=1 αi + ι

∑n
i=1 2αi

,

√
2ν

∑n
i=1 2αi

(2− ν2)
∑n
i=1 αi + ν

∑n
i=1 2αi

〉
= < µ, ι, ν >= G

Lemma 4. (Boundedness of GSEWAα operator) Let (G1, G2, ..., Gn) ∈ G n and i ∈ {1, 2, ..., n}. Then,

miniGi ≤ GSEWAα(G1, G2, ..., Gn) ≤ maxiGi

where miniGi =< mini µi,maxi ιi,maxi νi > and maxiGi =< maxi µi,mini ιi,mini νi >.

Proof The proof is easily obtained from Definition 6 and equation (2).
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Lemma 5. (Monotonicity of GSEWAα operator) Let (G1, G2, ..., Gn), (G
′
1, G
′
2, ..., G

′
n) ∈ G n. If Gi ≤ G′i for all i = 1, 2, .., n, then

GSEWAα(G1, G2, ..., Gn) ≤ GSEWAα(G
′
1, G
′
2, ..., G

′
n).

Proof The proof is easily obtained from Definition 6 and equation (2).

Definition 8. Let G be a collection of all GSFNs and (G1, G2, ..., Gn) ∈ G n where Gi =< µi, ιi, νi > for all i = 1, 2, ..., n and α =
(α1, α2, ..., αn)

T be the weight vector corresponding to (Gi)
n
i=1 such that αi ≥ 0 for all i and

∑n
i=1 αi = 1. A mapping GSEWGα :

G n → G is said to be a generalized spherical fuzzy Einstein weighted geometric (GSEWG) operator and is defined by

GSEWGα(G1, G2, ..., Gn) = G∧Eα1
1 �E G∧Eα2

2 �E ...�E G∧Eαnn = �ni=1G
∧Eαi
i (4)

Theorem 2. Let (G1, G2, ..., Gn) ∈ G n. Then the aggregated value GSEWGα(G1, G2, ..., Gn) is also a GSFN and is calculated by

GSEWGα(G1, G2, ..., Gn) =

〈√√√√ 2
∏n
i=1 µ

2αi
i∏n

i=1(2− µ2i )αi +
∏n
i=1 µ

2αi
i

,

√√√√ 2
∏n
i=1 ι

2αi
i∏n

i=1(2− ι2i )αi +
∏n
i=1 ι

2αi
i

,

√∏n
i=1(1 + ν2i )

αi −
∏n
i=1(1− ν2i )αi∏n

i=1(1 + ν2i )
αi +

∏n
i=1(1− ν2)αi

〉
(5)

Proof The proof is obtained similar to the proof of Theorem 1.

Lemma 6. (Idempotency of GSEWGα operator) If Gi = G for all i = 1, 2, ..., n where G =< µ, ι, ν >, Gi =< µi, ιi, νi > and α =
(α1, α2, ..., αn)

T is the weight vector corresponding to (Gi)
n
i=1 such that αi ≥ 0 for all i and

∑n
i=1 αi = 1, then GSEWGα = G.

Proof The proof is easily obtained from equation (5).

Lemma 7. (Boundedness of GSEWGα operator) Let (G1, G2, ..., Gn) ∈ G n and i ∈ {1, 2, ..., n}. Then,

miniGi ≤ GSEWGα(G1, G2, ..., Gn) ≤ maxiGi

where miniGi =< mini µi,maxi ιi,maxi νi > and maxiGi =< maxi µi,mini ιi,mini νi >.

Proof The proof is easily obtained from Definition 6 and equation (5).

Lemma 8. (Monotonicity of GSEWGα operator) Let (G1, G2, ..., Gn), (G
′
1, G
′
2, ..., G

′
n) ∈ G n. If Gi ≤ G′i for all i = 1, 2, .., n, then

GSEWGα(G1, G2, ..., Gn) ≤ GSEWGα(G
′
1, G
′
2, ..., G

′
n).

Proof The proof is easily obtained from Definition 6 and equation (5).

4 An Application of Generalized Spherical Fuzzy Einstein Aggregation Operators to Multi-Criteria Group
Decision-Making Problems

In this section, we develop a method for multi-criteria group decision-making problems under the generalized spherical fuzzy environment
using the defined GSEWA and GSEWG operators and then we give a numerical example to explain this method.

4.1 Methodology

Let A = {A1, A2, ..., Am} be the set of m different options and E = {E1, E2, ..., En} be the set of n different attributes. Assume that α =
(α1, α2, ..., αn) is the weight vector of the attribute Ei (i = 1, 2, ..., n) where αi ≥ 0 for all i = 1, 2, ..., n and

∑n
i=1 αi = 1. Also suppose

that D = {D1, D2, ..., Dk} is the set of n distinct decision-makers with the options whose weight vector is expressed as δ = (δ1, δ2, ..., δk)

where δi ≥ 0 for all i = 1, 2, ..., k and
∑k
i=1 δi = 1. This vector (δ) has been handled according to the age, experience, education, thinking

ability, and knowledge power of the decision-maker. Actually, as a first step decision matrices associated with options to attribute values are
built on considering the preference of the decision-makers. But here, we consider the entity of the decision matrices as GSFNs and are given
by Brij =< µrij , ι

r
ij , ν

r
ij > (i = 1, 2, ...,m), (j = 1, 2, ..., n), (r = 1, 2, ..., k) and the associated decision matrix is given as follows:

Dr =


Br11 Br12 . . . Br1n
Br21 Br22 . . . Br2n

...
... . . .

...
Brm1 Brm2 . . . Brmn

 .

Now, we develop the multi-criteria group decision-making procesure under the generalized spherical fuzzy environment as the following
steps:

Step I: Use the either GSEWA or GSEWG operator on each decision matrix Dr to get the following matrix:
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Fr
m×1 =


Cr11
Cr21

...
Crm1


where Cri1 = GSEWAα(B

r
i1, B

r
i2, ..., B

r
in) (or Cri1 = GSEWGα(B

r
i1, B

r
i2, ..., B

r
in)) for i = 1, 2, ...,m and r = 1, 2, ..., k.

Step II: Apply the decision-maker’s weight vector (δ) under the scalar multiplication, addition and power of GSFNs to evolute the final

matrix D =
∑k
i=1 δiF

i
m×1 when GSEWA operator is used and D =

∑k
i=1 (F

i
m×1)

δi where (F im×1)
δi =


(Ci11)

δi

(Ci21)
δi

...
(Cim1)

δi

 when GSEWG

operator is used. Denote this matrix as follows:

D =


Ã1

Ã2
...

Ãm

 .

Step III: Calculate the score values SF (Ãi) (i = 1, 2, ...,m) of the cumulative overall preference value. If two score values SF (Ãi) and
SF (Ãj) are same for any i, j = 1, 2, ...,m, then it is found the accuracy values AF (Ãi) (i = 1, 2, ...,m).

Step IV: Rank the options Ai (i = 1, 2, ...,m) and choose the best option which has the maximum score value.

4.2 A numerical Example

The following medical treatment choice problem is given to demonstrate the suitability, validity and efficiency of the observed multi-criteria
group decision making method and is handled from [18].

There is a 50-year-old man patient who was diagnosed with the acute inflammatory demyelinating polyneuropathy disease by his specialist
doctor. Acute inflammatory demyelinating polyneuropathy disease is an autoimmune process that is characterized by progressive areflexic
weakness and mild sensory changes. The first symptoms of this disease usually include varying degrees of weakness or tingling sensations
in the legs. In many instances, the weakness and abnormal sensations ascend and spread to the arms and upper body. And also it can cause
life-threatening complications by affecting the peripheral nervous system. Most patients can rescue from this disease with convenient treatment
within a few months to a year. But minor by-effects may continue such as areflexia. The doctor chosen four treatment options, including steroid
therapy (A1), plasmapheresis (A2), intravenous immunoglobulin (A3) and immunosuppressive medicines (A4), based on his current physical
conditions and medical history.

To satisfy the patient and his family’s understanding of the advantages and disadvantages of each treatment choice, the doctor described
the treatment options using three criteria that including the side effects (E1), the probability of a Cure (E2), and cost (E3). A prioritization
relationship among the criteria Ei (i = 1, 2, 3) which satisfies E2 > E1 > E3 was determined according to the patientâĂŹs preferences and
his current financial situation. So, assume that α = (0.3, 0.45, 0.25) is the weight vector of the attribute {E1, E2, E3}. In order to choose the
optimum treatment, the patient (D1), the doctor (D2) and the patientâĂŹs family (D3), with a prioritization relationship among the decision-
makers Di (i = 1, 2, 3) satisfying D2 > D1 > D3, evaluated the four treatment options based on these criteria considering the generalized
spherical fuzzy Einstein aggregation operators. Take the decision-makers weight vector as δ = (0.35, 0.45, 0.2). The decision matrices are
shown as follows:

D1 =

 < 0.6, 0, 8, 0, 2 > < 0.4, 0.3, 0.7 > < 0.2, 0.7, 0.4 >
< 0.55, 0.2, 0.8 > < 0.8, 0.75, 0.65 > < 0.9, 0.8, 0.2 >
< 0.7, 0.4, 0.4 > < 0.55, 0.2, 0.45 > < 0.5, 0.7, 0.8 >
< 0.35, 0.6, 0.5 > < 0.7, 0.8, 0.55 > < 0.8, 0.6, 0.5 >



D2 =

 < 0.85, 0.7, 0.8 > < 0.4, 0.75, 0.8 > < 0.6, 0.8, 0.5 >
< 0.3, 0.4, 0.4 > < 0.8, 0.2, 0.45 > < 0.5, 0.6, 0.8 >
< 0.9, 0, 8, 0, 2 > < 0.4, 0.8, 0.7 > < 0.8, 0.7, 0.4 >
< 0.75, 0.3, 0.5 > < 0.8, 0.5, 0.45 > < 0.5, 0.6, 0.8 >



D3 =

 < 0.75, 0.4, 0.5 > < 0.8, 0.8, 0.45 > < 0.8, 0.6, 0.8 >
< 0.9, 0, 6, 0, 4 > < 0.4, 0.6, 0.9 > < 0.2, 0.7, 0.4 >
< 0.55, 0.5, 0.8 > < 0.8, 0.75, 0.85 > < 0.6, 0.8, 0.2 >
< 0.75, 0.4, 0.8 > < 0.4, 0.8, 0.45 > < 0.8, 0.6, 0.6 >


Step I: Using the GSEWA operator on each decision matrixDr with the weight vector α = (0.3, 0.45, 0.25), we get the following matrices:

F1
4×1 =

 < 0.4396, 0.5141, 0.4299 >
< 0.7841, 0.5376, 0.5345 >
< 0.5914, 0.3442, 0.5093 >
< 0.6606, 0.6874, 0.5221 >



F2
4×1 =

 < 0.6436, 0.7473, 0.7196 >
< 0.6380, 0.3287, 0.5093 >
< 0.7330, 0.7748, 0.4299 >
< 0.7309, 0.4525, 0.5431 >


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F3
4×1 =

 < 0.7861, 0.6162, 0.5431 >
< 0.6305, 0.6243, 0.6 >

< 0.6962, 0.6819, 0.6151 >
< 0.6515, 0.6162, 0.5826 >


Step II: Applying the decision-maker’s weight vector δ = (0.35, 0.45, 0.2), we get the following matrix:

D =

 < 0.6312, 0.6308, 0.5680 >
< 0.6989, 0.4439, 0.5352 >
< 0.6837, 0.5685, 0.49 >
< 0.6932, 0.5572, 0.5432 >


Step III: Now, we calculate the score values SF (Ãi) (i = 1, 2, 3, 4). Here, we have that SF (Ã1) = 0.03, SF (Ã2) = 0.26, SF (Ã3) =

0.1719 and SF (Ã4) = 0.1752.
Step IV: The ranking order of score values is that SF (Ã2) > SF (Ã4) > SF (Ã3) > SF (Ã1). Hence, according to the Definition 5, the

ranking order of the options is that A2 > A4 > A3 > A1. Therefore, the best option is A2.

4.3 Sensitivity analysis of the numerical example

The aim of sensitivity analysis is to observe the weights of the decision-makers keeping the rest of the other terms are fixed in the problem.
So, the sensitivity analysis is given to understand how decision-makers’ weight affects the final matrix and its ranking. The sensitivity analysis
result for the problem given in the above section is shown respect to the GSEWA and GSEWG operators in Table 1 and Table 2, respectively.

Weights of the decision-makers Final decision matrix Ranking order

< 0.35, 0.45, 0.2 >

 < 0.6312, 0.6308, 0.5680 >
< 0.6989, 0.4439, 0.5352 >
< 0.6837, 0.5685, 0.49 >
< 0.6932, 0.5572, 0.5432 >

 A2 > A4 > A3 > A1

< 0.35, 0.4, 0.25 >

 < 0.6412, 0.62471, 0.5600 >
< 0.6987, 0.4584, 0.5396 >
< 0.6816, 0.5649, 0.4989 >
< 0.6892, 0.5658, 0.5451 >

 A2 > A3 > A4 > A1

< 0.35, 0.36, 0.29 >

 < 0.6490, 0.6199, 0.5538 >
< 0.6984, 0.4703, 0.5432 >
< 0.6799, 0.5620, 0.5061 >
< 0.6860, 0.5729, 0.5466 >

 A2 > A4 > A3 > A1

< 0.3, 0.5, 0.2 >

 < 0.6388, 0.6427, 0.5828 >
< 0.6909, 0.4331, 0.5339 >
< 0.6902, 0.5920, 0.4859 >
< 0.6967, 0.5456, 0.5443 >

 A2 > A4 > A3 > A1

< 0.3, 0.55, 0.15 >

 < 0.6287, 0.6489, 0.5910 >
< 0.6912, 0.4194, 0.5296 >
< 0.6922, 0.5958, 0.4773 >
< 0.7006, 0.5372, 0.5424 >

 A2 > A4 > A3 > A1

Table 1 Sensitivity analysis under GSEWA operator

234 © CPOST 2020



Weights of the decision-makers Final decision matrix Ranking order

< 0.35, 0.45, 0.2 >

 < 0.9910, 0.6308, 0.05263 >
< 0.9893, 0.4439, 0.06192 >
< 0.9920, 0.5685, 0.05885 >
< 0.9922, 0.5572, 0.03185 >

 A2 > A4 > A3 > A1

< 0.35, 0.4, 0.25 >

 < 0.9898, 0.6247, 0.0557 >
< 0.9882, 0.4584, 0.0650 >
< 0.9910, 0.5649, 0.0584 >
< 0.9914, 0.5658, 0.0373 >

 A2 > A4 > A3 > A1

< 0.35, 0.36, 0.29 >

 < 0.9893, 0.6199, 0.0571 >
< 0.9878, 0.4703, 0.0661 >
< 0.9906, 0.5620, 0.0565 >
< 0.9911, 0.5729, 0.0409 >

 A2 > A3 > A4 > A1

< 0.3, 0.5, 0.2 >

 < 0.9913, 0.6427, 0.0511 >
< 0.9899, 0.4331, 0.0605 >
< 0.9923, 0.5920, 0.0648 >
< 0.9925, 0.5456, 0.0334 >

 A2 > A4 > A3 > A1

< 0.3, 0.55, 0.15 >

 < 0.9929, 0.6489, 0.0462 >
< 0.9916, 0.4194, 0.0552 >
< 0.9937, 0.5958, 0.0618 >
< 0.9938, 0.5373, 0.0264 >

 A2 > A4 > A3 > A1

Table 2 Sensitivity analysis under GSEWG operator

5 Conclusion and Future Work

In this paper, we give the generalized spherical fuzzy Einstein weighted averaging and generalized spherical fuzzy Einstein weighted geometric
operators constructed on Einstein sum, product and scalar multiplication for generalized spherical fuzzy sets which are based on Einstein tri-
angular norm and triangular conorm. We also investigate some fundamental properties of these operators and develop a model for generalized
spherical fuzzy Einstein aggregation operators to solve the multi-criteria group decision-making problems. Further, we give a numerical exam-
ple related to the medical treatment choosing to demonstrate that the developed method is suitable and effective for the decision process. For
future work, we propose to develop the methods by considering different types of operators to solve the multi-criteria group decision-making
problems under the generalized spherical fuzzy environment and also we aim to compare all obtained operators in terms of their results.
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