
Advances in the Theory of Nonlinear Analysis and its Applications 4 (2020) No. 4, 321�331.
https://doi.org/10.31197/atnaa.799854
Available online at www.atnaa.org

Research Article

Existence and uniqueness of solutions for fractional

neutral Volterra-Fredholm integro di�erential

equations

Ahmed A. Hamouda

aDepartment of Mathematics, Taiz University, Taiz-Yemen.

Abstract

In this paper, we study the existence and uniqueness of solutions for the neutral Caputo fractional Volterra-
Fredholm integro di�erential equations with fractional integral boundary conditions by means of the Arzela-
Ascoli's theorem, Leray-Schauder nonlinear alternative and the Krasnoselskii �xed point theorem. New
conditions on the nonlinear terms are given to pledge the equivalence. An example is provided to illustrate
the results.
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1. Introduction

The topic fractional calculus can be measured as an old as well as a new subject. Started from some
speculations of Leibniz and Euler, followed by other important mathematicians like Laplace, Fourier, Abel,
Liouville, Riemann and Holmgren [4, 6, 10, 13, 14, 17, 21, 22]. In the fractional calculus the various integral
inequalities plays an important role in the study of qualitative and quantitative properties of solution of
di�erential and integral equations [13, 18].

In recent years, many authors focus on the development of techniques for discussing the solutions of
fractional di�erential and integro-di�erential equations. For instance, we can remember the following works:
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Ibrahim and Momani [11] studied the existence and uniqueness of solutions of a class of fractional order
di�erential equations, Karthikeyan and Trujillo [12] proved existence and uniqueness of solutions for fractional
integro-di�erential equations with boundary value conditions, Bahuguna and Dabas [5] applied the method
of lines to establish the existence and uniqueness of a strong solution for the partial integrodi�erential equa-
tions, Matar [16] deliberated the existence of solutions for nonlocal fractional semilinear integro-di�erential
equations in Banach spaces via Banach �xed point theorem.

In [1] the authors studied a class of nonlinear di�erential equations with multiple fractional derivatives
and Caputo type integro-di�erential boundary conditions

Dα[Dνu(t)− g(t, u(t))] = f(t, u(t)), t ∈ [0, T ],

u(0) = 0, (Dγu)(T ) = λIρu(T ), 0 < α, ν, ρ < 1.

In [2] existence criteria are developed for the solutions of Caputo-Hadamard type fractional neutral
di�erential equations supplemented with Dirichlet boundary conditions

Dα[Dνu(t)− g(t, u(t))] = f(t, u(t)) 0 < α, ν < 1,

u(1) = 0, u(T ) = 0, t ∈ [1, T ].

Ntouyas [19] studied the existence results for the following fractional di�erential equation with fractional
integral boundary condition

cDν
0+u(t) = f(t, u(t)), 1 < ν ≤ 2,

u(0) = 0, u(1) = αIρu(η), α ∈ R, 0 < ρ < 1, 0 < η < 1.

Akiladevi et al. [3] discussed the existence and uniqueness of solutions to the nonlinear neutral fractional
boundary value problem

cDν
0+ [u(t)− g(t, u(t))] = f(t, u(t)), 0 < ν ≤ 1,

u(0) = αIρu(η), α ∈ R, 0 < ρ < 1, 0 < η < 1,

Motivated by the above works, we will study a more general problem of Caputo fractional integro-
di�erential equations which called Caputo fractional neutral Volterra-Fredholm integro-di�erential equations
of the form

cDν
0+ [u(t)− g(t, u(t))] = f(t, u(t),Ku(t), Qu(t)), 0 < ν ≤ 1, (1)

with fractional integral boundary condition

u(0) = αIρu(η), 0 < ρ < 1, 0 < η < 1, (2)

where cDα
0+ is the Caputo's fractional derivative ν, The function g : J×R −→ R is continuously di�erentiable,

f : J × R × R × R −→ R is continuous. Iρ is the Riemann-Liouville fractional integral of order ρ and
α 6= Γ(ρ+1)

ηρ ∈ R, with J := [0, 1], Ω = {(t, s) : 0 ≤ s < t ≤ 1}, and Ku(t) =
∫ t

0 k(t, s, u(s))ds, Qu(t) =∫ 1
0 q(t, s, u(s))ds.

The main objective of the present paper is to study the new existence and uniqueness of solutions of
fractional neutral Volterra-Fredholm integro-di�erential equation in Banach contraction principle.

The rest of the paper is organized as follows: In Sect. 2, some essential notations, de�nitions and Lemmas
related to fractional calculus are recalled. In Sect. 3, the new existence and uniqueness results of the solution
for Caputo fractional neutral Volterra-Fredholm integro-di�erential equation have been proved. In Sect. 4,
an example is provided to illustrate the results. Finally, we will give a report on our paper and a brief
conclusion is given in Sect. 5.
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2. Preliminaries

The mathematical de�nitions of fractional derivative and fractional integration are the subject of several
di�erent approaches. The most frequently used de�nitions of the fractional calculus involves the Riemann-
Liouville fractional derivative, Caputo derivative [7, 8, 9, 13, 15, 18, 20, 21].

De�nition 2.1. [13] (Riemann-Liouville fractional integral). The Riemann-Liouville fractional integral of
order α > 0 of a function u ∈ C([0, T ]) is de�ned as

Jα0+u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds,

where Γ denotes the Gamma function.

De�nition 2.2. [13] (Caputo fractional derivative). The fractional derivative of u(t) in the Caputo sense is
de�ned by

cDα
0+u(t) = Jm−α

0+
Dmu(t)

=


1

Γ(m−α)

∫ t
0 (t− s)m−α−1 ∂

mu(s)
∂sm ds, m− 1 < α < m,

∂mu(t)
∂tm , α = m, m ∈ N,

(3)

where the parameter α is the order of the derivative and is allowed to be real or even complex. In this paper,
only real and positive α will be considered.

Hence, we have the following properties:

1. Jα0+J
vu = Jα+v

0+
u, α, v > 0.

2. Jα0+u
β = Γ(β+1)

Γ(β+α+1)u
β+α,

3. Dα
0+u

β = Γ(β+1)
Γ(β−α+1)u

β−α, α > 0, β > −1.

4. Jα0+D
α
0+u(t) = u(t)− u(a), 0 < α < 1.

5. Jα0+D
α
0+u(t) = u(t)−

∑m−1
k=0 u

(k)(0+) (t−a)k

k! , t > 0.

De�nition 2.3. [13] (Riemann-Liouville fractional derivative). The Riemann Liouville fractional derivative
of order α > 0 is normally de�ned as

Dα
0+u(t) = Dm

0+J
m−α
0+

u(t), m− 1 < α ≤ m, m ∈ N. (4)

Theorem 2.1. [23] (Banach �xed point theorem). Let (S, ‖.‖) be a complete normed space, and let the
mapping F : S −→ S be a contraction mapping. Then F has exactly one �xed point.

Theorem 2.2. [15] (Krasnoselskii �xed point theorem.) Let M be a closed convex and nonempty subset of
a Banach space X. Let A,B be two operators such that:
1. Ax+By ∈M whenever x, y ∈M.
2. A is compact and continuous.
3. B is a contraction mapping.
Then there exists z ∈M such that z = Az +Bz.

Theorem 2.3. [15] (Leray-Schauder nonlinear alternative) Let E be a Banach space, C a closed, convex
subset of E, U an open subset of C and 0 ∈ U. Suppose that F : Ū −→ C is a continuous, compact (that is,
F (Ū) is a relatively compact subset of C) map. Then either
(I) F has a �xed point in Ū or
(II) There is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF (u).
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Lemma 2.1. Let α 6= Γ(ρ+1)
ηρ . Assume that f is continuous function. If u ∈ C(J,X) then u satis�es the

problem

cDν
0+ [u(t)− g(t)] = f(t), 0 < ν ≤ 1, t ∈ [0, 1],

u(0) = αIρu(η),

if and only if u satis�es the integral equation

u(t) =

∫ t

0

(t− s)ν−1

Γ(ν)
f(s)ds− Γ(ρ+ 1)

Γ(ρ+ 1)− αηρ
g(0) + g(t)

+
αΓ(ρ+ 1)

Γ(ρ+ 1)− αηρ
(∫ η

0

(η − s)ρ−1

Γ(ρ)
g(s)ds+

∫ η

0

(η − s)ρ+ν−1

Γ(ρ+ ν)
f(s)ds

)
.

3. Main Results

In this section, we shall give an existence and uniqueness results of Eq. (1), with the condition (2).
Before starting and proving the main results, we introduce the following hypotheses:
(A1) The function g : J × R −→ R is continuously di�erentiable, f : J × R × R × R −→ R is continuous,
and there exist constants L1, L2 > 0, for t ∈ J, ui, vi, yi ∈ R, such that

|f(t, u1, v1, y1)− f(t, u2, v2, y2)| ≤ L1[|u1 − u2|+ |v1 − v2|+ |y1 − y2|]
|g(t, u1)− g(t, u2)| ≤ L2|u1 − u2|.

(A2) The functions k, q : J × J × R −→ R are continuous and there exist constants L4, L5 > 0, such that

|k(t, s, u1)− k(t, s, u2)| ≤ L4|u1 − u2|, t, s ∈ J, u1, u2 ∈ R,

|q(t, s, u1)− q(t, s, u2)| ≤ L5|u1 − u2|, t, s ∈ J, u1, u2 ∈ R.

(A3) Let P1 = L1(1 + L4 + L5)λ1 + L2λ2 < 1. where

λ1 =
1

Γ(ν + 1)
+

αηρ+νΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|Γ(ρ+ ν + 1)
and λ2 =

|Γ(ρ+ 1)− αηρ|+ αηρ

|Γ(ρ+ 1)− αηρ|
.

(A4) For µ1, µ2 ∈ C(J,R), we have

|f(t, u, v, y)| ≤ µ1(t), (t, u, v, y) ∈ J × R× R× R,
|g(t, u)| ≤ µ2(t), (t, u) ∈ J × R.

First, we will state the following axiom lemma.

Lemma 3.1. Let 0 < ν ≤ 1. Assume that f is continuous function. If u ∈ C(J,R) then u satis�es the
problem (1)-(2) if and only if u satis�es the integral equation

u(t) =

∫ t

0

(t− s)ν−1

Γ(ν)
f(s, u(s),Ku(s), Qu(s))ds− Γ(ρ+ 1)

Γ(ρ+ 1)− αηρ
g(0, u(0))

+g(t, u(t)) +
αΓ(ρ+ 1)

Γ(ρ+ 1)− αηρ
(∫ η

0

(η − s)ρ−1

Γ(ρ)
g(s, u(s))ds

+

∫ η

0

(η − s)ρ+ν−1

Γ(ρ+ ν)
f(s, u(s),Ku(s), Qu(s))ds

)
. (5)

Theorem 3.1. Assume f, g, k and q satisfy the assumptions (A1)-(A3). Then the problem (1)-(2) has a
unique solution on J .
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Proof. LetM1 = supt∈J |f(t, 0, 0, 0)|, M2 = supt∈J |g(t, 0)|, M4 = supt,s∈J |k(t, s, 0)|, M5 = supt,s∈J |q(t, s, 0)|
and consider Br = {u ∈ C : ‖u‖ ≤ r}, where r ≥ P2

1−P1
with

p2 = [(M1 + L1M4 + L1M5)λ1 +M2λ2 +
Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
|g(0, u(0))|]

Let C = C(J,R) be the Banach space of all continuous functions from J −→ R endowed with the norm
de�ned by ‖u‖ = sup{|u(t)|, t ∈ J}. In view of Lemma 3.1, we transform (1) as

u = F (u), (6)

where F : C −→ C is given by

(Fu)(t) =

∫ t

0

(t− s)ν−1

Γ(ν)
f(s, u(s),Ku(s), Qu(s))ds− Γ(ρ+ 1)

Γ(ρ+ 1)− αηρ
g(0, u(0))

+g(t, u(t)) +
αΓ(ρ+ 1)

Γ(ρ+ 1)− αηρ
(∫ η

0

(η − s)ρ−1

Γ(ρ)
g(s, u(s))ds

+

∫ η

0

(η − s)ρ+ν−1

Γ(ρ+ ν)
f(s, u(s),Ku(s), Qu(s))ds

)
. (7)

For u ∈ Br, we have

‖(Fu)(t)‖

≤ sup
t∈J

[ ∫ t

0

(t− s)ν−1

Γ(ν)
|f(s, u(s),Ku(s), Qu(s))|ds+

Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
|g(0, u(0))|

+|g(t, u(t))|+ αΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

(∫ η

0

(η − s)ρ−1

Γ(ρ)
|g(s, u(s))|ds

+

∫ η

0

(η − s)ρ+ν−1

Γ(ρ+ ν)
|f(s, u(s),Ku(s), Qu(s))|ds

)]
≤ sup

t∈J

[ ∫ t

0

(t− s)ν−1

Γ(ν)
(|f(s, u(s),Ku(s), Qu(s))− f(s, 0, 0, 0)|+ |f(s, 0, 0, 0)|)ds

+
Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
|g(0, u(0))|+ (|g(t, u(t))− g(t, 0)|+ |g(t, 0)|)

+
αΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

(∫ η

0

(η − s)ρ−1

Γ(ρ)
(|g(s, u(s))− g(s, 0)|+ |g(s, 0)|)ds

+

∫ η

0

(η − s)ρ+ν−1

Γ(ρ+ ν)
(|f(s, u(s),Ku(s), Qu(s))− f(s, 0, 0, 0)|+ |f(s, 0, 0, 0)|)ds

)]
≤ (L1r(1 + L4 + L5) +M1 +M4L1 +M5L1)λ1 + (L2r +M2)λ2

+
Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
|g(0, u(0))|

≤ [L1(1 + L4 + L5)λ1 + L2λ2]r +
[
(M1 +M4L1 +M5L1)λ1 +M2λ2

+
Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
|g(0, u(0))|

]
≤ P1r + P2

≤ r.
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This shows that FBr ⊂ Br. Next, for u, v ∈ C and t ∈ J , we obtain

‖Fu− Fv‖ ≤ sup
t∈J

[ ∫ t

0

(t− s)ν−1

Γ(ν)
|f(s, u(s),Ku(s), Qu(s))− f(s, v(s),Kv(s), Qv(s))|ds

+
Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
|g(t, u(t))− g(t, v(t))|

+
αΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

(∫ η

0

(η − s)ρ−1

Γ(ρ)
|g(s, u(s))− g(s, v(s))|ds

+

∫ η

0

(η − s)ρ+ν−1

Γ(ρ+ ν)
|f(s, u(s),Ku(s), Qu(s))− f(s, v(s),Kv(s), Qv(s))|ds

)]
≤ [L1(1 + L4 + L5)λ1 + L2λ2]|u− v|
≤ P1|u− v|.

Here P1 depends only on the parameters involved in the problem. By assumption (A3), P1 < 1 and therefore
F is a contraction. Hence, by the Banach contraction principle, the problem (1)-(2) has a unique solution
on J .

Now we prove the existence of solutions of the problem (1)-(2) by applying Krasnoselskii's �xed point
theorem.

Theorem 3.2. Assume f, g and h satisfy the assumptions (A1)-(A3). If

L :=
1

|Γ(ρ+ 1)− αηρ|

[
L2[|Γ(ρ+ 1)− αηρ|+ αηρ] +

L1(1 + L4 + L5)αηρ+νΓ(ρ+ 1)

Γ(ρ+ ν + 1)

]
< 1. (8)

Then the problem (1)-(2) has at least one solution on J .

Proof. Let ‖µi‖ = supt∈J |µi|, i = 1, 2 and Br = {u ∈ C : ‖u‖ ≤ r}. Now we decompose F as F1 +F2 on Br,
where

(F1u)(t) =

∫ t

0

(t− s)ν−1

Γ(ν)
f(s, u(s),Ku(s), Qu(s))ds,

(F2u)(t) = − Γ(ρ+ 1)

Γ(ρ+ 1)− αηρ
g(0, u(0)) + g(t, u(t))

+
αΓ(ρ+ 1)

Γ(ρ+ 1)− αηρ
(∫ η

0

(η − s)ρ−1

Γ(ρ)
g(s, u(s))ds

+

∫ η

0

(η − s)ρ+ν−1

Γ(ρ+ ν)
f(s, u(s),Ku(s), Qu(s))ds

)
,

for t ∈ J . Choose

r ≥ ‖µ‖
[ 1

Γ(ν)
+

αηρ+νΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|Γ(ρ+ ν + 1)

+
|Γ(ρ+ 1)− αηρ|+ αηρ

|Γ(ρ+ 1)− αηρ|
+

|Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

]
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For u, v ∈ Br, we �nd that

‖F1u− F2v‖

≤ sup
t∈J

[ ∫ t

0

(t− s)ν−1

Γ(ν)
|f(s, u(s),Ku(s), Qu(s))|ds+

Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
|g(0, v(0))|

+|g(t, v(t))|+ αΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

(∫ η

0

(η − s)ρ−1

Γ(ρ)
|g(s, v(s))|ds

+

∫ η

0

(η − s)ρ+ν−1

Γ(ρ+ ν)
|f(s, v(s),Kv(s), Qv(s))|ds

)]
≤ ‖µ1‖

Γ(ν + 1)
+

Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
|g(0, v(0))|+ ‖µ2‖

+
αΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

( ηρ

Γ(ρ+ 1)
‖µ2‖+

ηρ+ν

Γ(ρ+ ν + 1)
‖µ1‖

)
.

Let µ = max{µ1, g(0, v(0)), µ2}. Then, by simpli�cation, we have

‖F1u− F2v‖ ≤ ‖µ‖
[ 1

Γ(ν + 1)
+

αηρ+νΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|Γ(ρ+ ν + 1)

+
|Γ(ρ+ 1)− αηρ|+ αηρ

|Γ(ρ+ 1)− αηρ|
+

Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

]
≤ r.

Thus F1u+ F2v ∈ Br.
Next we prove that F2 is a contraction.

‖F2u− F2v‖

≤ sup
t∈J

[
|g(t, u(t))− g(t, v(t))|+ αΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

×
(∫ η

0

(η − s)ρ−1

Γ(ρ)
|g(s, u(s))− g(s, v(s))|ds

+

∫ η

0

(η − s)ρ+ν−1

Γ(ρ+ ν)
|f(s, u(s),Ku(s), Qu(s))− f(s, v(s),Kv(s), Qv(s))|ds

)]
≤

[L2(|Γ(ρ+ 1)− αηρ|+ αηρ)

|Γ(ρ+ 1)− αηρ|
+
L1(1 + L4 + L5)αηρ+νΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|Γ(ρ+ ν + 1)

]
|u− v|

≤ L|u− v|.

Hence F2 is a contraction. Continuity of f implies that the operator F1 is continuous. Also F1 is uniformly
bounded on Br as

‖(F1u)(t)‖ ≤ sup
t∈J

[ ∫ t

0

(t− s)ν−1

Γ(ν)
|f(s, u(s),Ku(s), Qu(s))|ds

]
≤ ‖µ1‖

Γ(ν + 1)
.

To prove that the operator F1 is compact, it remains to show that F1 is equicontinuous. For that, let
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f̄ = sup |f(t, u,Ku,Qu)|. Now, for any t1, t2 ∈ J , with t1 < t2 and u ∈ Br, we have

‖(F1u)(t2)− (F1u)(t1)‖

≤ sup
t∈J

[ ∫ t1

0

[(t2 − s)ν−1 − (t1 − s)ν−1]

Γ(ν)
|f(s, u(s),Ku(s), Qu(s))|ds

+

∫ t2

t1

(t2 − s)ν−1

Γ(ν)
|f(s, u(s),Ku(s), Qu(s))|ds

]
≤ f̄

Γ(ν + 1)
[tν2 − tν1 ]

−→ 0 as t2 −→ t1.

Thus F1 is equicontinuous. By Arzela-Ascoli Theorem, F1 is compact. Hence, by the Krasnoselskii �xed
point theorem, there exists a �xed point u ∈ C such that Fu = u which is a solution to the boundary value
problem (1)-(2).

The next result is based on Leray-Schauder nonlinear alternative.

Theorem 3.3. Assume that the following hypotheses hold:
(A4) There exist continuous nondecreasing functions ψ1, ψ2 : [0,∞) −→ [0,∞) and φ1, φ2 ∈ L1(J,R+)
such that, for each (t, u, v, y) ∈ J × R× R× R,
|f(t, u, v, y| ≤ φ1(t)ψ1(‖u‖),
|g(t, u)| ≤ φ2(t)ψ2(‖u‖), (t, u) ∈ J × R.
(A5) There exists a constant M > 0 such that M

N ≥ 1, where

N = ψ(M)
[
Iνφ1(1) +

αΓ(ρ+ 1)Iρ(Iρφ1(η) + φ2(η)

|Γ(ρ+ 1)− αηρ|
+ φ2(1) +

Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

]
.

Then the problem (1)-(2) has at least one solution on J .

Proof. Observe that the operator F : C −→ C de�ned by (7) is continuous. Next we show that F maps
bounded sets into bounded sets in C. For a positive number k, let Bk = {u ∈ C : ‖u‖ ≤ k} be a bounded
ball in C(J,R). Then we have

‖(Fu)(t)‖

≤ sup
t∈J

[ ∫ t

0

(t− s)ν−1

Γ(ν)
|f(s, u(s),Ku(s), Qu(s))|ds+

Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
|g(0, u(0))|

+|g(t, u(t))|+ αΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

(∫ η

0

(η − s)ρ−1

Γ(ρ)
|g(s, u(s))|ds

+

∫ η

0

(η − s)ρ+ν−1

Γ(ρ+ ν)
|f(s, u(s),Ku(s), Qu(s))|ds

)]
≤ ψ1(‖u‖)

∫ 1

0

(1− s)ν−1

Γ(ν)
φ1(s)ds+

Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
|g(0, u(0))|+ φ2(1)ψ2(‖u‖)

+
αΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

(
ψ2(‖u‖)

∫ η

0

(η − s)ρ−1

Γ(ρ)
φ2(s)ds+ ψ1(‖u‖)

∫ η

0

(η − s)ρ+ν−1

Γ(ρ+ ν)
φ1(s)ds

)
≤ ψ1(k)

[
Iνφ1(1) +

αΓ(ρ+ 1)Iρ+νφ1(η)

|Γ(ρ+ 1)− αηρ|

]
+

Γ(ρ+ 1)|g(0, u(0))|
|Γ(ρ+ 1)− αηρ|

+ψ2(k)
[
φ2(1) +

αΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
Iρφ2(η)

]
.
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Choosing ψ(k) = max{ψ1(k), ψ2(k), g(0, u(0))}, we have

‖(Fu)(t)‖ ≤ ψ(k)
[
Iνφ1(1) +

αΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
Iρ(Iνφ1(η) + φ2(η))

+φ2(1) +
Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

]
.

Now, we show that F maps bounded sets into equicontinuous sets in Bk. For that, let t1, t2 ∈ J with t1 < t2.
Then, for u ∈ Bk,

‖(Fu)(t2)− (Fu)(t1)‖

≤
∫ t2

0

(t2 − s)ν−1

Γ(ν)
|f(s, u(s),Ku(s), Qu(s))|ds+ |g(t2, u(t2))|

−
∫ t1

0

(t1 − s)ν−1

Γ(ν)
|f(s, u(s),Ku(s), Qu(s))|ds− |g(t1, u(t1))|

≤ ψ1(k)

∫ t1

0

[(t2 − s)ν−1 − (t1 − s)ν−1

Γ(ν)

]
φ1(s)ds

+|g(t2, u(t2))− g(t1, u(t1))|+ ψ1(k)

∫ t2

t1

(t2 − s)ν−1

Γ(ν)
φ1(s)ds

−→ 0 as t2 −→ t1.

Thus F maps bounded sets into equicontinuous sets in Bk. By Arzela-Ascoli's Theorem, F is completely
continuous. Now let u = λFu where λ ∈ (0, 1). Then, for t ∈ J , we have

u(t) = λ

∫ t

0

(t− s)ν−1

Γ(ν)
f(s, u(s),Ku(s), Qu(s))ds− λΓ(ρ+ 1)

Γ(ρ+ 1)− αηρ
g(0, u(0))

+λg(t, u(t)) +
λαΓ(ρ+ 1)

Γ(ρ+ 1)− αηρ
(∫ η

0

(η − s)ρ−1

Γ(ρ)
g(s, u(s))ds

+

∫ η

0

(η − s)ρ+ν−1

Γ(ρ+ ν)
f(s, u(s),Ku(s), Qu(s))ds

)
.

Then, using the computations of the �rst step, we have

|u(t)| ≤ ψ(‖u‖)
[
Iνφ1(1) +

αΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
Iρ(Iνφ1(η) + φ2(η))

+φ2(1) +
Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

]
.

Consequently

‖u‖ ≤ ψ(‖u‖)
[
Iνφ1(1) +

αΓ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|
Iρ(Iνφ1(η) + φ2(η))

+φ2(1) +
Γ(ρ+ 1)

|Γ(ρ+ 1)− αηρ|

]
.

In view of (A5), there exists M such that ‖u‖ 6= M. Let us set

U = {u ∈ C : ‖u‖ < M}.

Note that the operator F : Ū −→ C is continuous and completely continuous. From the choice of U ,
there is no u ∈ ∂U such that u = λFu for some λ ∈ (0, 1). Consequently, by the nonlinear alternative
of Leray-Schauder theorem, we deduce that F has a �xed point u ∈ Ū which is a solution to the problem
(1)-(2).
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4. An Example

As an application of our results, we consider the following Caputo fractional neutral Volterra-Fredholm
integro di�erential equation

CD
1
2 [u(t)− e−t

26 + et
u(t)

1 + u(t)
] =

1

(t+ 6)2

|u(t)|
1 + |u(t)|

+
1

36

∫ t

0
e−

t
5
u(s)ds

+
1

36

∫ 1

0

e−s

9

|u(s)|
1 + |u(s)|

ds, (9)

with fractional integral boundary condition

u(0) =
√

2I
1
2u(

1

2
), (10)

where

ν = 1
2 , g(t, u(t)) = e−t

26+et
u(t)

1+u(t) , f(t, u(t),Ku(t), Qu(t))

= 1
(t+6)2

|u(t)|
1+|u(t)| + 1

36

∫ t
0 e
− t

5
u(s)ds+ 1

36

∫ 1
0
e−s

9
|u(s)|

1+|u(s)|ds, α =
√

2, ρ = η = 1
2 6=

Γ(ρ+1)
ηρ ,

and

|f(t, u1(t),Ku1(t), Qu1(t))− f(t, u2(t),Ku2(t), Qu2(t))|

≤ 1

36
[|u1 − u2|+ |Hu1 −Hu2|+ |Qu1 −Qu2|],

|g(t, u1)− g(t, u2)| ≤ 1

27
|u1 − u2|,

|k(t, s, u1)− k(t, s, u2)| ≤ 1

5
|u1 − u2|,

|q(t, s, u1)− q(t, s, u2)| ≤ 1

9
|u1 − u2|,

we get the value of P1 = 0.6042799 < 1. All the conditions of the Theorem 3.1 are satis�ed. Hence the
problem (9)-(10) has a unique solution on [0, 1].

5. Conclusion

The main purpose of this paper was to present new existence and uniqueness of solutions by means of the
Krasnoselskii �xed point theorem, Leray-Schauder nonlinear alternative and the Arzela-Ascoli's theorem for
Caputo fractional neutral Volterra-Fredholm integro di�erential equations with fractional integral boundary
conditions. New conditions on the nonlinear terms are given to pledge the equivalence. Moreover, the results
of references [1, 3, 19] appear as a special case of our results.
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