
Int. J. Adv. Eng. Pure Sci. 2021, 33(3): 406-414

DOI: 10.7240/jeps.800056

Corresponding Author: Betül BOZ, Tel: 0 (216) 777 35 34, e-posta: betul.demiroz@marmara.edu.tr

Submitted: 25.09.2020, Revised: 24.05.2021, Accepted: 24.05.2021

RESEARCH ARTICLE / ARAŞTIRMA MAKALESİ

Pool-based Evolutionary Algorithm for the Bin Packing Problem

Kutu Paketleme Problemi için Havuz Tabanlı Evrimsel Algoritma

Tuğba Zeynep YILDIZ1 , Betül BOZ1

1 Computer Engineering Department Marmara University, 34722, Istanbul, Turkey

Abstract

Bin packing problem is one of the most important optimization problems from the literature. In this work, we propose a novel

pool-based evolutionary algorithm for solving the one-dimensional bin packing problem. The algorithm uses the pool-based

crossover operator that aims to increase the search space of the problem and combine and remap method as a local search

technique that aims to improve the quality of the solution by considering underutilized bins in the offspring. In our experimental

study, the performance of the proposed method is compared with six algorithms from the literature using medium and hard

instances in the benchmark problem sets. As a result, the proposed study performs better than the algorithms in the literature

in 13% of medium instances and 80% of hard instances.

Keywords: Bin packing problem, evolutionary algorithms, crossover operator, problem specific operator design.

Öz

Kutu paketleme problemi literatürdeki en önemli optimizasyon problemlerinden biridir. Bu çalışmada, tek boyutlu kutu

paketleme probleminin çözümü için havuz tabanlı evrimsel algoritma öneriyoruz. Algoritma, problemin arama alanını

arttırmayı amaçlayan havuz tabanlı bir çaprazlama operatöründen ve yavru çözümdeki tamamen kullanılmayan kutuları dikkate

alarak çözümün kalitesini iyileştirmeyi amaçlayan birleştirmeyi ve tekrar atamayı sağlayan yerel bir arama tekniğinden

yararlanmaktadır. Deneysel çalışmamızda önerdiğimiz yöntemin performansı, literatürde bulunan altı algoritma ile kıyaslama

problem setlerinde bulunan orta ve zor örnekler kullanılarak karşılaştırılmıştır. Sonuç olarak önerdiğimiz çalışma, orta

örneklerin %13’ünde ve zor örneklerin %80’inde literatürdeki algoritmalardan daha iyi performans göstermektedir.

Anahtar Kelimeler: Kutu paketleme problemi, evrimsel algoritmalar, çaprazlama operatörü, probleme özgü operator tasarımı.

I. INTRODUCTION
Bin packing problem is a well-known optimization problem which can be applied to many real-life problems

including industrial and logistic applications, multiprocessor scheduling and cloud computing. Given a set of items

with different weights and an unlimited number of bins with fixed bin capacity, the objective of the problem is to

pack these items to minimum number of bins such that the total weight of the items assigned to a bin does not

exceed the capacity of the bin. Bin packing problem has various versions such as one-dimensional packing, two-

dimensional packing, three-dimensional packing, regular or irregular packing, packing by cost or packing by

weight. In this study, we consider one dimensional packing by weight and our objective is to minimize the total

number of bins used.

Bin-packing is an NP-Complete [1] problem and many heuristics and meta-heuristics have been proposed for the

solution of the problem. The First Fit algorithm [2], the Best Fit algorithm [3], the Next Fit algorithm [2] and

graph-based algorithm [4] are examples for the heuristic solutions of the problem. A variety of meta heuristics

such as ant colony optimization [5, 6], cuckoo search algorithm [7, 8], firefly algorithm [9] and whale optimization

algorithm [10], genetic algorithms [11, 12], simulated annealing [13] have also been used to solve the problem.

Firefly colony optimization algorithm (FCO) [5] is a greedy metaheuristic using positive feedback to avoid

convergence to low quality solutions. Ant system algorithm (AS) [6] combines ant colony algorithm with a local

search technique. Adaptive Cuckoo Search Algorithm (ACS) [7] combines cuckoo search algorithm with Ranked-

Order-Value (ROV) technique as a decoding mechanism to obtain discrete solutions. Quantum Inspired Cuckoo

Search Algorithm (QICS) [8] defines the solutions using quantum representation based on qubit representation

and uses a novel hybrid quantum measure operation inspired by the first fit heuristic. Firefly algorithm (FA) [9]

uses L´evy flights as a search strategy which enables the algorithm to converge quickly. Improved Lévy-based

whale optimization algorithm (ILWOA) [10] uses Lévy flight for whale movements to improve the exploration

capabilities of whale optimization algorithm. It also uses a logistic chaotic map to switch between exploration and

exploitation. These algorithms are the reference studies used in the experiments.

mailto:betul.demiroz@marmara.edu.tr
https://orcid.org/0000-0002-1697-514X
https://orcid.org/0000-0001-7819-347X

Int. J. Adv. Eng. Pure Sci. 2021, 33(3): 406-414 PBEA for Bin Packing

406

Evolutionary algorithms are heuristic approaches that

can be used to find solutions to NP-Complete problems.

Basically evolutionary algorithms mimic the nature and

are based on the idea of the survival of the fittest. In this

study, we propose a pool-based evolutionary algorithm

(PBEA) for the solution of bin packing problem using

a problem-specific crossover operator and a local

search technique. The main contributions of this study

are: (1) the pool-based crossover operator that aims to

increase the diversity of the solution; (2) the combine

and remap local search technique that aims to increase

the utilization of the bins; (3) intelligent packing by

rearranging items in underutilized bins, therefore

increase performance and decrease bin usage. Our

experimental study indicates that it outperforms related

studies from the literature for medium and hard class

instances.

Our paper is organized as follows: Bin Packing

problem is defined in the next section. In Section III,

the details of the proposed algorithm are given using

convenient examples. The performance of our

algorithm and its comparison with six algorithms from

the literature are shown in Section IV. Finally, we

discuss our contributions and give future directions for

the problem in Section V.

II. PROBLEM DEFINITION
Given n items having different weights, and bin

capacities, the objective of the bin packing problem is

to assign all items to the minimum number of bins in

which the total weight of items assigned to a bin does

not exceed the capacity of the bin. The problem can be

formulated as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝑦) = ∑ 𝑦𝑖

𝑛

𝑖=1

Subject to constraints:

∑ 𝑥𝑖𝑗 = 1, 𝑗 = 1. . 𝑛

𝑛

𝑖=1

∑ 𝑤𝑖

𝑛

𝑖=1

𝑥𝑖𝑗 ≤ 𝐶𝑗 , 𝑗 = 1. . 𝑛

𝑦𝑖 ∈ {0,1}, i = 1. . 𝑛

𝑥𝑖𝑗 ∈ {0,1}, i = 1. . 𝑛, 𝑗 = 1. . 𝑛

The variable yj is used to indicate whether bins are used.

If bin j is used, yj is equal to 1, but if it is empty, yj is

set to 0. If item i is placed to bin j, xij is set to 1,

otherwise 0. The objective of the problem as

represented in Eq.1 is to minimize the total number of

bins used. The first constraint guarantees that each

items is placed to only one bin as shown in Eq.2. The

second constraint ensures that the total weight of the

items assigned to a bin cannot exceed the bin capacity

(Eq.3). In the proposed work, we assume that all bins

have the same capacity C.

III. POOL-BASED EVOLUTIONARY

ALGORITHM
In bin packing problem, an infinite number of bins

having the same capacity and a number of items having

different weights are given. In our study, the grouping

method [14] is used to represent each individual as Si

where Si = {B1, B2,..., Bk}. Each partition Bi includes

the set of items assigned to the bin bi; and k the number

of bins used.

Our evolutionary algorithm starts by generating the

initial population which includes candidate solutions

for the bin packing problem as presented in Algorithm

1 and continues for a predefined number of iterations.

At each iteration, two individuals referred as parent1

and parent2 are selected randomly from the population.

The pool-based crossover operator and the combine and

remap local search technique are applied to these

parents to obtain a new offspring. The crossover

operator tries to increase the search space of the

solution by mixing the items assigned to the bins of the

parents. The local search technique tries to decrease the

total number of bins used in the offspring, so it keeps

the utilized bins and combines and remaps the

underutilized bins. When the local search technique is

completed, the fitness value of the offspring is set to the

total number of bins occupied by the offspring. If the

fitness value of the offspring is better than its parents,

the parent having the worst fitness value is selected for

replacement.

Algorithm 1: Main scheme of the proposed Pool-

based evolutionary algorithm

3.1. Initial Population Generation

The initial population includes a predefined number of

candidate solutions for the bin packing problem. At the

beginning of initial population generation, all

individuals are initialized to contain one bin with a

given capacity. Before each individual is created, the

items are shuffled and are placed to a list. Items are

selected one-by-one from this list and are placed to the

(1)

(2)

(3)

(4)

(5)

Input: Items i, number of iterations iteration, population

size pop_size, bin capacity c

Output: Updated population P

1. P ← initialize_population (s, i, c)

2. For i=0 to iteration do

3. Select two parents S1 and S2 from P randomly

4. Sc ← crossover_operation (S1, S2)

5. Simproved ← local_search (Sc)

6. P ← update_pop ()

7. End

PBEA for Bin Packing Int. J. Adv. Eng. Pure Sci. 2021, 33(3): 406-414

407

first bin of the corresponding individual having enough

capacity. If no such bin exists, then a new bin is created,

and the item is placed to this bin. The available space

of each bin is updated as new items are inserted to the

bins. Once a predefined number of solutions are

obtained, the initial population generation is completed.

3.2. Pool-based Crossover Operator

In this work, we use the Pool-Based Crossover (PBC)

[15,16] that increases the search space while generating

the bins of the offspring. It also includes a pool which

contains the items that has not been assigned to any bin

yet due to size constraints. The details of our crossover

operator are given in Algorithm 2.

Algorithm 2: Pool-based crossover operator.

Input: First parent S1 = {B1
1, B2

1, …, Bk
1}, second parent S2 = {B1

2, B2
2, …, Bk

2}

Output: An offspring S0 = {B1, B2, .., Bk}

1. Create an empty pool Pool := ⦰

2. i=0

3. While there are unselected bins in S1 or S2 do

4. Create ith bin of S0 Bi: Bi := ⦰

5. Set available_space(Bi) := Capacity of bins

6. Select an unselected bin from S1: Bx
1

7. Select an unselected bin from S2: By
2

8. Set Bx
1 and By

2 as selected

9. Remove items in Bx
1 and By

2 from S1 and S2

10. Combine and shuffle items in Bx
1 and By

2 with the items in Pool

11. While there are items in Pool do

12. Select item I from Pool

13. For j=0 to i do

14. If weight(I) <= available_space(Bj) then

15. Remove item I from Pool

16. Place item I to Bj

17. Update Available Space of Bj: available_space(Bj) = available_space(Bj) – weight(I)

18. break

19. End

20. End

21. Update item I: I := the next item in Pool

22. End

23. Increment i: i:= i +1

24. End

25. j=i

26. While there are items in Pool do

27. Select item I from Pool

28. ItemPlaced=false

29. For j to i do

30. If weight(I) <= available_space(Bj) then

31. Remove item I from Pool

32. Place item I to Bj

33. Update Available Space of Bj: available_space(Bj) = available_space(Bj) – weight(I)

34. ItemPlaced=true

35. break

36. End

37. End

38. If not ItemPlaced then

39. Create ith bin of S0 Bi: Bi := ⦰

40. Set available_space(Bi) := Capacity of bins

41. Remove item I from Pool

42. Place item I to Bj

43. Update Available Space of Bj: available_space(Bj) = available_space(Bj) – weight(I)

44. Increment i: i:= i +1

45. End

46. Update item I: I := the next item in Pool

47. End

48. Return offspring S0

Int. J. Adv. Eng. Pure Sci. 2021, 33(3): 406-414 PBEA for Bin Packing

408

Assume that two randomly selected parents represented

as S1 = {B1
1, B2

1, …, Bk
1} and S2 = {B1

2, B2
2, …, Bk

2}

with k bins are the inputs. Since parents have k

partitions, the crossover operation will continue for at

most k steps. The total number of bins in S1 and S2 does

not have to be equal, and the operator will continue

until it selects all items from both parents. Initially, the

offspring with only one bin having an initial free space

equal to the bin capacity and an empty pool is created.

At each step, one bin from S1 and one bin from S2 are

selected randomly. These bins and the items in these

bins are assigned as selected and will not be used by the

crossover operator again. All the items that are present

in the selected bins are combined with the items in the

pool and are shuffled to increase the diversity of the

solutions. The items in the pool are then placed into the

bins of the offspring one by one. For each item x, there

is a back-search operation which visits the bins

currently available in the offspring one by one. Starting

from the first bin B0 to Bi-1, if there is any bin Bj which

has free space that is equal to or greater than the weight

of the item x, than this item is deleted from the pool and

is placed to Bj. If no such bin can be found, item x is

placed (if there is enough space) to Bi that is generated

in the offspring during the current step. Once an item is

placed to one of the bins in the offspring, the free space

of the corresponding bin is also updated. If item x

cannot be placed to any of the bins, then it is kept in the

pool to be placed to one of the bins created in the next

steps.

Figure 1 provides an example of the crossover operator

applied to the given parents. The weights of the items

used in this example are shown in Table 1. The capacity

of the bins is set to 14. Assume that B5
1 and B3

2 are

selected randomly and the items I5 and I1 in these bins

are combined in the pool. The items in the pool are

shuffled and the first bin having free space of 14 is

generated as B0. Since the weight of the first item I5 in

the pool is less than the free space of B0, I5 is deleted

from the pool and is placed to B0 and free space of B0

is updated to 3. The algorithm tries to put the second

item I1 having a weight of 7 to B0, but there is not

enough space to store this item in B0, so it is kept in the

pool.

Table 1. Weights of items used in pool-based

crossover operator example in Figure 1.

In the second step, B0
1 and B4

2 are selected randomly

and the items I2, I7 and I8 in these bins are combined

with the items in the pool. The pool is shuffled again

and B1 having a capacity of 14 is generated. The first

item I1 is placed into the newly generated bin B1 of the

offspring. The free space of B1 is updated to 7. The

weight of the second item I2 in the pool is equal to 3,

with the back-search operation, it is placed to B0 which

makes B0 fully utilized. The algorithm tries to place

items I7 and I8 into B1, but the weights of these items

are greater than the free space available in B1, so they

are kept in the pool. In the third step, B3
1 and B0

2 are

selected randomly and the items I4 and I6 in these bins

are combined with the items in the pool. After the pool

is shuffled, I4 is placed to the newly generated bin B2.

In the last step, B2
1 and B1

2 are selected randomly, and

all items are thrown into the pool. Again, the pool is

shuffled and I3 is placed into B1 by using the back-

search operation, whereas I6 is placed to the newly

generated bin B3.

At the end of this step, all partitions of the parents

become empty, so the crossover operator considers

only the items in the pool. Since a back-search

operation has been performed on all items before, a new

partition B4 is generated to place these items. I0 and I8

is placed to B4 and for the remaining item I7 bin B5 is

created. The crossover operator continues until all

items in the pool are placed into one of the bins.

3.3. Combine and Remap Local Search Technique

At the end of pool-based crossover operator, some bins

in the offspring are fully utilized such as B0 and B4 as

given in Figure 1 so there is no need to touch these

bins. Our local search technique is called Combine and

Remap as it tries to decrease the number of bins used

in the offspring by exchanging information stored in

underutilized bins as shown in Algorithm 3. This

technique considers only the underutilized bins. This

technique allows grouping of the items with lowest

weight into one bin, so it increases the change of

decreasing the total number of bins used in the

solution. It also increases the utilization of some of the

underutilized bins.

Algorithm 3: Combine and remap local search

technique.

Item 0 1 2 3 4 5 6 7 8

Weight 5 7 3 5 12 11 10 11 9

Input: An offspring S0 = {B1, B2, .., Bk}

Output: The offspring S0 = {B1, B2, .., Bk}

8. Create an empty pool Pool := ⦰

9. Find underutilized bins of offspring S0

10. While there are underutilized bins do

11. Merge 2 underutilized bins to create a new

partition which is utilized and add remaining items

to the pool: partition, pool ←

partition_reduction (underutilized bins)

12. End

13. Merge the pools to create new partitions

14. Return offspring S0

PBEA for Bin Packing Int. J. Adv. Eng. Pure Sci. 2021, 33(3): 406-414

409

Figure 1. Pool-based crossover operator applied to the given parents to obtain an offspring.

Local search technique selects underutilized bin pairs

in the offspring and combines the items in these bins

to form new bins. When the items from two bins are

combined, a more intelligent method than shuffling is

used which places the items with the highest weight to

the new bin. The items with the lowest weight are

thrown to the pool to increase the chance of placing

higher number of items into the same bin. The local

search technique is finished when all underutilized

bins are recombined and the items in the bins are

rearranged. Local search technique does not always

guarantee to decrease the number of bins in the

offspring, but it guarantees to increase the utilization

of the underutilized bins which increases the chance to

find a better solution in the next iterations.

Figure 2 is an example local search scenario applied to

the underutilized bins of an offspring. In this example,

actual data taken from HARD0 instance of hard data

sets [17] is used. The weights of the items are divided

by 1000 and rounded to increase readability and are

given in Table 2. The capacity of each bin is 100. This

simple example shows that the local search technique

can decrease the total number of bins used in the

offspring by 1. The bins which have utilization less

than 90% are considered in this phase. The first

underutilized bin pair deleted from the offspring is B11

and B15. The items that have the highest weight in

these bins are I5, I47 and I50 so they are used to generate

the first partition P1. The remaining items I124, I129 and

I186 having lower weights are thrown to the pool.

Likewise, B20 and B21 are combined, P2 is filled with

items I7, I41 and I96 having highest weight. The items

with lower weights are thrown to the pool. P3 and P4

are generated using bin pairs B25 and B32, B47 and B51.

All the underutilized bins have 3 items, so does the

Int. J. Adv. Eng. Pure Sci. 2021, 33(3): 406-414 PBEA for Bin Packing

410

newly generated partitions P1 - P4. Also, the utilization

of the partitions is higher as compared to the selected

bins. All remaining items that have not been placed to

a partition are available in the pool and we know that

the weights of these items are lower, so the pool

increases the chance to generate partitions that hold

more items.

Our algorithm initially selects the items with the

highest weight from the pool. I111, I121 and I124 are

placed to P5 and there is still 22 free space in P5. The

next item with the highest weight is I129 but it has a

weight of 25, so it cannot be placed to this partition.

Our algorithm applies best fit in this case to see if there

is an item in the pool that has a weight equal to the free

space available in the partition. If so, it selects that

item, removes it from the pool and puts it to the

partition. If there is no such item having an equal

weight, then it selects the item which has a lower but

closer weight. I186's weight is 21, so it is placed to P5.

Partitions P6 and P7 are generated using the same

procedure.

The newly generated partitions P5 and P6 are nearly

fully utilized, and all newly generated partitions have 4

items, which decreases the total number of bins in the

offspring by 1. At the end of local search phase, the

newly generated partitions are replaced with the

underutilized bins in the offspring.

Table 2. Weights of items used in combine and remap local search technique example given in Figure 2.

Ii 5 7 19 40 41 47 54 55 57 70 93 96 111 121 124 129 132 134 148 158 159 160 186 190

Wi 35 34 33 32 31 31 30 30 30 29 28 27 26 26 26 25 25 25 24 23 23 23 21 21

Figure 2. Applying combine and remap local search technique to the underutilized partitions of the offspring.

PBEA for Bin Packing Int. J. Adv. Eng. Pure Sci. 2021, 33(3): 406-414

411

IV. EXPERIMENTAL EVALUATION
In this section, two set of tests are provided to measure

the performance of our algorithm using medium and

hard class instances selected from Scholl uniformly

distributed instances [17]. First the performance of our

algorithm is compared with quantum inspired cuckoo

search algorithm (QICS) [8], adaptive cuckoo search

algorithm (ACS) [7], firefly colony optimization

algorithm (FCO) [5], firefly algorithm (FA) [9], ant

system algorithm (AS) [6] and improved Lévy-based

whale optimization algorithm (ILWOA) [10]. The

performance of the algorithms in Table 4 and Table 6

are collected from [10], and the same instances used in

this reference work are selected as medium and hard

instances for the comparison of the algorithms. We also

showed the performance of our algorithm using two

variations of the pool-based crossover operator on hard

class instances. For all the experiments, the population

size and generation size are set to 100 and 500,

respectively. The proposed algorithm is executed 30

times for each instance. Since the crossover operator

and local search technique is always executed, both the

crossover and mutation rate is 1.

The medium class instances contain 50 to 500 items

whose weights are between 10-500. These items should

be assigned to the minimum number of bins with a

capacity of 1000. Table 3 lists the performance of our

algorithm on medium class instances. The best value

denotes the minimum number of bins found by the

algorithm, whereas the average bin value and standard

deviation are calculated using 30 runs. In 9 medium

instances out of 16, our algorithm always uses the same

bin number. PBEA obtains the same bin number in

nearly half of the runs for 6 medium instances, whereas

for 1 instance namely N4W2B1R3, we were able to

obtain the best bin number 103 in 2 out of 30 runs.

The performance of the proposed work is compared

with the algorithms from the literature for the same 16

medium class instances and the results are reported in

Table 4. Best known column represents the best

achievable bin number. The performance of the

algorithms from the literature are collected from [10]

and the best bin value obtained in 30 runs is given as

the performance of PBEA. Our algorithm outperforms

the listed algorithms in 2 instances (N4W2B1R0 and

N4W2B1R3) and obtains the same performance with

ACS and ILWOA in 14 instances. In 9 instances, our

algorithm obtains the best-known bin value. Even if we

have shown results of 16 medium class instances,

indeed there are 240 instances in this class. We tested

our algorithm for all 240 instances, and we are able to

obtain the best-known bin value for 113 instances.

Table 3. Performance of PBEA on medium class

dataset.

Instance N Capacity BEST AVG STD

N1W1B1R2 50 1000 19 19 0

N1W1B1R9 50 1000 17 17 0

N1W1B2R0 50 1000 17 17.73 0.45

N1W1B2R1 50 1000 17 17 0

N1W1B2R3 50 1000 17 17 0

N2W1B1R0 100 1000 34 34.4 0.5

N2W1B1R1 100 1000 35 35.3 0.47

N2W1B1R3 100 1000 35 35.37 0.49

N2W1B1R4 100 1000 34 34.7 0.47

N2W3B3R7 100 1000 13 13 0

N2W4B1R0 100 1000 12 12 0

N4W2B1R0 500 1000 104 104.5 0.51

N4W2B1R3 500 1000 103 103.97 0.18

N4W3B3R7 500 1000 74 74 0

N4W4B1R0 500 1000 57 57 0

N4W4B1R1 500 1000 57 57 0

Table 4. Performance comparison of PBEA with related studies on medium class dataset.

Instance N Capacity Best known QICS ACS FCO FA AS ILWOA PBEA

N1W1B1R2 50 1000 19 20 19 19 20 20 19 19

N1W1B1R9 50 1000 17 18 17 17 17 17 17 17

N1W1B2R0 50 1000 17 18 17 18 18 18 17 17

N1W1B2R1 50 1000 17 17 17 17 17 18 17 17

N1W1B2R3 50 1000 16 17 17 17 17 17 17 17

N2W1B1R0 100 1000 34 36 34 35 35 37 34 34

N2W1B1R1 100 1000 34 37 35 36 36 36 35 35

N2W1B1R3 100 1000 34 37 35 36 36 36 35 35

N2W1B1R4 100 1000 34 37 34 35 35 35 34 34

N2W3B3R7 100 1000 13 13 13 13 13 13 13 13

N2W4B1R0 100 1000 12 12 12 12 12 12 12 12

N4W2B1R0 500 1000 101 109 105 106 106 107 105 104

N4W2B1R3 500 1000 100 108 104 105 105 106 104 103

N4W3B3R7 500 1000 74 74 74 74 74 74 74 74

N4W4B1R0 500 1000 56 58 57 57 57 58 57 57

N4W4B1R1 500 1000 56 58 57 58 58 58 57 57

Int. J. Adv. Eng. Pure Sci. 2021, 33(3): 406-414 PBEA for Bin Packing

412

There are 10 large class instances that contain 200

items. The weights of these items are between 20,000

and 35,0000 and the bin capacity is 100,000. Our

algorithm is executed on each instance 30 times and the

best bin value, the average bin value with its standard

deviation is given in Table 5. The same bin value is

obtained in all of the runs for 4 instances, whereas the

best bin value is obtained only once for HARD4

instance. On the other hand, the best bin value is

obtained in more than half of the runs in the remaining

5 instances.

Table 6 shows the performance comparison of PBEA

with the algorithms from the literature using the hard

class instances. The best result reported in Table 5 is

used as the performance of PBEA. Our algorithm

outperforms the listed algorithms for 8 instances and

gives the same performance with ACS and ILWOA in

2 instances. Even if we are very close to the best-known

bin value for hard instances, unfortunately PBEA was

not able to produce the best-known result.

Finally, the performance of the operators proposed in

our algorithm is evaluated. We have conducted tests on

the hard class instances and reported the best bin value

with the average bin value and standard deviation of the

results obtained in 30 runs in Table 7. There are two

versions of the pool-based crossover operator which

vary in the selection of the items in the pool to be placed

to the bins. First crossover operator sorts all items in the

pool from highest to lowest weight, whereas second

operator shuffles the items in the pool. The first

crossover type uses a sorted list, so it first tries to place

the highest weight items to the bins and then tries the

other items. Generally, it outperforms the second

crossover type because placing heavier items to the bins

first is a smarter decision since there will always be

much space for lighter items as compared to heavier

items. This sorting operation decreases the search space

so when combined with local search, it shows worse

performance as compared to shuffling. The pool-based

crossover operator using shuffle may not be the best

choice when considered alone, but with a combination

of the local search technique, it gives the best results.

Table 5. Performance of PBEA on hard class dataset.

Instance N Capacity BEST AVG STD

HARD0 200 100,000 57 57.37 0.49

HARD1 200 100,000 58 58.04 0.18

HARD2 200 100,000 58 58.37 0.49

HARD3 200 100,000 57 57 0

HARD4 200 100,000 58 58.97 0.18

HARD5 200 100,000 58 58 0

HARD6 200 100,000 58 58.23 0.43

HARD7 200 100,000 57 57 0

HARD8 200 100,000 58 58.2 0.41

HARD9 200 100,000 58 58 0

 Table 6. Performance comparison of PBEA with related studies on hard class dataset.

Instance N Capacity
Best

known
QICS ACS FCO FA AS ILWOA PBEA

HARD0 200 100,000 56 59 58 59 60 59 58 57

HARD1 200 100,000 57 60 59 59 60 60 59 58

HARD2 200 100,000 56 60 59 59 61 60 59 58

HARD3 200 100,000 55 59 58 59 60 59 58 57

HARD4 200 100,000 57 60 59 60 61 60 59 58

HARD5 200 100,000 56 59 58 59 60 59 58 58

HARD6 200 100,000 57 59 59 59 61 60 59 58

HARD7 200 100,000 55 59 58 58 59 59 57 57

HARD8 200 100,000 57 59 59 59 61 60 59 58

HARD9 200 100,000 56 59 59 59 60 59 59 58

PBEA for Bin Packing Int. J. Adv. Eng. Pure Sci. 2021, 33(3): 406-414

413

Table 7. Performance of the operators of PBEA on hard class dataset.

Instance

Crossover Only Crossover + Local Search

Sorted Shuffle Sorted Shuffle

BEST AVG STD BEST AVG STD BEST AVG STD BEST AVG STD

HARD0 59 59.1 0.31 59 59.04 0.18 58 58.07 0.25 57 57.37 0.49

HARD1 60 60 0 60 60 0 58 58.97 0.18 58 58.04 0.18

HARD2 60 60 0 60 60.04 0.18 59 59.23 0.43 58 58.37 0.49

HARD3 59 59 0 59 59 0 57 58.13 0.43 57 57 0

HARD4 60 60 0 60 60.5 0.51 59 59.8 0.41 58 58.97 0.18

HARD5 59 59.17 0.38 59 59.9 0.31 58 58.93 0.25 58 58 0

HARD6 59 59.94 0.25 60 60.1 0.31 59 59 0 58 58.23 0.43

HARD7 58 58.4 0.5 58 58.1 0.31 57 57.17 0.38 57 57 0

HARD8 60 60 0 60 60.14 0.35 59 59 0 58 58.2 0.41

HARD9 59 59.9 0.31 59 59.97 0.18 58 58.67 0.48 58 58 0

V. CONCLUSION AND FUTURE WORK
In this study, we have proposed a novel pool-based

evolutionary algorithm that solves the one-dimensional

bin packing problem. We have designed the pool-based

crossover operator to increase the diversity and the

combine and remap local search technique to increase

the quality of the solution. The experimental study

indicates that our algorithm outperforms six algorithms

from the literature with respect to the total number of

bins used.

The proposed algorithm can be used for the solution of

real world problems such as industrial and logistic

applications, multiprocessor scheduling and cloud

computing that can be modeled using bin packing

problem. Pool-based evolutionary algorithm can also

be applied to two-dimensional or three-dimensional bin

packing problem if the representation of the individuals

is changed properly.

REFERENCES
[1] Garey, M., & Johnson, D. (1990). Computers and

Intractability; A Guide to the Theory of NP-

Completeness. W.H. Freeman Co..

[2] Johnson, DS., Demers, A., Ullman, JD., Garey,

MR., & Graham, RL. (1974). Worst-case

performance bounds for simple one-dimensional

packing algorithms. SIAM Journal on Computing,

3(4), 299–325.

[3] Rhee, WT., & Talagrand, M. (1993). On line bin

packing with items of random size. Mathematics

of Operations Research, 18(2), 438–445.

[4] Sensarma, D., & Sarma, SS. (2014). A novel graph

based algorithm for one dimensional bin packing

problem. Journal of Global Research in

Computer Science, 5(8), 1–4.

[5] Layeb, A., & Benayad, Z. (2014). A novel firefly

algorithm based ant colony optimization for

solving combinatorial optimization problems.

International Journal of Computer Science and

Applications, 2(11), 19–37.

[6] Dorigo, M., Maniezzo, V., & Colorni, A. (1996)

Ant system: optimization by a colony of

cooperating agents. IEEE Trans Syst Man

Cybern Part B (Cybernetics), 26(1), 29–41.

[7] Zendaoui, Z., & Layeb, A. (2016). Adaptive

Cuckoo Search Algorithm for the Bin Packing

Problem. Modelling and Implementation of

Complex Systems, 2, 107–120.

[8] Layeb, A., & Boussalia, S.R. (2012). A Novel

Quantum Inspired Cuckoo Search Algorithm for

Bin Packing Problem. Information Technology

and Computer Science, 2(5), 58–67.

[9] Yang, X.-S. (2009). Firefly Algorithm, L´evy

Flights and Global Optimization. Research and

Development in Intelligent Systems, 2(26), 209–

218.

[10] Abdel-Basset, M., Manogaran, G., Abdel-Fatah,

L., & Mirjalili, S. (2018). An improved nature

inspired meta-heuristic algorithm for 1-D bin

packing problems. Personal and Ubiquitous

Computing, 2(22), 1117-1132.

[11] Falkenauer, E. (1996). A hybrid grouping genetic

algorithm for bin packing. Journal of Heuristics,

2(2), 5–30.

[12] Quiroz-Castellanos, M., Cruz-Reyes, L., Torres-

Jimenez, J., G´omez, S. C., Fraire Huacuja, H., &

Alvim, A. C. F. (2015). A grouping genetic

algorithm with controlled gene transmission for

the bin packing problem. Computers and

Operations Research, 2(55), 52–64.

[13] Kirkpatrick, S., Gelatt, D., & Vecchi, M. P. (1983).

Optimization by Simulated Annealing. Science

2(220), 671–680.

[14] Gen, M., & Cheng, R. (2000). Genetic Algorithms

and Engineering Optimization. John Wiley Sons.

[15] Sungu, G., & Boz, B. (2015). An evolutionary

algorithm for weighted graph coloring problem.

In: Proceedings of the Companion In 2015 Annual

Conference on Genetic and Evolutionary

Computation (GECCO), (pp. 1233–1236). ACM.

Int. J. Adv. Eng. Pure Sci. 2021, 33(3): 406-414 PBEA for Bin Packing

414

[16] Boz, B., & Sungu, G. (2020). Integrated crossover

based evolutionary algorithm for coloring vertex

weighted graphs. IEEE Acess, 8, 126743 –

126759.

[17] Scholl, A., Klein, R., & Jurgens, C. (1997).

BISON: a fast hybrid procedure for exactly

solving the one-dimensional bin packing problem.

Computers and Operations Research, 2(24), 627–

645.

