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Abstract 

Bin packing problem is one of the most important optimization problems from the literature. In this work, we propose a novel 

pool-based evolutionary algorithm for solving the one-dimensional bin packing problem. The algorithm uses the pool-based 

crossover operator that aims to increase the search space of the problem and combine and remap method as a local search 

technique that aims to improve the quality of the solution by considering underutilized bins in the offspring. In our experimental 

study, the performance of the proposed method is compared with six algorithms from the literature using medium and hard 

instances in the benchmark problem sets. As a result, the proposed study performs better than the algorithms in the literature 

in 13% of medium instances and 80% of hard instances. 

Keywords: Bin packing problem, evolutionary algorithms, crossover operator, problem specific operator design. 

 

Öz 

Kutu paketleme problemi literatürdeki en önemli optimizasyon problemlerinden biridir. Bu çalışmada, tek boyutlu kutu 

paketleme probleminin çözümü için havuz tabanlı evrimsel algoritma öneriyoruz. Algoritma, problemin arama alanını 

arttırmayı amaçlayan havuz tabanlı bir çaprazlama operatöründen ve yavru çözümdeki tamamen kullanılmayan kutuları dikkate 

alarak çözümün kalitesini iyileştirmeyi amaçlayan birleştirmeyi ve tekrar atamayı sağlayan yerel bir arama tekniğinden 

yararlanmaktadır. Deneysel çalışmamızda önerdiğimiz yöntemin performansı, literatürde bulunan altı algoritma ile kıyaslama 

problem setlerinde bulunan orta ve zor örnekler kullanılarak karşılaştırılmıştır. Sonuç olarak önerdiğimiz çalışma, orta 

örneklerin %13’ünde ve zor örneklerin %80’inde literatürdeki algoritmalardan daha iyi performans göstermektedir. 

Anahtar Kelimeler: Kutu paketleme problemi, evrimsel algoritmalar, çaprazlama operatörü, probleme özgü operator tasarımı. 

 

I. INTRODUCTION 
Bin packing problem is a well-known optimization problem which can be applied to many real-life problems 

including industrial and logistic applications, multiprocessor scheduling and cloud computing. Given a set of items 

with different weights and an unlimited number of bins with fixed bin capacity, the objective of the problem is to 

pack these items to minimum number of bins such that the total weight of the items assigned to a bin does not 

exceed the capacity of the bin. Bin packing problem has various versions such as one-dimensional packing, two-

dimensional packing, three-dimensional packing, regular or irregular packing, packing by cost or packing by 

weight. In this study, we consider one dimensional packing by weight and our objective is to minimize the total 

number of bins used.  

 

Bin-packing is an NP-Complete [1] problem and many heuristics and meta-heuristics have been proposed for the 

solution of the problem. The First Fit algorithm [2], the Best Fit algorithm [3], the Next Fit algorithm [2] and 

graph-based algorithm [4] are examples for the heuristic solutions of the problem. A variety of meta heuristics 

such as ant colony optimization [5, 6], cuckoo search algorithm [7, 8], firefly algorithm [9] and whale optimization 

algorithm [10], genetic algorithms [11, 12], simulated annealing [13] have also been used to solve the problem.  

 

Firefly colony optimization algorithm (FCO) [5] is a greedy metaheuristic using positive feedback to avoid 

convergence to low quality solutions. Ant system algorithm (AS) [6] combines ant colony algorithm with a local 

search technique. Adaptive Cuckoo Search Algorithm (ACS) [7] combines cuckoo search algorithm with Ranked-

Order-Value (ROV) technique as a decoding mechanism to obtain discrete solutions. Quantum Inspired Cuckoo 

Search Algorithm (QICS) [8] defines the solutions using quantum representation based on qubit representation 

and uses a novel hybrid quantum measure operation inspired by the first fit heuristic. Firefly algorithm (FA) [9] 

uses L´evy flights as a search strategy which enables the algorithm to converge quickly. Improved Lévy-based 

whale optimization algorithm (ILWOA) [10] uses Lévy flight for whale movements to improve the exploration 

capabilities of whale optimization algorithm. It also uses a logistic chaotic map to switch between exploration and 

exploitation. These algorithms are the reference studies used in the experiments.   
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Evolutionary algorithms are heuristic approaches that 

can be used to find solutions to NP-Complete problems. 

Basically evolutionary algorithms mimic the nature and 

are based on the idea of the survival of the fittest. In this 

study, we propose a pool-based evolutionary algorithm 

(PBEA) for the solution of bin packing problem using 

a problem-specific crossover operator and a local 

search technique. The main contributions of this study 

are: (1) the pool-based crossover operator that aims to 

increase the diversity of the solution; (2) the combine 

and remap local search technique that aims to increase 

the utilization of the bins; (3) intelligent packing by 

rearranging items in underutilized bins, therefore 

increase performance and decrease bin usage. Our 

experimental study indicates that it outperforms related 

studies from the literature for medium and hard class 

instances. 

 

Our paper is organized as follows: Bin Packing 

problem is defined in the next section. In Section III, 

the details of the proposed algorithm are given using 

convenient examples. The performance of our 

algorithm and its comparison with six algorithms from 

the literature are shown in Section IV. Finally, we 

discuss our contributions and give future directions for 

the problem in Section V. 

 

II. PROBLEM DEFINITION 
Given n items having different weights, and bin 

capacities, the objective of the bin packing problem is 

to assign all items to the minimum number of bins in 

which the total weight of items assigned to a bin does 

not exceed the capacity of the bin. The problem can be 

formulated as follows:      

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝑦)  =  ∑ 𝑦𝑖

𝑛

𝑖=1

 

 

Subject to constraints: 
 

∑ 𝑥𝑖𝑗 = 1, 𝑗 = 1. . 𝑛

𝑛

𝑖=1

 

 

∑ 𝑤𝑖

𝑛

𝑖=1

𝑥𝑖𝑗 ≤ 𝐶𝑗 , 𝑗 = 1. . 𝑛 

 

𝑦𝑖  ∈ {0,1}, i = 1. . 𝑛 

 

𝑥𝑖𝑗 ∈ {0,1}, i = 1. . 𝑛, 𝑗 = 1. . 𝑛 

 

The variable yj is used to indicate whether bins are used. 

If bin j is used, yj is equal to 1, but if it is empty, yj is 

set to 0. If item i is placed to bin j, xij is set to 1, 

otherwise 0. The objective of the problem as 

represented in Eq.1 is to minimize the total number of 

bins used. The first constraint guarantees that each 

items is placed to only one bin as shown in Eq.2. The 

second constraint ensures that the total weight of the 

items assigned to a bin cannot exceed the bin capacity 

(Eq.3). In the proposed work, we assume that all bins 

have the same capacity C.  

 

III. POOL-BASED EVOLUTIONARY 

ALGORITHM 
In bin packing problem, an infinite number of bins 

having the same capacity and a number of items having 

different weights are given. In our study, the grouping 

method [14] is used to represent each individual as Si 

where Si = {B1, B2,..., Bk}. Each partition Bi includes 

the set of items assigned to the bin bi; and k the number 

of bins used. 

 

Our evolutionary algorithm starts by generating the 

initial population which includes candidate solutions 

for the bin packing problem as presented in Algorithm 

1 and continues for a predefined number of iterations. 

At each iteration, two individuals referred as parent1 

and parent2 are selected randomly from the population. 

The pool-based crossover operator and the combine and 

remap local search technique are applied to these 

parents to obtain a new offspring. The crossover 

operator tries to increase the search space of the 

solution by mixing the items assigned to the bins of the 

parents. The local search technique tries to decrease the 

total number of bins used in the offspring, so it keeps 

the utilized bins and combines and remaps the 

underutilized bins. When the local search technique is 

completed, the fitness value of the offspring is set to the 

total number of bins occupied by the offspring. If the 

fitness value of the offspring is better than its parents, 

the parent having the worst fitness value is selected for 

replacement.  
 

Algorithm 1: Main scheme of the proposed Pool-

based evolutionary algorithm 

 

3.1. Initial Population Generation 

The initial population includes a predefined number of 

candidate solutions for the bin packing problem. At the 

beginning of initial population generation, all 

individuals are initialized to contain one bin with a 

given capacity. Before each individual is created, the 

items are shuffled and are placed to a list. Items are 

selected one-by-one from this list and are placed to the 

(1) 

(2) 

(3) 

(4) 

(5) 

Input:  Items i, number of iterations iteration, population 

size pop_size, bin capacity c 

Output: Updated population P 

1. P ← initialize_population (s, i, c) 

2. For i=0 to iteration do 

3.     Select two parents S1 and S2  from P randomly 

4.     Sc ← crossover_operation (S1,  S2) 

5.     Simproved ← local_search (Sc) 

6.     P ← update_pop () 

7. End 
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first bin of the corresponding individual having enough 

capacity. If no such bin exists, then a new bin is created, 

and the item is placed to this bin. The available space 

of each bin is updated as new items are inserted to the 

bins. Once a predefined number of solutions are 

obtained, the initial population generation is completed.  

 

 

3.2. Pool-based Crossover Operator 

In this work, we use the Pool-Based Crossover (PBC) 

[15,16] that increases the search space while generating 

the bins of the offspring. It also includes a pool which 

contains the items that has not been assigned to any bin 

yet due to size constraints. The details of our crossover 

operator are given in Algorithm 2. 

 

Algorithm 2: Pool-based crossover operator. 

 

 

 

Input: First parent S1 = {B1
1, B2

1, …, Bk
1}, second parent S2 = {B1

2, B2
2, …, Bk

2}   

Output: An offspring S0 = {B1, B2, .., Bk} 

1. Create an empty pool Pool := ⦰ 

2. i=0 

3. While there are unselected bins in S1 or S2 do 

4.      Create ith bin of S0 Bi: Bi := ⦰ 

5.      Set available_space(Bi) := Capacity of bins 

6.      Select an unselected bin from S1: Bx
1  

7.      Select an unselected bin from S2: By
2 

8.         Set Bx
1 and By

2 as selected 

9.      Remove items in Bx
1 and By

2 from S1 and S2 

10.         Combine and shuffle items in Bx
1 and By

2 with the items in Pool 

11.      While there are items in Pool do 

12.             Select item I from Pool 

13.             For j=0 to i do 

14.                   If weight(I) <= available_space(Bj) then 

15.                         Remove item I from Pool 

16.                         Place item I to Bj 

17.                         Update Available Space of Bj: available_space(Bj) = available_space(Bj) – weight(I)  

18.                         break 

19.                   End         

20.             End 

21.             Update item I: I := the next item in Pool 

22.       End 

23.       Increment i: i:= i +1 

24.   End 

25.   j=i 

26.   While there are items in Pool do 

27.        Select item I from Pool 

28.        ItemPlaced=false 

29.        For j to i do 

30.              If weight(I) <= available_space(Bj) then 

31.                    Remove item I from Pool 

32.                    Place item I to Bj 

33.                    Update Available Space of Bj: available_space(Bj) = available_space(Bj) – weight(I) 

34.                    ItemPlaced=true   

35.                    break 

36.              End         

37.        End 

38.        If not ItemPlaced then 

39.             Create ith bin of S0 Bi: Bi := ⦰ 

40.               Set available_space(Bi) := Capacity of bins 

41.             Remove item I from Pool 

42.             Place item I to Bj 

43.             Update Available Space of Bj: available_space(Bj) = available_space(Bj) – weight(I) 

44.             Increment i: i:= i +1 

45.        End 

46.        Update item I: I := the next item in Pool 

47.  End 

48. Return offspring S0 
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Assume that two randomly selected parents represented 

as S1 = {B1
1, B2

1, …, Bk
1} and S2 = {B1

2, B2
2, …, Bk

2} 

with k bins are the inputs. Since parents have k 

partitions, the crossover operation will continue for at 

most k steps. The total number of bins in S1 and S2 does 

not have to be equal, and the operator will continue 

until it selects all items from both parents. Initially, the 

offspring with only one bin having an initial free space 

equal to the bin capacity and an empty pool is created. 

 

At each step, one bin from S1 and one bin from S2 are 

selected randomly. These bins and the items in these 

bins are assigned as selected and will not be used by the 

crossover operator again. All the items that are present 

in the selected bins are combined with the items in the 

pool and are shuffled to increase the diversity of the 

solutions. The items in the pool are then placed into the 

bins of the offspring one by one. For each item x, there 

is a back-search operation which visits the bins 

currently available in the offspring one by one. Starting 

from the first bin B0 to Bi-1, if there is any bin Bj which 

has free space that is equal to or greater than the weight 

of the item x, than this item is deleted from the pool and 

is placed to Bj. If no such bin can be found, item x is 

placed (if there is enough space) to Bi that is generated 

in the offspring during the current step. Once an item is 

placed to one of the bins in the offspring, the free space 

of the corresponding bin is also updated. If item x 

cannot be placed to any of the bins, then it is kept in the 

pool to be placed to one of the bins created in the next 

steps. 

 

Figure 1 provides an example of the crossover operator 

applied to the given parents. The weights of the items 

used in this example are shown in Table 1. The capacity 

of the bins is set to 14. Assume that B5
1 and B3

2 are 

selected randomly and the items I5 and I1 in these bins 

are combined in the pool. The items in the pool are 

shuffled and the first bin having free space of 14 is 

generated as B0. Since the weight of the first item I5 in 

the pool is less than the free space of B0, I5 is deleted 

from the pool and is placed to B0 and free space of B0 

is updated to 3. The algorithm tries to put the second 

item I1 having a weight of 7 to B0, but there is not 

enough space to store this item in B0, so it is kept in the 

pool.  

 

Table 1. Weights of items used in pool-based 

crossover operator example in Figure 1. 

 

In the second step, B0
1 and B4

2 are selected randomly 

and the items I2, I7 and I8 in these bins are combined 

with the items in the pool. The pool is shuffled again 

and B1 having a capacity of 14 is generated. The first 

item I1 is placed into the newly generated bin B1 of the 

offspring. The free space of B1 is updated to 7. The 

weight of the second item I2 in the pool is equal to 3, 

with the back-search operation, it is placed to B0 which 

makes B0 fully utilized. The algorithm tries to place 

items I7 and I8 into B1, but the weights of these items 

are greater than the free space available in B1, so they 

are kept in the pool. In the third step, B3
1 and B0

2 are 

selected randomly and the items I4 and I6 in these bins 

are combined with the items in the pool. After the pool 

is shuffled, I4 is placed to the newly generated bin B2. 

In the last step, B2
1 and B1

2 are selected randomly, and 

all items are thrown into the pool. Again, the pool is 

shuffled and I3 is placed into B1 by using the back-

search operation, whereas I6 is placed to the newly 

generated bin B3. 

 

At the end of this step, all partitions of the parents 

become empty, so the crossover operator considers 

only the items in the pool. Since a back-search 

operation has been performed on all items before, a new 

partition B4 is generated to place these items. I0 and I8 

is placed to B4 and for the remaining item I7 bin B5 is 

created. The crossover operator continues until all 

items in the pool are placed into one of the bins. 

 

3.3. Combine and Remap Local Search Technique 

At the end of pool-based crossover operator, some bins 

in the offspring are fully utilized such as B0 and B4 as 

given in Figure 1 so there is no need to touch these 

bins. Our local search technique is called Combine and 

Remap as it tries to decrease the number of bins used 

in the offspring by exchanging information stored in 

underutilized bins as shown in Algorithm 3. This 

technique considers only the underutilized bins. This 

technique allows grouping of the items with lowest 

weight into one bin, so it increases the change of 

decreasing the total number of bins used in the 

solution. It also increases the utilization of some of the 

underutilized bins.  

 

Algorithm 3: Combine and remap local search 

technique. 

 

Item 0 1 2 3 4 5 6 7 8 

Weight 5 7 3 5 12 11 10 11 9 

Input:  An offspring S0 = {B1, B2, .., Bk} 

Output: The offspring S0 = {B1, B2, .., Bk} 

8. Create an empty pool Pool := ⦰ 

9. Find underutilized bins of offspring S0 

10. While there are underutilized bins do 

11.      Merge 2 underutilized bins to create a new 

partition which is utilized and add remaining items 

to the                        pool: partition, pool ← 

partition_reduction (underutilized bins) 

12. End 

13. Merge the pools to create new partitions 

14. Return offspring S0 
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Figure 1. Pool-based crossover operator applied to the given parents to obtain an offspring. 

 

Local search technique selects underutilized bin pairs 

in the offspring and combines the items in these bins 

to form new bins. When the items from two bins are 

combined, a more intelligent method than shuffling is 

used which places the items with the highest weight to 

the new bin. The items with the lowest weight are 

thrown to the pool to increase the chance of placing 

higher number of items into the same bin. The local 

search technique is finished when all underutilized 

bins are recombined and the items in the bins are 

rearranged. Local search technique does not always 

guarantee to decrease the number of bins in the 

offspring, but it guarantees to increase the utilization 

of the underutilized bins which increases the chance to 

find a better solution in the next iterations. 

 

Figure 2 is an example local search scenario applied to 

the underutilized bins of an offspring. In this example, 

actual data taken from HARD0 instance of hard data 

sets [17] is used. The weights of the items are divided 

by 1000 and rounded to increase readability and are 

given in Table 2. The capacity of each bin is 100. This 

simple example shows that the local search technique 

can decrease the total number of bins used in the 

offspring by 1. The bins which have utilization less 

than 90% are considered in this phase. The first 

underutilized bin pair deleted from the offspring is B11 

and B15. The items that have the highest weight in 

these bins are I5, I47 and I50 so they are used to generate 

the first partition P1. The remaining items I124, I129 and 

I186 having lower weights are thrown to the pool.  

Likewise, B20 and B21 are combined, P2 is filled with 

items I7, I41 and I96 having highest weight. The items 

with lower weights are thrown to the pool. P3 and P4 

are generated using bin pairs B25 and B32, B47 and B51. 

All the underutilized bins have 3 items, so does the 
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newly generated partitions P1 - P4. Also, the utilization 

of the partitions is higher as compared to the selected 

bins. All remaining items that have not been placed to 

a partition are available in the pool and we know that 

the weights of these items are lower, so the pool 

increases the chance to generate partitions that hold 

more items.  

 

Our algorithm initially selects the items with the 

highest weight from the pool. I111, I121 and I124 are 

placed to P5 and there is still 22 free space in P5. The 

next item with the highest weight is I129 but it has a 

weight of 25, so it cannot be placed to this partition. 

Our algorithm applies best fit in this case to see if there 

is an item in the pool that has a weight equal to the free 

space available in the partition. If so, it selects that 

item, removes it from the pool and puts it to the 

partition. If there is no such item having an equal 

weight, then it selects the item which has a lower but 

closer weight. I186's weight is 21, so it is placed to P5. 

Partitions P6 and P7 are generated using the same 

procedure. 

 

The newly generated partitions P5 and P6 are nearly 

fully utilized, and all newly generated partitions have 4 

items, which decreases the total number of bins in the 

offspring by 1. At the end of local search phase, the 

newly generated partitions are replaced with the 

underutilized bins in the offspring. 

 

 
Table 2. Weights of items used in combine and remap local search technique example given in Figure 2. 

Ii 5 7 19 40 41 47 54 55 57 70 93 96 111 121 124 129 132 134 148 158 159 160 186 190 

Wi 35 34 33 32 31 31 30 30 30 29 28 27 26 26 26 25 25 25 24 23 23 23 21 21 

 

 
Figure 2. Applying combine and remap local search technique to the underutilized partitions of the offspring. 
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IV. EXPERIMENTAL EVALUATION  
In this section, two set of tests are provided to measure 

the performance of our algorithm using medium and 

hard class instances selected from Scholl uniformly 

distributed instances [17]. First the performance of our 

algorithm is compared with quantum inspired cuckoo 

search algorithm (QICS) [8], adaptive cuckoo search 

algorithm (ACS) [7], firefly colony optimization 

algorithm (FCO) [5], firefly algorithm (FA) [9], ant 

system algorithm (AS) [6] and improved Lévy-based 

whale optimization algorithm (ILWOA) [10]. The 

performance of the algorithms in Table 4 and Table 6 

are collected from [10], and the same instances used in 

this reference work are selected as medium and hard 

instances for the comparison of the algorithms. We also 

showed the performance of our algorithm using two 

variations of the pool-based crossover operator on hard 

class instances. For all the experiments, the population 

size and generation size are set to 100 and 500, 

respectively. The proposed algorithm is executed 30 

times for each instance. Since the crossover operator 

and local search technique is always executed, both the 

crossover and mutation rate is 1.  
 

The medium class instances contain 50 to 500 items 

whose weights are between 10-500. These items should 

be assigned to the minimum number of bins with a 

capacity of 1000. Table 3 lists the performance of our 

algorithm on medium class instances. The best value 

denotes the minimum number of bins found by the 

algorithm, whereas the average bin value and standard 

deviation are calculated using 30 runs. In 9 medium 

instances out of 16, our algorithm always uses the same 

bin number. PBEA obtains the same bin number in 

nearly half of the runs for 6 medium instances, whereas 

for 1 instance namely N4W2B1R3, we were able to 

obtain the best bin number 103 in 2 out of 30 runs.  
 

The performance of the proposed work is compared 

with the algorithms from the literature for the same 16 

medium class instances and the results are reported in 

Table 4. Best known column represents the best 

achievable bin number. The performance of the 

algorithms from the literature are collected from [10] 

and the best bin value obtained in 30 runs is given as 

the performance of PBEA. Our algorithm outperforms 

the listed algorithms in 2 instances (N4W2B1R0 and 

N4W2B1R3) and obtains the same performance with 

ACS and ILWOA in 14 instances. In 9 instances, our 

algorithm obtains the best-known bin value. Even if we 

have shown results of 16 medium class instances, 

indeed there are 240 instances in this class. We tested 

our algorithm for all 240 instances, and we are able to 

obtain the best-known bin value for 113 instances. 
 

Table 3. Performance of PBEA on medium class 

dataset. 

Instance N Capacity BEST AVG STD 

N1W1B1R2 50 1000 19 19 0 

N1W1B1R9 50 1000 17 17 0 

N1W1B2R0 50 1000 17 17.73 0.45 

N1W1B2R1 50 1000 17 17 0 

N1W1B2R3 50 1000 17 17 0 

N2W1B1R0 100 1000 34 34.4 0.5 

N2W1B1R1 100 1000 35 35.3 0.47 

N2W1B1R3 100 1000 35 35.37 0.49 

N2W1B1R4 100 1000 34 34.7 0.47 

N2W3B3R7 100 1000 13 13 0 

N2W4B1R0 100 1000 12 12 0 

N4W2B1R0 500 1000 104 104.5 0.51 

N4W2B1R3 500 1000 103 103.97 0.18 

N4W3B3R7 500 1000 74 74 0 

N4W4B1R0 500 1000 57 57 0 

N4W4B1R1 500 1000 57 57 0 

Table 4. Performance comparison of PBEA with related studies on medium class dataset. 

Instance N Capacity Best known QICS ACS FCO FA AS ILWOA PBEA 

N1W1B1R2 50 1000 19 20 19 19 20 20 19 19 

N1W1B1R9 50 1000 17 18 17 17 17 17 17 17 

N1W1B2R0 50 1000 17 18 17 18 18 18 17 17 

N1W1B2R1 50 1000 17 17 17 17 17 18 17 17 

N1W1B2R3 50 1000 16 17 17 17 17 17 17 17 

N2W1B1R0 100 1000 34 36 34 35 35 37 34 34 

N2W1B1R1 100 1000 34 37 35 36 36 36 35 35 

N2W1B1R3 100 1000 34 37 35 36 36 36 35 35 

N2W1B1R4 100 1000 34 37 34 35 35 35 34 34 

N2W3B3R7 100 1000 13 13 13 13 13 13 13 13 

N2W4B1R0 100 1000 12 12 12 12 12 12 12 12 

N4W2B1R0 500 1000 101 109 105 106 106 107 105 104 

N4W2B1R3 500 1000 100 108 104 105 105 106 104 103 

N4W3B3R7 500 1000 74 74 74 74 74 74 74 74 

N4W4B1R0 500 1000 56 58 57 57 57 58 57 57 

N4W4B1R1 500 1000 56 58 57 58 58 58 57 57 
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There are 10 large class instances that contain 200 

items. The weights of these items are between 20,000 

and 35,0000 and the bin capacity is 100,000. Our 

algorithm is executed on each instance 30 times and the 

best bin value, the average bin value with its standard 

deviation is given in Table 5. The same bin value is 

obtained in all of the runs for 4 instances, whereas the 

best bin value is obtained only once for HARD4 

instance. On the other hand, the best bin value is 

obtained in more than half of the runs in the remaining 

5 instances.  

 

Table 6 shows the performance comparison of PBEA 

with the algorithms from the literature using the hard 

class instances. The best result reported in Table 5 is 

used as the performance of PBEA. Our algorithm 

outperforms the listed algorithms for 8 instances and 

gives the same performance with ACS and ILWOA in 

2 instances. Even if we are very close to the best-known 

bin value for hard instances, unfortunately PBEA was 

not able to produce the best-known result. 

 

Finally, the performance of the operators proposed in 

our algorithm is evaluated. We have conducted tests on 

the hard class instances and reported the best bin value 

with the average bin value and standard deviation of the 

results obtained in 30 runs in Table 7. There are two 

versions of the pool-based crossover operator which 

vary in the selection of the items in the pool to be placed 

to the bins. First crossover operator sorts all items in the 

pool from highest to lowest weight, whereas second 

operator shuffles the items in the pool. The first 

crossover type uses a sorted list, so it first tries to place 

the highest weight items to the bins and then tries the 

other items. Generally, it outperforms the second 

crossover type because placing heavier items to the bins 

first is a smarter decision since there will always be 

much space for lighter items as compared to heavier 

items. This sorting operation decreases the search space 

so when combined with local search, it shows worse 

performance as compared to shuffling. The pool-based 

crossover operator using shuffle may not be the best 

choice when considered alone, but with a combination 

of the local search technique, it gives the best results. 

 

Table 5. Performance of PBEA on hard class dataset. 

Instance N Capacity BEST AVG STD 

HARD0 200 100,000 57 57.37 0.49 

HARD1 200 100,000 58 58.04 0.18 

HARD2 200 100,000 58 58.37 0.49 

HARD3 200 100,000 57 57 0 

HARD4 200 100,000 58 58.97 0.18 

HARD5 200 100,000 58 58 0 

HARD6 200 100,000 58 58.23 0.43 

HARD7 200 100,000 57 57 0 

HARD8 200 100,000 58 58.2 0.41 

HARD9 200 100,000 58 58 0 

 

 

 Table 6. Performance comparison of PBEA with related studies on hard class dataset. 

Instance N Capacity 
Best 

known 
QICS ACS FCO FA AS ILWOA PBEA 

HARD0 200 100,000 56 59 58 59 60 59 58 57 

HARD1 200 100,000 57 60 59 59 60 60 59 58 

HARD2 200 100,000 56 60 59 59 61 60 59 58 

HARD3 200 100,000 55 59 58 59 60 59 58 57 

HARD4 200 100,000 57 60 59 60 61 60 59 58 

HARD5 200 100,000 56 59 58 59 60 59 58 58 

HARD6 200 100,000 57 59 59 59 61 60 59 58 

HARD7 200 100,000 55 59 58 58 59 59 57 57 

HARD8 200 100,000 57 59 59 59 61 60 59 58 

HARD9 200 100,000 56 59 59 59 60 59 59 58 
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Table 7. Performance of the operators of PBEA on hard class dataset. 

Instance  

Crossover Only Crossover + Local Search 

Sorted Shuffle Sorted Shuffle 

BEST AVG STD BEST AVG STD BEST AVG STD BEST AVG STD 

HARD0 59 59.1 0.31 59 59.04 0.18 58 58.07 0.25 57 57.37 0.49 

HARD1 60 60 0 60 60 0 58 58.97 0.18 58 58.04 0.18 

HARD2 60 60 0 60 60.04 0.18 59 59.23 0.43 58 58.37 0.49 

HARD3 59 59 0 59 59 0 57 58.13 0.43 57 57 0 

HARD4 60 60 0 60 60.5 0.51 59 59.8 0.41 58 58.97 0.18 

HARD5 59 59.17 0.38 59 59.9 0.31 58 58.93 0.25 58 58 0 

HARD6 59 59.94 0.25 60 60.1 0.31 59 59 0 58 58.23 0.43 

HARD7 58 58.4 0.5 58 58.1 0.31 57 57.17 0.38 57 57 0 

HARD8 60 60 0 60 60.14 0.35 59 59 0 58 58.2 0.41 

HARD9 59 59.9 0.31 59 59.97 0.18 58 58.67 0.48 58 58 0 

 

V. CONCLUSION AND FUTURE WORK 
In this study, we have proposed a novel pool-based 

evolutionary algorithm that solves the one-dimensional 

bin packing problem. We have designed the pool-based 

crossover operator to increase the diversity and the 

combine and remap local search technique to increase 

the quality of the solution. The experimental study 

indicates that our algorithm outperforms six algorithms 

from the literature with respect to the total number of 

bins used. 
 

The proposed algorithm can be used for the solution of 

real world problems such as industrial and logistic 

applications, multiprocessor scheduling and cloud 

computing that can be modeled using bin packing 

problem. Pool-based evolutionary algorithm can also 

be applied to two-dimensional or three-dimensional bin 

packing problem if the representation of the individuals 

is changed properly. 
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