
Fundamental Journal of Mathematics and Applications, 3 (2) (2020) 175-184

Research Article

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/fujma

ISSN: 2645-8845

doi: 10.33401/fujma.800222

Almost Para-Contact Metric Structures on 5-dimensional
Nilpotent Lie Algebras
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Abstract

In this manuscript, almost para-contact metric structures on 5 dimensional nilpotent Lie
algebras are studied. Some examples of para-Sasakian and para-contact structures on
five-dimensional nilpotent Lie algebras are given.

1. Introduction

Almost paracontact structures were first studied by [1] and after the work of Zamkovoy in [2], many authors have made
contribution. For recent studies, see [3]-[8]. In [9], almost paracontact metric structures were classified into 212 classes taking
into consideration the Levi-Civita covariant derivative of the fundamental 2-form of the structure. In this work, we study
almost paracontact metric structures on 5-dimensional nilpotent Lie algebras.
In the literature, there are many researches on five dimensional Lie algebras equipped with an almost contact metric structure.
Andrada et al., studied Sasakian structures on five dimensional Lie algebras [10]. Calvaruso and Fino introduced an approach
on five dimensional K-contact Lie algebras [11]. Nilpotent Lie algebras having dimension 5 were classified in [12]. According
to this classification, we examined the Lie algebras equipped with quasi-Sasakian structures in [13]. Also in [14], we studied
some certain classes, such as α− Sasakian, β− Kenmotsu, cosymplectic, nearly cosymplectic, on five dimensional nilpotent
Lie algebras and obtained some results on the corresponding Lie groups. This paper is organised in a similar vein with almost
paracontact metric structure. Under the light of the classifications given in [9] and [12], we investigate the existence of left
invariant para-cosymplectic, nearly para-cosymplectic, α-para-Sasakian, β -para-Kenmotsu and paracontact structures on 5
dimensional nilpotent Lie algebras.

2. Preliminaries

A 2n+1 dimensional differentiable manifold M has an almost paracontact structure (φ ,ξ ,η), if it has an endomorphism φ , a
vector field ξ and a 1-form η such that

φ
2 = I−η⊗ξ , η(ξ ) = 1,φ(ξ ) = 0,
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there exists a disribution D : p ∈M −→ Dp = Kerη .

An almost paracontact manifold is one which has an almost paracontact structure and if in addition M has a semi-Riemannian
metric g satisfying

g(φ(X),φ(Y )) =−g(X ,Y )+η(X)η(Y )

for all vector fields X ,Y , then M is called an almost paracontact metric manifold with an almost paracontact metric structure
and a compatible metric g. The 2-form

Φ(X ,Y ) = g(φ(X),Y )

for all X ,Y ∈ X(M), where X(M) denotes the set of smooth vector fields on M, is defined to be the fundamental 2-form of M.
In [2], a classification of almost paracontact metric manifolds was obtained by using the covariant derivative of Φ.

In this work we focus on following almost paracontact structures.

Let M be a differentiable manifold with an almost paracontact metric structure (φ ,ξ ,η ,g) and the fundamental 2-form Φ.

(φ ,ξ ,η ,g) is said to be

• para-cosymplectic if ∇X Φ(Y,Z) = 0,
• nearly para-cosymplectic if ∇X Φ(X ,Y ) = 0, or equivalently, (∇X φ)(Y )+(∇Y φ)(X) = 0,
• α-para-Sasakian if ∇X φ(Y ) = α(g(X ,Y )ξ −η(Y )X) for a constant α ,
• β -para-Kenmotsu if ∇X φ(Y ) = β (g(X ,φ(Y ))ξ +η(Y )φ(X)) for a constant β ,
• α-paracontact if Φ = αdη , where dη is the exterior derivative of η and α is a constant,
• paracontact if Φ = dη

for all vector fields X , Y , Z on M.

An almost paracontact metric structure (φ ,ξ ,η ,g) on a connected Lie group G uniquely induces an almost paracontact metric
structure (φ ,ξ ,η ,g) on the corresponding Lie algebra g.

In this manuscript, we investigate almost paracontact metric structures on 5-dimensional nilpotent Lie algebras. Nilpotent Lie
algebras with dimensions≤ 5 were classified in [12], see also [15, 16]. These are algebras denoted by gi with the corresponding
basis {e1, . . . ,e5} and non-zero brackets:

g1 : [e1,e2] = e5, [e3,e4] = e5

g2 : [e1,e2] = e3, [e1,e3] = e5, [e2,e4] = e5

g3 : [e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5, [e2,e3] = e5

g4 : [e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5

g5 : [e1,e2] = e4, [e1,e3] = e5

g6 : [e1,e2] = e3, [e1,e3] = e4, [e2,e3] = e5

3. Almost paracontact metric structures on gi

Let (φ ,ξ ,η ,g) be a left invariant a.p.c.m.s. (almost paracontact metric structure) on a connected Lie group G with corresponding
Lie algebra gi. We use the same notation for the corresponding a.p.c.m.s. on gi.

We study each algebra gi seperately:

The algebra g1: Consider the basis {e1, . . . ,e5} with non-zero brackets

[e1,e2] = e5, [e3,e4] = e5.

• There is no para-cosymplectic structure on g1.
To see this, we show that g1 does not have a non-zero parallel vector field. Let ξ = ∑aiei be a parallel vector field on g1.
Then for all basis elements, we have g(∇eiξ ,e j) = 0. By Kozsul’s formula,

2g(∇e1ξ ,e2) =−g(e1, [ξ ,e2])+g(ξ , [e2,e1]+g(e2, [e1,ξ ])) =−a5g(e5,e5) = 0,

implying a5 = 0. Similarly, 2g(∇e1ξ ,e5) = a2g(e5,e5) = 0 gives a2 = 0, 2g(∇e2ξ ,e5) =−a1g(e5,e5) = 0 yields a1 = 0.
From the equation 2g(∇e3ξ ,e5) = a4g(e5,e5) = 0, we get a4 = 0 and 2g(∇e4ξ ,e5) = −a3g(e5,e5) = 0 gives a3 = 0.
Thus, a vector field ξ = ∑aiei is parallel if and only if ai = 0. Since for a para-cosymplectic structure the characteristic
vector field is parallel, there is no para-cosymplectic structure on g1.
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Similarly, there are no nonzero parallel vector fields and no para-cosymplectic structures on remaining Lie algebras gi.
Now we calculate covariant derivatives of basis elements as follows:

∇e1e2 = ∑εig(∇e1e2,ei)ei, where εi = g(ei,ei)

We write g(∇e1e2,ei) by Kozsul’s formula. The nonzero covariant derivatives are:

∇e1e2 =
1
2

e5, ∇e1e5 =−
1
2

ε2ε5e2,

∇e2e1 =−
1
2

e5, ∇e2e5 =
1
2

ε1ε5e1,

∇e3e4 =
1
2

e5, ∇e3e5 =−
1
2

ε4ε5e4,

∇e4e3 =−
1
2

e5, ∇e4e5 =
1
2

ε3ε5e3,

∇e5e1 =−
1
2

ε2ε5e2, ∇e5e2 =
1
2

ε1ε5e1, ∇e5e3 =−
1
2

ε4ε5e4, ∇e5e4 =
1
2

ε3ε5e3

• There is no nearly para-cosymplectic structure on g1.
Assume that (φ ,ξ ,η ,g) is a nearly para-cosymplectic structure. Then we have ∇eiφ(e j)+∇e j φ(ei) = 0.
Let

φ(e1) = a1e1 +a2e2 +a3e3 +a4e4 +a5e5,

φ(e2) = b1e1 +b2e2 +b3e3 +b4e4 +b5e5,

φ(e3) = c1e1 + c2e2 + c3e3 + c4e4 + c5e5,

φ(e4) = d1e1 +d2e2 +d3e3 +d4e4 +d5e5,

φ(e5) = f1e1 + f2e2 + f3e3 + f4e4 + f5e5.

Since 0 = Φ(ei,ei) = g(φ(ei),ei), we have a1 = b2 = c3 = d4 = f5 = 0.
From the equation (∇e1Φ)(e1,e5)= 0, we obtain 0=−Φ(e1,∇e1e5)=−g(φ(e1),− 1

2 ε2ε5e2), which implies g(φ(e1),e2)=
−g(φ(e2),e1) = 0, thus a2 = b1 = 0.
Similarly, from (∇e1Φ)(e1,e2) =−Φ(e1,∇e1e2) =− 1

2 g(φ(e1),e5) = 0, which implies a5 = f1 = 0.
(∇e4Φ)(e4,e3) = 0 gives g(φ(e4),e5) =−g(φ(e5),e4) = 0 and so d5 = f4 = 0.
(∇e4Φ)(e4,e5) = 0 gives g(φ(e4),e3) =−g(φ(e3),e4) = 0 and so d3 = c4 = 0.
(∇e2Φ)(e2,e1) = 0 gives g(φ(e2),e5) =−g(φ(e5),e2) = 0 and so b5 = f2 = 0.
(∇e3Φ)(e3,e4) = 0 gives g(φ(e3),e5) =−g(φ(e5),e3) = 0 and so c5 = f3 = 0.
Thus,

φ(e1) = a3e3 +a4e4,

φ(e2) = b3e3 +b4e4,

φ(e3) = c1e1 + c2e2,

φ(e4) = d1e1 +d2e2,

φ(e5) = 0.

Since
0 = (∇e1φ)(e5)+(∇e5φ)(e1)

= e3{−ε2ε5b3 +
1
2 ε3ε5a4}

+e4{−ε2ε5b4− 1
2 ε4ε5a3}

and e3, e4 are linearly independent, we have
2ε2b3 + ε3a4 = 0,

2ε2b4− ε4a3 = 0.

Similarly, from (∇e1φ)(e5)+(∇e5φ)(e1) = 0, we get

2ε1a3 + ε3b4 = 0,

−2ε1a4− ε4b3 = 0.

Now, we have
2ε2b3 + ε3a4 = 0,
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−ε4b3−2ε1a4 = 0.

Multiply the first equation by 2ε3 and the second equation by ε1. Then we get b3 = 0 and a4 = 0. Similarly a3 = 0 and
b4 = 0.
From the equation (∇e1φ)(e3)+(∇e3φ)(e1) = 0, we obtain (c2 +a4)e5 = 0, that is, c2 =−a4 and since a4 = 0, we have
c2 = 0.
From the equation (∇e2φ)(e3)+(∇e3φ)(e2) = 0, we obtain c1 = b4 and since b4 = 0, we have c1 = 0.
Similarly, (∇e2φ)(e4)+(∇e4φ)(e2) = 0 implies d1 =−b3 = 0 and (∇e1 φ)(e4)+(∇e4φ)(e1) = 0 yields d2 = a3 = 0.
Therefore φ(ei) = 0 and there is no non-zero nearly para-cosymplectic structure on g1.

• A vector field ξ on g1 is Killing if and only if ξ ∈ 〈e5〉: For a Killing vector field ξ = ∑i ξiei, we have g(∇eiξ ,e j) =
−g(∇e j ξ ,ei). From g(∇e2ξ ,e5) =−g(∇e5ξ ,e2), we have ξ1 = 0.
g(∇e1ξ ,e5) =−g(∇e5ξ ,e1) gives ξ2 = 0.
g(∇e4ξ ,e5) =−g(∇e5ξ ,e4) yields ξ3 = 0.
g(∇e3ξ ,e5) =−g(∇e5ξ ,e3) implies ξ4 = 0 and we have no any other restriction on the coefficients of ξ .
By similar calculations, in g2, g3 and g4, a vector field ξ is Killing if and only if ξ = ξ5e5.
A vector field ξ in g5 or g6 is Killing on each of these algebras if and only if ξ = ξ4e4 +ξ5e5.

• There are α-para-Sasakian structures on g1, where α =± 1
2 .

For y = ξ , we get −φ(∇xξ ) = α{g(x,ξ )ξ − x}. Thus, ∇xξ = αφ(x). The characteristic vector field of an α-para-
Sasakian structure is Killing. Thus ξ = ξ5e5 and

φ(e1) =
1
α

∇e1ξ =
1
α

ξ5(−
1
2

ε2ε5e2),

φ(e2) =
1
α

∇e2ξ =
1
α

ξ5(
1
2

ε1ε5e1),

φ(e3) =
1
α

∇e3ξ =
1
α

ξ5(−
1
2

ε4ε5e4),

φ(e4) =
1
α

∇e4ξ =
1
α

ξ5(
1
2

ε3ε5e3),

φ(e5) = 0.

Now we check the defining relation of an α-para-Sasakian structure (φ ,ξ ,η ,g)

(∇xφ)(y) = α{g(x,y)ξ −η(y)x}

for each pair of basis elements. For x = y = e1, we should have

(∇e1 φ)(e1) = α{g(e1,e1)ξ5e5},

which implies

− 1
4α

ε2ε5e5 = αε1e5.

Multiply both sides of the above equation by ε1, we obtain ε1ε2ε5 =−4α2. Thus ε1ε2ε5 =−1 and α =± 1
2 .

Similarly, for x = y = e3, we get ε3ε4ε5 =−4α2, which gives ε3ε4ε5 =−1 and α =± 1
2 . There is no any other restriction

on εi or on α .
We have ε1ε2ε5 =−1 and ε3ε4ε5 =−1.
Case 1: If ε5 =−1, then ε1ε2 = 1. Either ε1 = 1 and ε2 = 1; or ε1 =−1 and ε2 =−1. Also, since ε3ε4 = 1, ε3 = 1 and
ε4 = 1; or ε3 =−1 and ε4 =−1. In these cases the signature is not (3,2). Thus ε5 6=−1.
Case 2: If ε5 = 1, then ε1ε2 =−1 and ε3ε4 =−1. There are four possibilities for the signature of the metric.

ε1 = 1,ε2 =−1,ε3 = 1,ε4 =−1,ε5 = 1

ε1 = 1,ε2 =−1,ε3 =−1,ε4 = 1,ε5 = 1

ε1 =−1,ε2 = 1,ε3 =−1,ε4 = 1,ε5 = 1

ε1 =−1,ε2 = 1,ε3 = 1,ε4 =−1,ε5 = 1.

One can check that (φ ,ξ ,η ,g), where φ(ei) are given as above and g has one of the signatures above, are α-para-Sasakian
structures, where α =± 1

2 .
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• There is no β -para-Kenmotsu structure on g1.
The characteristic vector field ξ of a β -para-Kenmotsu structure satisfies the property g(∇xξ ,y) = g(∇yξ ,x). Checking
for basis elements, we obtain that ξ = ξ1e1 + ξ2e2 + ξ3e3 + ξ4e4. The definition of a β -para-Kenmotsu structure
(φ ,ξ ,η ,g) is

(∇xφ)(y) =−β{g(x,φ(y))ξ +η(y)φ(x)}.

For y = ξ , we get ∇xξ = βφ 2(x) = β{x−η(x)ξ}. Now

∇e1ξ = ∇e1(ξ1e1 +ξ2e2 +ξ3e3 +ξ4e4) =
ξ2

2
e5 = β{e1− ε1ξ1(ξ1e1 + ...+ξ4e4)}.

Since basis elements are linearly independent, we have ξ2 = 0, 1− ε1ξ 2
1 = 0, ξ1ξ3 = 0, ξ1ξ4 = 0. If ξ1 = 0, then

1− ε1ξ 2
1 = 1 = 0 and thus ξ1 6= 0. Therefore, ξ3 = ξ4 = 0 and ξ = ξ1e1. Now for x = e2, we have

∇e2ξ =−ξ1

2
e5 = β{e2−η(e2)ξ}= βe2,

which implies ξ1 = 0, that is ξ = 0.
• There are paracontact structures on g1.

More generally, consider an α-paracontact structure (φ ,ξ ,η ,g) with the fundamental 2-form Φ. Since Φ = αdη , we
have

0 = Φ(ξ ,x) = αdη(ξ ,x) =
1
2
{(∇ξ η)(x)− (∇xη)(ξ )}=−(∇ξ η)(x),

that is, (∇ξ η)(x) = g(ξ ,∇ξ x) = 0. By Kozsul’s formula,

0 = 2g(∇ξ x,ξ ) =−2g(ξ , [x,ξ ]).

Thus for a paracontact structure, the characteristic vector field ξ satisfies g(ξ , [x,ξ ]) = 0 for all vector fields x.
Let ξ = ∑ξiei. We have

0 = g(ξ , [e1,ξ ]) = g(ξ ,ξ2e5) = ξ2ξ5ε5,

0 = g(ξ , [e2,ξ ]) = g(ξ ,−ξ1e5) =−ξ1ξ5ε5,

0 = g(ξ , [e3,ξ ]) = g(ξ ,ξ4e5) = ξ4ξ5ε5,

0 = g(ξ , [e4,ξ ]) = g(ξ ,−ξ3e5) =−ξ3ξ5ε5.

It is easy to observe that the structure (φ ,ξ ,η ,g), where ξ = e5, g has signature +,−,+,−,+, φ(e1) = e2, φ(e2) = e1,
φ(e3) = e4, φ(e4) = e3, φ(e5) = 0 is paracontact.

The algebra g2:

The nonzero brackets of basis elements are:

[e1,e2] = e3, [e1,e3] = e5, [e2,e4] = e5.

Assume that g is a semi Riemannian metric with signature g(ei,ei) = εi. Nonzero covariant derivatives of g calculated by the
Kozsul’s formula are:

∇e1e2 =
1
2 e3, ∇e1e3 =− 1

2 ε2ε3e2 +
1
2 e5, ∇e1e5 =− 1

2 ε3ε5e3,

∇e2e1 =− 1
2 e3, ∇e2e3 =

1
2 ε1ε3e1, ∇e2 e4 =

1
2 e5,

∇e2e5 =− 1
2 ε4ε5e4, ∇e3e1 =− 1

2 ε2ε3e2− 1
2 e5, ∇e3e2 =

1
2 ε1ε3e1,

∇e3e5 =
1
2 ε1ε5e1, ∇e4e2 =− 1

2 e5, ∇e4e5 =
1
2 ε2ε5e2,

∇e5e1 =− 1
2 ε3ε5e3, ∇e5e2 =− 1

2 ε4ε5e4,

∇e5e3 =
1
2 ε1ε5e1, ∇e5e4 =

1
2 ε2ε5e2.
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• There exists no nearly-para-cosymplectic structure.
Assume that (φ ,ξ ,η ,g) is a nearly para-cosymplectic structure. Then we have ∇eiφ(e j)+∇e j φ(ei) = 0.
Let

φ(e1) = a1e1 +a2e2 +a3e3 +a4e4 +a5e5,

φ(e2) = b1e1 +b2e2 +b3e3 +b4e4 +b5e5,

φ(e3) = c1e1 + c2e2 + c3e3 + c4e4 + c5e5,

φ(e4) = d1e1 +d2e2 +d3e3 +d4e4 +d5e5,

φ(e5) = f1e1 + f2e2 + f3e3 + f4e4 + f5e5.

Since 0 = Φ(ei,ei) = g(φ(ei),ei), we have a1 = b2 = c3 = d4 = f5 = 0.
From the equation

0 = (∇e2ϕ)(e2) = b1∇e2e1 +b3∇e2e3 +b4∇e2e4 +b5∇e2e5
= b1(− 1

2 e3)+b3(
1
2 ε1ε3)e1 +b4(

1
2 e5)+b5(− 1

2 ε4ε5)e4

we have, b1 = b3 = b4 = b5 = 0. The equation 0 = (∇e5ϕ)(e5) gives f1 = f2 = f3 = f4 = 0. Since (∇xΦ)(x,y) = 0, we
have

0 = (∇e1Φ)(e1,e2) =−Φ(e1,∇e1e2) =−
1
2

g(φ(e1),e3) =
1
2

g(φ(e3),e1),

and thus a3 = c1 = 0. In addition,

0 = (∇e1Φ)(e1,e3) =−Φ(e1,∇e1e3)
= −g(φ(e1),− 1

2 ε2ε3e2 +
1
2 e5)

= 1
2 g(φ(e1),ε2ε3e2)+

1
2 g(φ(e5),e1)

= 1
2 ε2ε3g(φ(e1),e2)

implies a2 = b1 = 0. Since φ(e5) = 0, we have g(φ(ei),e5) =−g(φ(e5),ei) = 0 and as a result a5 = b5 = c5 = d5 = 0.
Since

0 = (∇e2Φ)(e2,e5) =−Φ(e2,∇e2e5)
= 1

2 ε4ε5g(φ(e2),e4),

we get b4 = d2 = 0. Since

0 = (∇e3Φ)(e3,e1) =−Φ(∇e3e1,e3) = Φ(e3,∇e3e1)
= − 1

2 ε2ε3g(φ(e3),e2),

we have c2 = b3 = 0. Now,
0 = (∇e1φ)(e2)+(∇e2φ)(e1) = a4∇e2e4 =

a4

2
e5 = 0

gives a4 = 0. Since φ(e1) = 0, we obtain 0 = g(φ(e1),e4) =−g(φ(e4),e1), that is d1 = 0. From

0 = (∇e1φ)(e5)+(∇e5φ)(e1) = ε3ε5c4φ(e3) = 0,

we get c4 = 0 and this implies also d3 = 0. To sum up φ(ei) = 0 for all i = 1, · · · ,5.
By similar calculations, there are no nearly-para-cosymplectic structures on the remaining Lie algebras gi.

• There is no α-para-Sasakian structure.
Let (φ ,ξ ,η ,g) be such a structure. We have ξ = ξ5e5, since the characteristic vector field is Killing. Since g(ξ ,ξ ) =
ξ 2

5 ε5 = 1, ε5 = 1. ∇xξ = αφ(x),

φ(e1) =
1
α

∇e1 e5 =−
1

2α
ε3ε5e3.

Now we check the defining relation (∇xφ)(y) = α{g(x,y)ξ −η(y)x} for basis elements.
Let x = y = e1. In this case, the equation (∇e1φ)(e1) = αg(e1,e1)e5 implies

1
4α

ε2ε5e2−{
1

4α
ε3ε5 +αε1}e5 = 0,

this is not possible since e2 and e5 are linearly independent.
• This algebra does not have a β -para-Kenmotsu structure.

From the equation g(∇xξ ,y) = g(∇yξ ,x) in a β -para-Kenmotsu structure, ξ is obtained in the form ξ = ξ1e1 +ξ2e2 +
ξ3e3 +ξ4e4. Also for x = e3 in the equation

∇xξ = βφ
2(x) = β{x−η(x)ξ},
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we get

{ξ2

2
ε1ε3 +βε3ξ1ξ3}e1−{

ξ2

2
ε2ε3 +βε3ξ2ξ3}e2 +β (ε3ξ

2
3 −1)e3 +βε3ξ3ξ4e4−

ξ1

2
e5 = 0.

Linear independence of basis element yields ξ1 = 0, ξ2 = 0, ξ3 = 1 and ξ4 = 0. Thus ξ = ξ3e3. However, in this case,

∇e2ξ =
ξ3

2
ε1ε3e1 6= β{e2−η(e2)ξ}= βe2.

• There are paracontact structures. Consider a paracontact structure (φ ,ξ ,η ,g) with the fundamental 2-form Φ. Since
Φ = dη , the equation

g(φ(ei),e j) = g(∇eiξ ,e j)−g(∇e j ξ ,ei)

holds for all basis elements. Let ξ = ∑ξiei. Then,

g(φ(e1),e2) = g(∇e1ξ ,e2)−g(∇e2ξ ,e1) =−ε3ξ3,

g(φ(e1),e3) = g(∇e1ξ ,e3)−g(∇e3ξ ,e1) =−ε5ξ5,

g(φ(e1),e4) = g(∇e1ξ ,e4)−g(∇e4ξ ,e1) = 0,

g(φ(e1),e5) = 0,

g(φ(e2),e3) = 0,

g(φ(e2),e4) = g(∇e2ξ ,e4)−g(∇e4ξ ,e2) =−ε5ξ5,

g(φ(e2),e5) = g(φ(e3),e4) = g(φ(e3),e5) = g(φ(e4),e5) = 0.

Thus,
φ(e1) =−ξ3ε2ε3e2−ξ5ε3ε5e3,

φ(e2) = ξ3ε1ε3e1−ξ5ε4ε5e4,

φ(e3) = ξ5ε1ε5e1,

φ(e4) = ξ5ε2ε5e2,

φ(e5) = 0.

Now the equation φ 2(e3) = e3−η(e3)ξ and linear independence of basis elements imply

ξ1ξ3 = 0, ξ3ξ4 = 0, ξ3ξ5 = 0.

There are structures satisfying these properties. For example, the structure (φ ,ξ ,η ,g), such that ξ = e5, φ(e1) = e3,
φ(e2) = e4, φ(e3) = e1, φ(e4) = e2 and the metric has signature +,+,−,−,+ is paracontact.

The algebra g3: The nonzero brackets and nonzero covariant derivatives are as follows:

[e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5, [e2,e3] = e5

∇e1e2 =
1
2 e3, ∇e1e3 =− 1

2 ε2ε3e2 +
1
2 e4, ∇e1e4 =− 1

2 ε3ε4e3 +
1
2 e5,

∇e1e5 =− 1
2 ε4ε5e4, ∇e2e1 =− 1

2 e3, ∇e2e3 =
1
2 ε1ε3e1 +

1
2 e5,

∇e2e5 =− 1
2 ε3ε5e3, ∇e3e1 =− 1

2 ε2ε3e2− 1
2 e4, ∇e3e2 =

1
2 ε1ε3e1− 1

2 e5

∇e3e4 =
1
2 ε1ε4e1, ∇e3e5 =

1
2 ε2ε5e2, ∇e4e1 =− 1

2 ε3ε4e3− 1
2 e5

∇e4e3 =
1
2 ε1ε4e1, ∇e4e5 =

1
2 ε1ε5e1, ∇e5e1 =− 1

2 ε4ε5e4,

∇e5e2 =− 1
2 ε3ε5e3, ∇e5e3 =

1
2 ε2ε5e2, ∇e5e4 =

1
2 ε1ε5e1.
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• There is no α-para-Sasakian structure.
The characteristic vector field of an α-para-Sasakian is Killing. Thus if (φ ,ξ ,η ,g) is an α-para-Sasakian structure,
ξ = e5. Then

φ(e1) =
1
α

∇e1e5 =−
1

2α
ε4ε5e4

and the equation
(∇e1φ)(e1) = α{g(e1,e1)e5−η(e1)e1}

result in the contradiction
1

4α
ε3ε5e3−{

1
4α

ε4ε5−αε1}e5 = 0.

• There is no β -para-Kenmotsu structure.
Since ξ satisfies g(∇xξ ,y) = g(∇yξ ,x), checking this condition for basis elements, we get that ξ is of the form
ξ = ξ1e1 +ξ2e2. For x = e1, the equation ∇xξ = β{x−η(x)ξ} implies (1−βε1ξ 2

1 )e1−βε1ξ1ξ2e2− ξ2
2 e3 = 0. From

linear independence, we have ξ2 = 0 and so ξ = ξ1e1. Now for x = e2, we get βe2 +
ξ1
2 e3 = 0, a contradiction.

• There are paracontact structures.
By using the defining equation of an α-paracontact structure

Φ(ei,e j) = g(φ(ei),e j) = αdη = α{g(∇eiξ ,e j)−g(∇e j ξ ,ei)},

we write
φ(e1) =−α{ξ3ε2ε3e2 +ξ4ε3ε4e3 +ξ5ε4ε5e4},

φ(e2) = α{ξ3ε1ε3e1−ξ5ε3ε5e3},

φ(e3) = α{ξ4ε1ε4e1 +ξ5ε2ε5e2},

φ(e4) = αξ5ε1ε5e1,

φ(e5) = 0.

In addition, the relation 0 = g(φ(e5),φ(ei)) = −g(e5,ei) +η(e5)η(ei) gives ξ1ξ5 = ξ2ξ5 = ξ3ξ5 = ξ4ξ5 = 0. We
can find structures with these properties. For instance, (φ ,ξ ,η ,g), where ξ = e5, φ(e1)e4, φ(e2) = e3, φ(e3) = e2,
φ(e4) = e1, φ(e5) = 0 and g has the signature +,+,−,−,+ is a paracontact structure.

The algebra g4: The nonzero brackets and nonzero covariant derivatives are:

[e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5

∇e1e2 =
1
2 e3, ∇e1e3 =− 1

2 ε2ε3e2 +
1
2 e4, ∇e1e4 =− 1

2 ε3ε4e3 +
1
2 e5,

∇e1e5 =− 1
2 ε4ε5e4, ∇e2e1 =− 1

2 e3, ∇e2e3 =
1
2 ε1ε3e1,

∇e3e1 =− 1
2 ε2ε3e2− 1

2 e4, ∇e3e2 =
1
2 ε1ε3e1, ∇e3 e4 =

1
2 ε1ε4e1,

∇e4e1 =− 1
2 ε3ε4e3− 1

2 e5 ∇e4e3 =
1
2 ε1ε4e1, ∇e4 e5 =

1
2 ε1ε5e1,

∇e5e1 =− 1
2 ε4ε5e4, ∇e5e4 =

1
2 ε1ε5e1.

• This algebra does not admit an α-para-Sasakian structure.
Let (φ ,ξ ,η ,g) be an α-para-Sasakian structure. Since ξ is Killing, we have ξ = e5 in g4. From the equation
∇e2ξ = αφ(e2), we get φ(e2) = 0. On the other hand,

0 = g(φ(e2),φ(e2)) 6=−g(e2,e2)+η(e2)η(e2) =−ε2.

• There exists no β -para-Kenmotsu structure.
From the equation g(∇xξ ,y) = g(∇yξ ,x), the Reeb vector field is obtained in the form ξ = ξ1e1 +ξ2e2 +ξ4e4 +ξ5e5.
Since ∇e3ξ = βφ 2(e3), we have

1
2

ε1(ε3ξ2 + ε4ξ4)e1−
1
2

ε2ε3ξ1e2−βe3−
ξ1

2
e4 = 0.

Since basis elements are linearly independent, there is no nonzero number β satisfying this equation.
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• There is no paracontact structure. Since

Φ(ei,e j) = g(φ(ei),e j) = dη(ei,e j) = g(∇eiξ ,e j)−g(∇e j ξ ,ei)

for a paracontact structure, we obtain φ(e4) =
ξ5
2 ε1ε5e1 and φ(e5) = 0. On the other hand, φ 2(e5) = e5−η(e5)ξ gives

ξ1ξ5ε5e1 +ξ2ξ5ε5e2 +ξ3ξ5ε5e3 +ξ4ξ5ε5e4)+(ξ 2
5 ε5−1)e5 = 0.

From linear independence of basis elements, we have

ξ1ξ5 = ξ2ξ5 = ξ3ξ5 = ξ4ξ5 = 0, ξ
2
5 ε5 = 1.

Since ξ 2
5 6= 0, we get ξ1 = ξ2 = ξ3 = ξ4 and ξ = ξ5e5. Then, 0 = φ 2(e4) 6= e4−η(e4)ξ = e4.

The algebra g5:
[e1,e2] = e4, [e1,e3] = e5

∇e1e2 =
1
2 e4, ∇e1e3 =

1
2 e5, ∇e1e4 =− 1

2 ε2ε4e2,

∇e1e5 =− 1
2 ε3ε5e3, ∇e2e1 =− 1

2 e4, ∇e2e4 =
1
2 ε1ε4e1,

∇e3e1 =− 1
2 e5, ∇e3e5 =

1
2 ε1ε5e1, ∇e4e1 =− 1

2 ε2ε4e2,

∇e4e2 =
1
2 ε1ε4e1, ∇e5e1 =− 1

2 ε3ε5e3 , ∇e5e3 =
1
2 ε1ε5e1.

• There exists no α-para-Sasakian structure.
Let (φ ,ξ ,η ,g) be an α-para-Sasakian structure. Since ξ is Killing, ξ = ξ4e4 +ξ5e5. From the equation ∇xξ = αφ(x),
we get φ(e4) = φ(e5) = 0. In addition,

g(φ(e4),φ(e4)) =−g(e4,e4)+η(e4)η(e4)

implies 0 = −ε4 + ξ 2
4 . Thus, ε4 = 1 and ξ 2

4 = 1. Similarly, ξ 2
5 = 1 and ε5 = 1. However, in this case, g(ξ ,ξ ) =

ξ 2
4 ε4 +ξ 2

5 ε5 = 2 6= 1.
• There is no β -para-Kenmotsu structure.

The Reeb vector field ξ satisfies g(∇xξ ,y) = g(∇yξ ,x). Checking for basis elements, ξ is obtained in the form
ξ = ξ1e1 +ξ2e2 +ξ3e3. We also know that ∇xξ = βφ 2(x) = β{x−η(x)ξ}. For x = e4, we have

ξ2

2
ε1ε4e1−

ξ1

2
ε2ε4e2−βe4 = 0.

Since basis elements are linearly independent, there is no nonzero number β satisfying this equation.
• There is no paracontact structure. Since

Φ(ei,e j) = g(φ(ei),e j) = dη(ei,e j) = g(∇eiξ ,e j)−g(∇e j ξ ,ei)

for a paracontact structure, we obtain φ(e4) = 0 and φ(e5) = 0. On the other hand, φ 2(e4) = e4−η(e4)ξ gives

ξ1ξ4ε4e1 +ξ2ξ4ε4e2 +ξ3ξ4ε4e3 +(ξ 2
4 ε4−1)e4)+ξ5ξ4ε4e5 = 0.

From linear independence of basis elements, we have

ξ1ξ4 = ξ2ξ4 = ξ3ξ4 = ξ5ξ4 = 0, ξ
2
4 ε4 = 1.

Since ξ 2
4 6= 0, we get ξ1 = ξ2 = ξ3 = ξ5 and ξ = ξ4e4. In this case, 0 = φ 2(e5) 6= e5−η(e5)ξ = e5.

The algebra g6:
[e1,e2] = e3, [e1,e3] = e4, [e2,e3] = e5

∇e1e2 =
1
2 e3, ∇e1e3 =− 1

2 ε2ε3e2 +
1
2 e4, ∇e1e4 =− 1

2 ε3ε4e3,

∇e2e1 =− 1
2 e3, ∇e2e3 =

1
2 ε1ε3e1 +

1
2 e5, ∇e2e5 =− 1

2 ε3ε5e3,

∇e3e1 =− 1
2 ε2ε3e2− 1

2 e4, ∇e3e2 =
1
2 ε1ε3e1− 1

2 e5, ∇e3e4 =
1
2 ε1ε4e1,

∇e3e5 =
1
2 ε2ε5e2 ∇e4e1 =− 1

2 ε3ε4e3, ∇e4e3 =
1
2 ε1ε4e1,

∇e5e2 =− 1
2 ε3ε5e3, ∇e5e3 =

1
2 ε2ε5e2.
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• There exists no α-para-Sasakian structure.
Since ξ is Killing, we have ξ = ξ4e4 +ξ5e5. From the equation ∇xξ = αφ(x) implies φ(e4) = φ(e5) = 0. In addition,
g(φ(e4),φ(e4)) = −g(e4,e4)+η(e4)η(e4) yields ε4 = 1 and ξ 2

4 = 1. Similarly we have ε5 = 1 and ξ 2
5 = 1, which

contradicts with g(ξ ,ξ ) = 1.
• There is no β -para-Kenmotsu structure.

The characteristic vector field of a β -para-Kenmotsu structure satisfies g(∇xξ ,y) = g(∇yξ ,x). Then ξ should be of the
form ξ = ξ1e1 +ξ2e2. Now since ∇e4ξ = βφ 2(e4) = β{e4−η(e4)ξ}, we have

ξ1

2
ε3ε4e3 +βe4 = 0,

and there is no nonzero β with this property.
• There is no paracontact structure.

Since
Φ(ei,e j) = g(φ(ei),e j) = dη(ei,e j) = g(∇eiξ ,e j)−g(∇e j ξ ,ei)

for a paracontact structure, we obtain φ(e4) = 0 and φ(e5) = 0. On the other hand, φ 2(e4) = e4−η(e4)ξ gives

ξ1ξ4ε4e1 +ξ2ξ4ε4e2 +ξ3ξ4ε4e3 +(ξ 2
4 ε4−1)e4)+ξ5ξ4ε4e5 = 0.

From linear independence of basis elements, we have

ξ1ξ4 = ξ2ξ4 = ξ3ξ4 = ξ5ξ4 = 0, ξ
2
4 = ε4 = 1.

Since ξ 2
4 6= 0, we get ξ1 = ξ2 = ξ3 = ξ5 and ξ = ξ4e4. In this case, 0 = φ 2(e5) 6= e5−η(e5)ξ = e5.

After all, we state followings.

Theorem 3.1. An almost paracontact metric structure on a five dimensional nilpotent Lie algebra g is para-cosymplectic if
and only if g is abelian.

Thus we may state

Corollary 3.2. There is no para-cosymplectic left invariant almost paracontact metric structure on a five dimensional
connected Lie group whose corresponding Lie algebra is nilpotent.

In addition we deduce followings.

Theorem 3.3. There is no left-invariant nearly para-cosymplectic structure on a five dimensional nilpotent Lie group.

Theorem 3.4. A 5-dimensional nilpotent Lie algebra has an α-para-Sasakian structure if it is isomorphic to g1.

Corollary 3.5. A five dimensional nilpotent Lie group has a left-invariant α-para-Sasakian structure if its Lie algebra is
isomorphic to g1.

Theorem 3.6. There exists no β -para-Kenmotsu structure on a five dimensional nilpotent Lie algebra.

Corollary 3.7. There is no left-invariant β -para-Kenmotsu structure on a five dimensional nilpotent Lie group.

Theorem 3.8. A 5-dimensional nilpotent Lie algebra has a paracontact structure if it is isomorphic to g1, g2 or g3.

Corollary 3.9. A 5-dimensional nilpotent Lie group has a left invariant paracontact structure if its Lie algebra is isomorphic
to g1, g2 or g3.
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