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Abstract 

The main threats from heavy metals specifically arsenic-contaminated drinking water have been emerging as an environmental and 

social crucial issue. Herein, the arsenic (V) (As(V)) biosorption performance of waste orange peel (OP) driven-graphene-like porous 

carbon (GPC) was investigated experimentally and an artificial neural network (ANN) approach was used to model the biosorption 

process. The initial pH (2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 10.0), initial As(V) concentration (25.0, 50.0, 100.0, 250.0, 500.0 and 750.0 

mg.L-1), biosorbent dosage (1.0, 2.0, 3.0, 4.0 and 5.0  g.L-1), and contact time (0– 120.0 min) were investigated to optimize the 

biosorption process. The as-synthesized GPC biosorbents with a high specific surface area (985 m2.g-1) and pore volume (1.04 cm3.g-1) 

offered superior removal efficiency as 88.2% (equilibrium uptake capacity of 46.5 mg.g-1) at initial pH 6.0, initial As(V) concentration 

100 mg.L-1, and biosorbent dosage 2.0 g.L-1. A three-layer ANN model was developed to forecast the Ar(V) biosorption performance 

of GPCs. Several experimental data points were considered as test data to validate the ANN model. The ANN model was performed 

with the Levengberg-Marquardt algorithm (LMA), linear transfer function (purelin) at the output layer, and a tangent sigmoid transfer 

function (tansig) in the hidden layer with 12 neurons. The values of coefficient of determination and mean squared error were calculated 

to be 0.9858 and 0.0014, respectively. The results revealed that the experimental data were in accordance with ANN-driven data as well 

as reveling the high accuracy of the ANN approach in estimating the target variable. The developed ANN model is useful for the 

optimization of process conditions for pilot-scale utilization of As(V) biosorption process by GPC. 
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Yapay Sinir Ağı Yaklaşımı ile Atık Portakal Kabuğundan Elde Edilen 

Grafen Benzeri Gözenekli Karbon Üzerinde Arsenik (V) 

Biyosorpsiyonunun Modellenmesi 
Öz 

Özellikle arsenikle kirlenmiş içme suyundan kaynaklanan ana tehditler, çevresel ve sosyal olarak önemli bir sorun olarak ortaya 

çıkmaktadır. Burada, atık portakal kabuğundan (OP) üretilmiş grafen benzeri gözenekli karbonun (GPC) arsenik (V) (As (V)) 

biyosorpsiyon performansı deneysel olarak incelenmiş ve biyosorpsiyon prosesini modellemek için yapay bir sinir ağı (YSA) yaklaşımı 

kullanılmıştır. Biyosorpsiyon prosesini optimize etmek için başlangıç pH’ı (2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0), başlangıç As (V) 

konsantrasyonu (5.0, 25.0, 50.0, 100.0, 250.0, 500.0 ve 750.0 mg.L-1), biyosorbent dozu (1.0, 2.0, 3.0, 4.0 and 5.0 g.L-1) ve temas süresi 

(0– 120.0 dakika) parametreleri incelenmiştir. Yüksek spesifik yüzey alanine (985 m2.g-1) ve gözenek hacmine (1.04 cm3.g-1) sahip 

GPC biyosorbentleri, 6.0 başlangıç pH değerinde, 2.0 g.L-1 biyosorbent dozunda ve 100 mg.L-1 başlangıç As(V) konsantrasyonunda, 

% 88.2 giderim verimi (denge biyosorpsiyon kapasitesi; 46.5 mg.g-1) ile üstün biyosorpsiyon kapasitesi göstermişlerdir. Bu çalışmada, 
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GPC'lerin Ar (V) biyosorpsiyon performansının modellemesinde üç katmanlı bir YSA modeli geliştirilmiştir. YSA modelini doğrulamak 

için elde edilen deneysel veriler, YSA modelinde test verileri olarak kullanıldı. YSA modeli, Levengberg-Marquardt (LMA) algoritması, 

çıktı katmanında lineer transfer fonksiyonu (purelin) ve 12 nöronlu gizli katmanda tanjant sigma transfer fonksiyonu (tansig) ile 

gerçekleştirildi. Sonuçlar, deneysel verilerin YSA temelli verilerle uyum içerisinde olduğunu ve YSA yaklaşımının hedef değişkeni 

tahmin etmedeki yüksek doğruluğunu ortaya koydu. Geliştirilen YSA modeli, GPC tarafından As (V) biyosorpsiyon işleminin pilot 

ölçekli kullanımı için işlem koşullarının optimizasyonu için yararlıdır. 

Anahtar Kelimeler: Tarımsal Atık, Arsenik(V) giderimi, Yapay Sinir Ağları, Biyosorpsiyon, Modelleme, Portakal Kabuğu. 

1. Introduction 

Arsenic has been recognized as one of the most hazardous mettaloid being part of earth crust and leads to water resources contamination 

(Irem et al., 2017).  Drinking water contamination by arsenic is a crucial issue due to its toxic nature causing cancer or other chronic 

diseases (Chattopadhyay et al., 2020). Arsenic can be found in natural water as arsenite (As(III)) and arsenate (As(V)). While As(V) 

are stable in oxygen-rich aerobic environments, As(III) predominate in reducing anaerobic environments such as deep groundwater 

(Khaskheli et al., 2011). World Health Organization (WHO) has reported arsenic due to its superb toxicity as a Class-I toxicant and set 

the permissible limit of 10 ppb in drinking water (WHO, 2011). Hence, it is crucial to provide the use of safe drinking water and to meet 

the water quality standards by developing a new treatment system that can effectively remove the arsenic from aqueous media. In 

addition to conventional technologies (like coagulation, flocculation, precipitation, ozonation, ion exchange, membrane filtration, etc.) 

to contribute to the total solution of this problem, several treatment technologies have gained prominences, such as membrane processes, 

electrochemical techniques, photocatalytic oxidation/degradation, adsorption and combined methods (Kodal and Aksu, 2017, Omwene 

et al., 2019). Amongst them, adsorption processes have gained prominence since they have high removal efficiency and can be scaled-

up (Almasri et al., 2018). Although there are various types of biosorbents, it is important to develop novel biosorbents produced from 

natural sources or wastes.  So far, there have been plenty of studies that have investigated alternative cost-effective and eco-friendly 

biosorbents. Most recently, agricultural wastes such as waste tea (Çelebi, 2020), coconut shell (Chandana et al., 2020), shrimp shells 

(He et al., 2020), fungal biomass (Rozman et al., 2020), cherry stones (Ebrahimi et al., 2019), sugar cane bagasse (Guo et al., 2020), 

coffee bean husk (Tran et al., 2020), rice husk (Ma et al., 2019), etc. have been considered as the most promising candidate for an 

alternative low-cost, non-toxic, and efficient biosorbents. Owing not only to its high content of different functional groups, such as 

carboxyl and hydroxyl groups but also to its lignocellulosic content such as of lignin, cellulose, hemicellulose, pectin, etc., waste orange 

peels can also be used as a satisfactory biosorbent (Liang et al., 2009; Lu et al., 2009; Pathak et al., 2016).  

In biosorption process, more experiments mean more precious knowledge on the fundamental understanding of the process. However, 

in practice, such number of the experimental evaluations are not always possible. Hence, in particular, for large-scale applications, it is 

important to develop a smart tool for comprehending and forecasting the adsorption capacities of the biosorbents without conducting 

redundant experiments. Recently, Smart models including random forest (RF), adaptive Neuro-fuzzy inference system (ANFIS), least 

squares support vector machines (LS-SVM), and artificial neural network have received extensive attention thanks to their unique 

features (Ghaedi et al, 2014a; Ghaedi et al, 2014b; Nia et al., 2014; Asfaram et al., 2016).  Amongst them, ANN is a modeling method 

that computes the input values by some internal mathematical functions for both linear and non-linear systems to obtain the output 

values. The capability of approximation arbitrarily complex correlations without exhaustive knowledge of the process is the unique 

feature of the ANN model (Aghav et al., 2011). In chemical engineering, ANN as a state-of-art tool has also been successfully utilized 

for modeling of the adsorption equilibrium of solid-liquid systems (Dutta et al., 2010; Elemen et al., 2012), besides former uses such as 

prediction of activity coefficients of aromatic compounds (Chow et al., 1995), modeling of kinetics of catalytic hydrogenation reaction 

(Molga et al., 1997), and solubility of proteins (Naik et al., 2005). The performance of the developed ANN model strongly depends on 

variables such as the number of hidden layers and output layer, the nature of the transfer function, etc. Hence, it is crucial to determine 

each variable logically. Thanks to its interconnected nature composed of nodes (neurons) and connections (weights), it is possible to 

obtain complex relationships between independent and dependent variables (Beale et al., 2012). 

 

Bearing all in mind, in this study, it was aimed to develop a cost-natural and locally available biosorbent for As(V) removal from 

drinking water. Although there has been numerous of investigation about the utilization of orange peel driven adsorbents/biosorbents 

for removal of heavy metal ions, as far as we know, this work is unique as it is the first time the modeling of biosorption of As(V) onto 

orange peel-driven biosorbents by using the artificial neural network model. In this work, the three-layer ANN model, which consists 

of an input layer, hidden layer, and output layer, with an LMA algorithm in MATLAB environment has been used for the estimation of 

arsenate removal efficiency of GPC. The effect of initial pH, biosorbent dosage (g.L-1), initial arsenate concentration (mg.L-1), and the 

contact time (min) on As(V) removal efficiency have been examined in a batch adsorption system and optimum experimental conditions 

have been ascertained. Subsequently, these experimental data set have been used for the training of the ANN model.  The input 

parameters used for training of the ANN are initial pH, contact time (min), initial As(V) concentration (mg.L-1), and biosorbent dosage 

(g.L-1) whereas the removal efficiency of As(V) has been considered as an output of the model. The minimum squared error (MSE) and 

the determination coefficient have been calculated for forecasting the arsenate removal using the testing data set. The results have 

indicated there is good accordance between the experimental data and ANN-driven data. The simulations based on the developed ANN 

model have verified that the ANN model can successfully forecast the biosorption behavior of the As(V) removal under different 

conditions. 
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2. Material and Method 

2.1. Preparation of Arsenate Solution 

Arsenate solutions with initial As(V) concentration range between 25-750 mg.L-1 were obtained by diluting the 1000 mg.L-1 stock 

solution of As(V) prepared by sodium arsenate (Na2HAsO4.7H2O). The initial pH (ranged between 2.0-10.0) of As(V) solutions were 

set by using 0.1 N HCl and 0.1 N NaOH solution before introducing the biosorbent.  

2.2. Biosorbent Preparation 

The waste orange peels were obtained from the BELSO fruit juice production facility Ankara, Turkey, and they were washed with a 

large volume of tap water, followed by deionized (DI) water. Afterward, they dried in a vacuum oven at 70 °C for 24 h. After ball 

milling, the biosorbents with lower than ca. 300 µm particle size were stored in airtight containers ready for further uses and labeled as 

dried orange peel (DOP).  

GPCs were synthesized from waste orange peel by a two-step synthesis route consisting of thermal annealing and chemical activation. 

Firstly, the DOP was carbonized at 400 °C under inert nitrogen (N2) atmosphere for 2 h in a tubular furnace. Subsequently, the as-

carbonized DOP powder was mixed with KOH at a mass ratio of 1:2 followed by thermal annealing at 850 °C for 2 h under inert N2 

atmosphere. The obtained product was washed with 0.1 M hydrochloric acid (HCl) and DI water repeatedly until neutral pH to remove 

inorganic salts. Subsequently, the product was dried at a vacuum oven 70 °C for 24 h, and labeled as graphene-like porous carbon 

(GPC), stored in a desiccator until use.  

2.3. Physicochemical Characterization of Biosorbent 

The surface morphologies of samples were characterized by field-emission scanning electron microscope(FE-SEM) (Hitachi S-4900) 

operating at 5.0 kV, and transmission electron microscope (TEM, JEM-1400F, JEOL) at 120 kV. The Brunauer–Emmett–Teller (BET) 

surface areas of samples were calculated by the N2 adsorption/desorption measurements (at 77 K) were performed by Quantachrome 

Nova 2200 automated surface area analyzer (Quantachrome Corporation, USA) whereas the pore size distributions (PSD) were 

measured adopting the Barrett-Joyner-Halenda (BJH) method. 

2.4. Batch Biosorption Studies 

Biosorption studies were conducted by a typical batch process in an Erlenmeyer flask (250 mL) containing 100 mL of arsenate solution. 

The test samples were agitated in an incubator at a shaking rate of 100 rpm at room temperature of 25 ± 2 °C. The initial pH of the test 

solution, biosorbent dosage, initial As(V) concentration, and contact time were investigated for their effects on the removal of arsenate. 

The ranges of investigated biosorption operating condition variables were presented in Table 1. 

For biosorption studies, a certain amount of GPC (Table 1.) was added to 100 mL of pH-adjusted As(V) test solution, and this moment 

was noted as t0.  Afterward, at pre-determined contact time intervals (Table 1), periodically 5.0 mL of arsenate bearing suspensions were 

taken from the biosorption system and centrifugated at 4000 rpm for 10 min. The remaining As(V) concentration was determined by 

the atomic absorption spectrometer (AAS) with a flow injection system. 

Table 1. Range of biosorbtion operating condition variables 

Operating condition variable Range 

Initial pH of the test solution 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0 

Initial As(V) concentration  (mg.L-1) 25.0, 50.0, 100.0, 250.0, 500.0, 750.0 

Biosorbent dosage (g.L-1) 1.0, 2.0, 3.0, 4.0 5.0   

Contact time (min) 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 90, 120 
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2.4.1. Evalutaion of Biosorption Performance of GPC 

The biosorption capacity q (mg.g−1)  (Eq. 1), and removal efficiency % (Eq. 2) values of the GPC were calculated from the arsenate 

concentrations in water before and after biosorption. All the biosorption experiments were conducted triple to verify the repeatability 

and accuracy, and the average of them was used for further calculations.  

𝑞 =
(𝐶0−𝐶)

𝑋
  (1) 

removal efficiency % =  
(𝐶0−𝐶)

𝐶0
× 100  (2) 

Where Co (mg.L-1) is the initial arsenate concentration; C (mg.L-1) is the residual arsenate concentration at any time of the biosorption 

process; X is the biosorbent dosage (g.L−1); t is the time (min). 

2.4.2. Effect of Initial pH 

The effect of initial pH of the test solution ranging between 2.0 and 10.0 (Table 1) on the biosorption of As(V) ion was investigated 

while the other experimental operating condition variables were maintained constant at initial As(V) concentration of 100.0 mg.L-1,  

biosorbent dosage of 1.0 g.L-1, and contact time 120 min.  

2.4.3. Effect of Initial As(V) Concentration  

The effect of initial arsenate concentration ranging between 25.0 mg.L-1 and 750.0 mg.L-1 (Table 1) on the biosorption of As(V) ion was 

studied at the initial pH of 6.0, biosorbent dosage of 1.0 g.L-1, and contact time over 120 min.  

2.4.4. Effect of Contact Time  

The effect of contact time was investigated from 0 min to 120 min for initial As(V) concentration range of 25.0 to 750.0 mg.L-1 at pH 

6.0, and biosorbent dosage of 1.0 g.L-1. 

2.4.5. Effect of Biosorbent Dosage 

The influence of biosorbent dosage changing between 1.0 -5.0 g.L-1 (Table 1) on the removal of As(V) was examined at initial pH of 

6.0, initial As(V) concentration of 100.0 mg.mL-1, and the contact time of 120 min.  

2.4. Artificial Neural Network Modeling  

The three-layer ANN model (Figure 1.), with a tangent sigmoid transfer function (tansig) in the hidden layer, a linear transfer function 

(purelin) at the output layer and a backpropagation learning algorithm based on the Levenberg-Marquardt algorithm with 1000 iterations 

was used to forecast the biosorption performance by using the neural network toolbox of MATLAB 9.5 (R2018b) software. The 

experimental data were grouped randomly into two groups as follows training data set (75 %) and testing data set (25 %). Four neurons 

including initial pH, initial As(V) concentration (mg.L-1), biosorbent dosage (g.L-1), and contact time (min), 1-20 neurons in the hidden 

layer, and one neuron (removal %) in the output layer were used. The neurons of each layer are interconnected with weights, in which 

each processing element is multiplied by its corresponding weight factor, and then added to a neuron’s internal threshold (named bias) 

(Figure 1.). The net input passed through linear/non-linear transfer functions to produce a single output of the neuron (Mustafa et al., 

2014; Fawzy et al., 2018). All the data were normalized in the range of 0-1 to prevent numerical overflows due to a very large of small 

weights.  

The performance of the ANN model was evaluated by the minimum mean squared error (MSE) (Eq.3), and the coefficient of 

determination (R2) (Eq.4) between the predicted output and the actual target. 

𝑀𝑆𝐸 =
1

𝑁
∑ (|𝑦𝑝𝑟𝑑,𝑖 − 𝑦𝑒𝑥𝑝,𝑖|)

2𝑁
𝑖=1  (3) 

𝑅2 = 1 −
∑ (𝑦𝑝𝑟𝑑,𝑖−𝑦𝑒𝑥𝑝,𝑖)𝑁

𝑖=1

∑ (𝑦𝑝𝑟𝑑,𝑖−𝑦𝑀)𝑁
𝑖=1

 (4) 

where 𝑦𝑝𝑟𝑑,𝑖 is the predicted value by ANN model, 𝑦𝑒𝑥𝑝,𝑖 is the experimental value, 𝑦𝑀 is the average of experimental value, and N is 

the number of data.  
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Figure 1. Structure of developed artificial neural network model 

3. Results and Discussion  

3.1. Physicochemical Characterization of Biosorbent 

The morphologies of as-prepared samples were investigated by the SEM and TEM analysis (Figure 2). Although DOP (Figure 2a) 

presented irregular shape bulk-like carbon monoliths with a relatively smooth surface, GPC (Figure 2b) exhibited a graphene-like silky 

porous network abundant micro and mesoporous structure. The low-resolution TEM image of GPC (Figure 2c) proved that porous 

structure and graphitized DOP into the atomic-thick layered carbonaceous material. The TEM image of GPC revealed the fluffy 

graphene-like structure due to bundles of crumple. 

 

Figure 2. FE-SEM images of (a) DOP and (b) GPC, (c)TEM image of GPC, (d) N2 adsorption/desorption isotherms (inset the BJH 

pore size distributions) of DOP and GPC 

The porous structures of the DOP and GPC were analyzed by the N2 adsorption/desorption isotherms (Figure 2d). While DOP presented 

essentially a Type-I isotherm which confirms the presence of dominant microporous structure (Meng et al., 2017), GPC exhibited type-

IV isotherm with an H4 type hysteresis loop (Karaman et al., 2020). The pore size distribution curves (inset of Figure 2d) verified both 

the microporous structure of DOP and micro and mesoporous structure of GPC. As presented in Table 2, the specific BET surface area 
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(SBET) of GPC (985 m2.g-1) was almost 8-9 times higher than that of DOP (102.0 m2.g-1). Additionally, the well-ordered pore structure 

and the large pore volume (1.04 cm3.g-1) of GPC was predicted to favor the biosorption of As (V).   

Table 2. Physicochemical parameters obtained from N2 adsorption/desorption isotherms of DOP and GPC samples 

Sample ID 
SBET  

m2.g-1 

Vmicro 

cm3. g-1 

Vmeso 

cm3.g-1 

Vtotal  

cm3.g-1 

Vmicro 

% 

Vmeso 

% 

DOP 102.0 0.10 0.05 0.14 67.38 32.62 

GPC 985.0 0.41 0.63 1.04 39.85 60.15 

3.2. Batch Biosorption Studies 

3.2.1. Effect of Initial pH 

The solution pH can affect the protonation of surface functional groups besides the dissociation of the molecules (Das et al., 2007; Su 

et al., 2010). The pH dependence of the biosorption capacity of GPC was investigated between the pH range out from 2.0 to 10.0 at 

100.0 mg.L-1 initial As(V) concentration,  biosorbent dosage of 1.0 g.L-1 over 120 min of contact time. The highest removal capacity of 

GPC was obtained at pH 6.0 as ca. 71.5 mg.g-1 (Figure 3). In alkaline media (pH > 7.0), the As(V) biosorption capacity of the GPC 

decreased since there was probably a competition between the –OH ions and As(V) oxyanions for active sites (Abid et al., 2016; 

Rahaman et al., 2008). On contrary, at neutral pH values, it could be put forth that there would not be a competition between the –OH 

or carbonyl groups with the arsenate ions. Hence, it was suggested that the biosorption or As(V) on to GPC probably result in 

electrostatic interaction between and ion-exchange or complexation between biosorbent and As(V).  

 

Figure 3. Effect of the initial pH on the equilibrium uptake of As(V) (Co=100 mg.L−1, X=1.0 g.L-1; t=120 min). 

3.2.2. Effect of Initial As(V) Concentration and Contact Time  

The biosorption behavior of GPC was monitored for initial As(V) concentration ranging from 25.0 to 750 mg.L-1 at optimum pH of 6.0 

and over 120 min contact time.  The biosorption behavior of GPC depending on the initial As(V) concentration and contact time was 

depicted in Figure 4. Biosorption on GPC was enhanced significantly by increasing the initial As(V) concentration tending to saturation 

at higher concentrations. The equilibrium time of the biosorbent is important to design a cheap and effective biosorption system. Figure 

4a exhibited the effect of contact time on biosorption level over 120 min. At the beginning of the biosorption process, the uptake capacity 

of the biosorbent increased with the contact time linearly and sharply due to more vacant active sites leading to an acceleration of mass 

transfer of As(V) ions. Then, around 20 min the biosorption curve reached a plateau. It was realized that the majority of As(V) 

biosorption (ca. 80-90 %) on GPC took place within the first 20 min of the whole process and at the end, the biosorbent achieved 

saturation called equilibrium (qeq). Thanks to its high specific surface area, number of active sites, and the total pore volume and highly-

ordered pore size distribution GPC presented high removal efficiency of As(V). Increasing the As(V) concentration provided a 

considerable driving force to eliminate the effect of mass transfer resistances of the As(V) between solid-liquid interfaces. Moreover, 

the number of interactions between the biosorbent and the biosorbate relatively increased by the initial As(V) concentration, which 

boosted the removal capacity of the biosorbent. However, increasing the As(V) concentration diminished the removal efficiency (%) 

since the active sites of the biosorbent became almost filled (Figure 4b). 
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Figure 4.  (a)Effects of contact time (min) (b) Effects of initial As(V) concentration (C0 ; mg.L-1(ppm) on uptake of As(V)(initial 

pH=6.0, X=1.0 g.L-1) 

3.2.3. Effect of Biosorbent Dosage  

The effect of biosorbent dosage on As(V) removal was investigated at pH 6.0 over 120 min for 100 mg.L-1 initial As(V) concentration. 

Figure 5. demonstrated that the biosorbent mass fraction directly affected the As(V) removal. It was found that the removal efficiency 

was increased rapidly from 85.2% to 90.4 % with an increasing amount of biosorbent till 5.0 g.L-1 thanks to the high number of available 

vacant active sites.  Hence, both the diffusion of As(V) ions to the surface of biosorbent and the removal percentage of As(V) was 

enhanced. However, there was not a significant difference in removal efficiency between 2.0 g.L-1 and 5.0 g.L-1 biosorbent dosage. 

Thus, from an economical point of view, 2.0 mg.L-1 can be selected as an optimum bisorbent dosage for this system. 

 

Figure 5.  Effects of biosorbent dosage (g.L-1) on uptake of As(V)(initial pH=6.0, Co=100 mg.L−1, t=120 min) 
 

3.4. Artificial Neural Network Modeling 

The three-layer ANN model was used for modeling the biosorption of As(V) onto GPC. The as-obtained experimental data at different 

operating conditions (Table 1) were applied to train and validate the developed ANN model. The Levenberg-Marquardt algorithm with 

100 iterations, "tansig" transfer function for the hidden layer, and a "purelin" transfer function at the output layer were used in the ANN 

model. The optimal number of hidden neurons was evaluated by the maximization of the coefficient of determination and minimizing 

MSE of the testing data set (Figure 6.)   The results proved that the performance of ANN is depended on the number of neurons in the 

hidden layer (Table 3). As can be seen from Figure 6., there was a sharp decrease in MSE was detected with an increase in the number 

of neurons in the hidden layer.  The minimum MSE value was calculated to be 0.0014 whereas the maximum R2 was obtained as 0.9858 

by using 12 hidden neurons. Hence, the ANN model containing the hidden layer with 12 neurons was selected as the optimum model 

for forecasting of biosorption behavior of As(V) onto GPC, and this was used for further analysis.  
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Figure 6. The relation between the MSE and number of neurons in the hidden layer of the developed ANN model 

Table 3. The analogy of 20 neurons in the hidden layer for removal efficiency by the ANN model developed with the Levenberg–

Marquardt algorithm. 

Number of Neurons MSE R2 Number of Neurons MSE R2 

1 0.0075 0.8444 11 0.0026 0.9446 

2 0.0071 0.8526 12 0.0014 0.9858 

3 0.0069 0.8573 13 0.0028 0.9357 

4 0.0039 0.9183 14 0.0021 0.9243 

5 0.0040 0.9115 15 0.0037 0.9165 

6 0.0042 0.9116 16 0.0035 0.9105 

7 0.0035 0.9277 17 0.0037 0.9106 

8 0.0026 0.9525 18 0.0029 0.9405 

9 0.0023 0.9467 19 0.0033 0.9117 

10 0.0020 0.9594 20 0.0030 0.9395 

Figure 7a. represented the mean squared error values versus the number of epochs for the optimized ANN model. It was observed that 

after almost 140 epochs the MSE was not changed significantly, so the training was stopped. Figure 7b. presented a comparsion between 

the experimental and ANN-driven predicted values of the normalized output variable for As(V) biosorption on GPC at the optimum 

operating conditions. The results confirmed that the developed model is quite satisfactory.  

 

Figure 7. (a) MSE versus the number of epochs (b) the normalized experimental data versus the normalized predicted data 
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4. Conclusions  

Herein, the graphene-like porous carbon with high specific surface area and pore volume was produced from waste orange peel via an 

eco-friendly, low-cost production pathway, and the potential application as biosorbent for As(V) removal was investigated. The batch 

biosorption studies were conducted to investigate the effect of initial pH, initial arsenate concentration, contact time, and biosorbent 

dosage on the removal efficiency of the biosorbents. The optimum pH and the biosorbent dosage were found to be 6.0 and 2.0 g.L-1, 

respectively. It was observed that ca. > 88% of As(V) could be successfully removed from aqueous solution. Furthermore, the 

biosorption performance of graphene-like porous carbon was forecasted by applying a three-layer ANN with 12 neurons in the hidden 

layer, using the Levengberg-Marquardt backpropagation algorithm. The outputs of the developed model were in accordance with the 

experimental values.  The results obtained from the ANN model revealed that the values of R2 and MSE were calculated to be 0.9858 

and 0.0014, respectively. The results confirmed that the as-prepared GPC could be applied as a low-cost agricultural waste driven 

biosorbent as an alternative to commercially available adsorbents for the removal of As(V) from water/wastewater. Moreover, it was 

concluded that the developed ANN model could be utilized in future studies to optimize and to enhance the removal efficiency of 

effluents by biosorption under different operating conditions.   
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