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Abstract 

Cox regression model is used for modelling censored data to investigate the association between the survival time and 
covariates. It is important to assess the fit of Cox regression model since it has a key assumption called proportional hazards. 
Violation of this assumption induces an invalid model and changes the interpretation of the results. When the objective is 
the risk prediction, various machine learning methods can be good alternatives to Cox regression model due to their flexible 
structure. In this study, Turkish breast cancer data set is used to compare the predictive performance of Cox regression 
model and ensemble machine learning methods. Integrated Brier score is used to measure the predictive performance of 
candidate models. Based on case study results, machine learning methods are promising alternatives for survival 
prediction. 
 
Keywords: Censored data, Cox regression model, Machine learning, Survival ensemble methods, Prediction 

SAĞKALIM KESTİRİMİ İÇİN KOLEKTİF YÖNTEMLERİN KULLANILMASI  

Özet 

Cox regresyon modeli, yaşam süresi ve eşdeğişkenler arasındaki ilişkinin araştırılması için sansürlenmiş verinin 
modellenmesinde kullanılmaktadır. Orantılı tehlikeler gibi anahtar bir varsayıma sahip olması nedeniyle Cox regresyon 
model uyumunun değerlendirilmesi önemlidir. Bu varsayımın ihlali, geçersiz bir modele neden olur ve sonuçların yorumunu 
değiştirir. Amaç risk kestirimi olduğunda, esnek yapıları nedeniyle çeşitli makine öğrenimi yöntemleri Cox regresyon  
modeli için iyi alternatifler olabilir.  Bu çalışmada Cox regresyon modeli ile kolektif makine öğrenimi yöntemlerinin kestirim 
performanslarının karşılaştırılması için Türk meme kanseri veri seti kullanılmıştır. Aday modellerin kestirim 
performanslarının ölçülmesinde bütünleşmiş Brier skor kullanılmıştır. Örnek çalışma sonuçlarına göre, makine öğrenimi 
yöntemleri sağkalım kestirimi için gelecek vaat eden alternatiflerdir. 
 
Anahtar Kelimeler: Sansürlenmiş veri, Cox regresyon modeli, Makine öğrenimi, sağkalım kolektif yöntemleri, Kestirim 
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1.  Introduction 

Survival data includes the information of survival time 
that is defined as the time to the occurrence of a given 
event such as death and remission. When subjects have 
not experienced the event of interest at the end of the 
study, exact survival times are unknown and called as 
censored observations. If the event occurs for each 
individual in the sample, many classical statistical 
methods can be used. However, some of the individuals 
generally do not have the event of interest at the end of 
follow-up time and their true time to event is unknown. 
Therefore, methods for analyzing censored data differ 

from classical approaches [1]. Although several statistical 
models have been proposed for analyzing survival data, 
frequently used one is Cox regression model (CRM).  

Main assumption of CRM is the proportionality of the 
hazards. If this assumption is violated, usage of CRM may 
not be valid. Unfortunately, this important assumption 
has been checked and properly reported in very few 
scientific publications [2]. An alternative to CRM is the 
parametric survival models that involve stronger 
assumptions than semi-parametric models. Compared to 
CRM, there is extra requirement of checking the 
appropriateness of the selected distribution. To avoid the 
increased efforts of model checking and model 
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misspecification of parametric survival models, 
statisticians tend to prefer CRM [3].  
CRM can be used to identify the variables that significantly 
affect the outcome of interest and present the results in 
terms of hazard ratio [4]. Exploration of presence of high 
order interactions needs inclusion of interaction terms in 
the model that makes model interpretation more difficult 
[5]. Alternative strategies handling these problems easily 
are machine learning (ML) algorithms that are applied to 
survival data in recent years [6]–[9]. Survival trees and 
survival ensembles are popular nonparametric ML 
methods used as an alternative to classical survival 
models. 
Wang et al. [9] provide a brief overview of ML methods in 
addition to traditional methods for survival data analysis. 
They classify ML methods for survival data under five 
basic classes: survival trees, Bayesian methods, artificial 
neural networks, support vector machines and advanced 
ML methods. Survival trees [10] are extension of decision 
trees for survival data. Ensemble learning methods that 
are classified under advanced ML methods, are purposed 
to improve predictive performance of single decision 
trees. They combine the predictions of various base 
models (decision trees) to provide better predictions than 
a single model. These methods are nonparametric 
methods and have advantages such as easily handling 
interactions between variables and nonparametric 
relations. Predictions are obtained by averaging over 
individual trees in regression and by majority voting in 
classification tasks. Bagging [11], random forest [12] and 
boosting [13] methods are ensemble methods. Bagging is 
the earliest ensemble method that relies on bootstrap 
aggregation to reduce the variance of prediction [14]. 
Breiman [11] applied bagging procedure to solve the 
overfitting and stability problems that occur with single 
trees. Hothorn et al. [10] applied bagging procedure to 
right-censored data. They approximated bootstrap 
aggregated conditional survivor function using bootstrap 
learning samples. Breiman [12] purposed random forest 
approach to improve bagging procedure by choosing a 
random sample of predictors at a given tree node. 
Objective is to reduce the correlation among the trees and 
improve prediction accuracy. Random survival forest 
(RSF) is purposed by Ishwaran et al. (2008) by applying 
random forest approach to right censored survival data 
[15]. Boosting method combines the base learners 
iteratively to obtain strong learner. Hothorn et al. [16] 
introduced a random forest and a generic gradient 
boosting algorithms for censored data. 
In this study, we aim to compare risk prediction 
performance of CRM and ensemble ML methods using a 
real data set related to breast cancer patients in Turkey. 
Here, risk is defined as recurrence of the illness after the 
operation time. We used bagging, random forest, gradient 
boosting method (GBM) to predict survival risk as an 
alternative to CRM. Predictive performances are 
compared using integrated Brier Score (IBS) criterion.  
This paper is organized as follows. Basic information 
about survival analysis, Cox regression model and 

ensemble learning methods are introduced in Section 2. 
Criterion to compare different methods is summarized in 
Section 3. Case study is applied in Section 4. Conclusion is 
given in Section 5. 

2.  Methods 
Survival analysis is a class of statistical methods for 
studying the occurrence and timing of events. The 
distribution of survival time is characterized by 
probability density function, hazard function or survival 
function.  
Hazard function is defined as, 
 

ℎ(𝑡) = lim
∆𝑡→0

𝑃(𝑡 ≤ 𝑇 ≤ ∆𝑡 𝑇 > 𝑡)⁄

∆𝑡
 

 
(1) 

for t>0 and represents the probability that an individual 
alive at t experiences the event in the next period ∆t. 
Survival function denotes the probability that failure will 
occur after time t and is given by, 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = ∫ 𝑓(𝑥)𝑑𝑥,     0 < 𝑡 < ∞

∞

𝑡

 

 

(2) 

A non-parametric estimator of S(t) is Kaplan-Meier (KM) 
estimator which does not allow to evaluate the impact of 
more than one covariate. This disadvantage causes to 
prefer regression type models to make a more detailed 
analysis including covariates. Although several survival 
models are suggested for censored data, CRM is the most 
popular and applicable regression type within these 
models.   

2.1. Cox Regression Model 
Analyzing the impact of potential factors on patients’ 
survival is typically based on the CRM that is a semi-
parametric survival model. The model enables one to 
assess a relationship between patients’ survival time and 
covariates.  
CRM is used to obtain the covariate effects on hazard 
function. The survival data for unit i consists of  (𝑡𝑖, 𝛿𝑖, 𝒙𝒊,
𝑖 = 1,2, … , 𝑁) where 𝑡𝑖  is the time on study, 𝛿𝑖 is the event 

indicator (𝛿𝑖 = 1 if the event has occurred and 0iδ  if the 

survival time is censored) and 𝒙𝒊 is the vector of 
covariates. Under these notations hazard function is given 
by, 
 

ℎ𝑖(𝑡) = ℎ0(𝑡) 𝑒𝑥𝑝(𝜷′𝒙𝒊) 

 
(3) 

where ℎ0(𝑡) is the baseline hazard function and β is a 𝑝𝑥1 
vector of unknown parameters. If  the set of units who are 
at risk at time 𝑡𝑖  is denoted by 𝑅(𝑡𝑖), likelihood for the 
CRM is given by, 
 

(4) 



Aslıhan Şentürk Acar, Nihal Ata Tutkun 
Use of Ensemble Methods for Survival Prediction 

 

160 
 

𝐿(𝛽) = ∏ [
𝑒𝑥𝑝(𝜷′𝒙𝒊)

∑ 𝑒𝑥𝑝(𝜷′𝒙𝒍)𝑙𝜖𝑅(𝑡𝑖)
]

𝛿𝑖𝑁

𝑖=1

 

 

Parameter estimation is obtained by the Newton-Raphson 
procedure in the CRM.   

2.2. Bagging 
Bagging term was used by Breiman [11] as an acronym for 
bootstrap aggregation. Decision trees may suffer from 
high variance problem that indicates obtaining quite 
different predictions from model fits applied using 
randomly selected different training samples. Bootstrap 
aggregation method draws multiple bootstrap samples 
from the original data, fits decision tree to each bootstrap 
sample and averages prediction of those trees to reduce 
the variance and to improve prediction accuracy. In this 
procedure, approximately two-thirds of the observations 
are used to fit bagged trees and the remaining 
observations (out-of-bag) can be used for prediction 
error.    
Hothorn et al. [10] purposed bagging survival trees that 
computes survival trees based on bootstrap samples. In 
this method, a survival tree is constructed on each 
bootstrap sample. For each subsample, bootstrap 
aggregated estimator of the survival function is the KM 
curve.  

2.3. Random Forest 
Breiman (2001) purposed random forest approach by 
incorporating a random feature selection process into the 
base learning process. In this method, a random bootstrap 
sample is drawn to grow a tree as in bagging process but 
at each node, randomly selected subset of the predictors 
are chosen for the split. In this way, correlation between 
the trees is reduced and more accurate predictions can be 
obtained. Number of randomly selected predictors is 
approximately chosen as the square root of total number 
of predictors.   
Hothorn et al. [16] proposed random forest algorithm for 
the log–survival time. They used inverse probability of 
censoring (IPC) weights obtained using KM estimator for 
bootstrap sampling and a tree is constructed for each 
sample. IPC weights are used to deal with bias in 
population average. RSF approach is purposed by 
Ishwaran et al. (2008) by applying random forest 
approach to right censored survival data [15]. They used 
four different splitting rule; log-rank, conservation-of-
events, log-rank score rule and random log-rank splitting 
rule. Algorithm can be summarized as follows, 

 B bootstrap samples are drawn from the original 
data. On average 37% of observations is excluded 
from the sample as out-of-bag (OOB) data. 

 Survival tree is constructed for each bootstrap 
sample. At each tree node, a subset of predictor 
variables is chosen randomly. The node is split 
into daughter nodes according to the survival 
difference.  

 This process is repeated recursively for each 
node until a predetermined stopping criterion is 
ensured.  

 Cumulative hazard rate functions are estimated 
using Nelson-Aalen estimators for each tree [15], 
[17] and these estimates are aggregated to obtain 
ensemble survivor function.  

 Prediction error is calculated using OOB data. 

2.4. Boosting 
Boosting method is based on an iterative estimation 
process in that each weak estimator (tree) is grown using 
the information (residuals) of previous estimator to 
obtain a strong estimator. Objective is to minimize a loss 
function that is initially defined. Number of terminal 
nodes of the trees may be small and can be determined in 
the algorithm. Boosting method has three tuning 
parameters for the estimation; number of trees to fit, 
shrinkage parameter that controls the learning rate of 
algorithm and the number of splits in each tree [18]. Two 
different implementations of boosting approach are 
model based boosting (gradient boosting) and likelihood 
based boosting (offset boosting). These two methods 
differ with the updates of regression coefficients at each 
step [19]. In this study, we use gradient boosting 
algorithm [20] that can be summarized as follows, 
Let y denotes the response variable, 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑛} is 

a set of explanatory variables and 𝐿(𝑦, 𝐹(𝒙))  is a generic 

loss function. Objective is to estimate 𝐹∗(𝒙) that 
minimizes expected value of 𝐿(𝑦, 𝐹(𝑋)) over the joint 

distribution of (𝑦, 𝒙),  
 

𝐹∗ = arg 𝐸𝑦,𝒙𝐿(𝑦, 𝐹(𝒙))𝐹
𝑚𝑖𝑛  

 

(5) 

Friedman [18] focused on additive form of 𝐹(𝒙) as 
𝐹(𝑋, {𝛽𝑚 , 𝑢𝑚}1

𝑀) = ∑ 𝛽𝑚ℎ(𝒙, 𝑢𝑚)𝑀
𝑚=1  where ℎ(𝒙, 𝒖) is a 

base learner (e.g. classification tree) with parameters 𝒖 =
{𝑢1, 𝑢2, … }. Different numerical optimization methods can 
be to obtain parameters. Steepest descent numerical 
minimization method is one of them and summarized by 
Friedman [18] as follows, 
 
Define an initial value 𝐹0(𝒙) = arg 𝑚𝑖𝑛𝜌 ∑ 𝐿(𝑦𝑖 , 𝜌)𝑁

𝑖=1  

where, 𝜌𝑚 = arg 𝐸𝑦,𝒙𝜌
𝑚𝑖𝑛 𝐿(𝑦, 𝐹𝑚−1(𝒙) − 𝜌𝑔𝑚(𝒙)) with 

𝑔𝑚(𝒙) = 𝐸𝑦 (
𝜕𝐿(𝑦,𝐹(𝒙))

𝜕𝐹(𝒙)
|𝒙)

𝐹(𝒙)=𝐹𝑚−1(𝒙)
 is the gradient. 

For m=1 to M iterate: 
1. Pseudo-responses are calculated,                                                         

�̃�𝑖 = − [
𝜕𝐿(𝑦𝑖,𝐹(𝒙𝒊))

𝜕𝐹(𝒙𝒊)
]

𝐹(𝒙)=𝐹𝑚−1(𝒙)
, 𝑖 = 1,2, … , 𝑁 

2. Base learner is fitted to pseudo-responses,     
𝒖𝑚 = arg 𝑚𝑖𝑛𝒖,𝛽 ∑ [�̃�𝑖 − 𝛽ℎ(𝒙𝒊, 𝒖)]2𝑁

𝑖=1  

3. 𝜌𝑚 = arg 𝑚𝑖𝑛𝜌 ∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝒙𝑖) + 𝜌ℎ(𝒙𝑖, 𝒖𝑚))𝑁
𝑖=1  

4. Model is updated, 𝐹𝑚(𝒙) = 𝐹𝑚−1(𝒙) +
𝜌𝑚ℎ(𝒙, 𝒖𝑚) 
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For quadratic loss function, this method is called L2 

boosting method for censored data. Bühlmann [21] used 
L2 boosting method with component-wise least squares. 
In this study we used gradient boosting approach with 
component-wise linear models.  
 

3.  Comparison of Methods 
When the objective is prediction, predictive accuracy of 
models can be evaluated by discrimination and 
calibration. In the presence of censored data, evaluating 
predictive accuracy of the models is difficult due to the 
unknown failure times of observations. In recent years, 
time-dependent Brier score (BS) [22] is frequently used 
to compare predictive performance of survival models 
[23]. BS is a measure of both discrimination and 
calibration [24].  
BS measures average difference between the observed 
outcome and the predicted survival probability [6]. For 
𝑖 = 1,2, … , 𝑁 let 𝑇𝑖 and 𝐶𝑖 denote survival time and 
censoring time of subject i respectively. BS at time 𝑡 is 
given by, 
 

𝐵𝑆(𝑡) =
1

𝑁
∑ {

(0 − �̂�(𝑡 𝑥𝑖⁄ ))
2

�̂�(𝑡)
𝐼(𝑇𝑖 ≤ 𝑡, 𝛿𝑖 = 1)

𝑁

𝑖=1

+
(1 − �̂�(𝑡 𝑥𝑖⁄ ))

2

�̂�(𝑡)
𝐼(𝑇𝑖 > 𝑡)} 

 

(6) 

where �̂�(𝑡) = 𝑃(𝐶𝑖 > 𝑡) denotes the KM estimate of the 
censoring survival function ([22]; [25]). IBS is obtained by 
calculating BS across all available times. Lower BS 
indicates better fit of the model. 

4.  Case Study 

4.1. About data 
Breast cancer data [26] related to 124 patients are used 
for the case study.  In the following analysis, recurrence of 
the illness after the operation time is the endpoint of 
interest (failure). This variable is measured in months and 
there is 146-month-follow-up period. Patients that did not 
experience disease again at the end of the follow-up 
period, are treated as censored observations. 35.5% of 
sample are censored. 5-year survival probability is 59.4% 
in the sample. Mean, median, 1st quartile and  3rd quartile 
of survival times are 74-months (67-83), 81-months (60-
91), 36-months (30-48) and 108-months (96-120) with 
%95 confidence interval inside the parenthesis 
respectively.   
Age, medical treatment type, radiotherapy, tumour size, 
type of intervention, stage of disease, toxicity, climacteric, 
number of axillary lymph nodes are used as prognostic 
factors which effect the survival time of breast cancer 
patients. Table 1 shows the summary information about  
predictor variables. 
 

{Table 1 is at the bottom of the paper} 

 

4.2. Analysis 
Before modeling process, proportional hazards 
assumption is assessed by a statistical test. This test is 
accomplished by finding the correlation between the 
Schoenfeld residuals for a particular covariate and the 
ranking of individual failure times. It is shown by a 
correlation analysis of partial residuals with time. p-
values obtained for all covariates are greater than 0.05 
which shows the validity of PH assumption for this data 
set. Therefore, CRM is run for the data set and model fit 
results are given in Table 2. The model is statistically 
significant at 95% confidence interval. 

Table 2. Results of CRM 

Variable Coef 
S.E. 

(coef) 
z p exp (coef) 

Age 0.043 0.019 5.283 0.022 1.044 

Clm1 0.12 0.397 0.092 0.762 1.128 

Size1 -0.968 0.311 9.687 0.002 0.38 

Size2 -1.118 0.397 7.926 0.005 0.327 

Node1 -0.513 0.297 2.982 0.084 0.599 

Node2 0.348 0.399 0.761 0.383 1.416 

Rth1 -0.374 0.245 2.324 0.127 0.688 

Tox1 -0.209 0.267 0.612 0.434 0.811 

Int1 1.026 0.42 5.973 0.015 2.791 

Int2 0.434 0.409 1.123 0.289 1.543 

Stage1 0.326 0.274 1.407 0.236 1.385 

Trt1 0.088 0.291 0.09 0.764 1.091 

 
According to p-values given in Table 2, age, tumour size 
and type of intervention (modified radke mastectopia) 
are statistically significant at 95% confidence level. 
Estimated hazard of age is 1.044 that means the risk of 
failure increases 1.044 unit for 1-unit increase in age.  The 
hazard for the patients with the tumor size smaller than 2 
cm is 2.63 times the hazard for the patients with the tumor 
size of 2-5 cm and 3.06 times for the patients with the 
tumor size larger than 5 cm.  The hazard for the patients 
with the intervention of modified radke mastectopia is 
2.791 times the hazard for the patients with fixed 
mastectopia.  
We also used backward stepwise variable selection 
(BSVS). According to variable selection, only age and 
tumour size are statistically significant variables. Results 
are given in Table 3. 
 

Table 3. Results of CRM (BSVS) 

Variable Coef S.E.(coef)      z p exp(coef) 

Age 0.039 0.010 3.77 0.0002 1.040 

Size 1 -0.842 0.271 -3.11 0.0019 0.431 

Size 2 -0.917 0.361 -2.54 0.011 0.400 
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Our second model is bagging method that use conditional 
inference trees as base learners [27]. We used 1000 trees 
for fitting process. Third approach is Ishwaran’s RSF 
approach that is fitted using 1000 trees [15] as in bagging 
and default parameters of randomForestSRC package in R 
[15] are used. Log-rank splitting rule is used for the 
algorithm [28]. According to RSF results, average terminal 
node size includes three observations and average 
number of terminal nodes per tree is 38. Three of nine 
predictors are randomly selected as candidate predictors 
for each node split. OOB error is 37.27%. Lastly, negative 
partial log-likelihood is used for Cox model inside GBM 
algorithm [29]. According to GBM estimation results age, 
radiotheraphy, tumour size, type of intervention, stage of 
disease, toxicity and the number of axillary lymph nodes 
are selected as predictor variables.  
 
Since the sample size is small, dividing data set into 
training and test set may induce bias. In this case, cross-
validation (CV) methods are used to see how the model 
will perform on independent data set. We used 10-fold CV 
method to compare predictive performance of models. In 
this method, data set is randomly separated into 10 
subsamples in equal size. One of subsample is separated 
as validation data and remaining ones are used for model 
training. Estimation results of 10 subsamples are 
averaged to calculate final estimation value. IPC weights 
are used to deal with right-censored data and KM method 
is used to estimate weights. CV and model comparison are 
performed using riskRegression R package [23]. Since 
gradient boosting method does not exist within applicable 
methods inside riskRegression package, we extended 
codes to implement it.  
 
Table 4 shows IBS values calculated at mean (74), median 
(81), 1st quartile (36) and 3rd quartile (108) values of 
survival times (months) with %95 confidence intervals 
inside the parenthesis respectively. 

{Table 4 is at the bottom of the paper} 

 
According to prediction results given in Table 4, when va
riable selection is not applied to CRM , RF and GBM perfo
rmed better than CRM and bagging method. But, when BS
VS is applied, CRM performed best predictive performanc
e at mean and median survival time points. At 1st quartile 
and 3rd quartile survival time points, GBM and RF perfor
med best respectively. We can conclude that variable sele
ction is a vital step for the predictive performance of CRM 
and ML methods are good alternatives to CRM. Important 
advantage of RF and GBM is the automatic variable select
ion process inside the algorithms.  

5.  Conclusion 
CRM is one of the most widely used approach for censore
d data due to its easy interpretability and few assumption
s. But it has some restrictions such as proportional hazar
ds assumption. To predict risk with censored data, ML me
thods are good alternative since they do not  have distrib
utional restrictions and some algorithms handle variable 

selection, interactions and nonlinear relationships among 
variables automatically.  
Case study supports the idea that ML methods are good a
lternatives to classical survival methods when the objecti
ve is the risk prediction. RF and GBM performed better th
an bagging and CRM (without variable selection) at all pr
ediction time points. This is an expected result since RF a
nd GBM are improved versions of bagging method. Variab
le selection increased the predictive performance of CRM 
since CRM performed better than RF and GBM after BSVS 
at mean and median survival times. But we can not gener
alize this result because performances may change accor
ding to the data sets.  
Restriction of the study is that sample size of data set is 
small and there are few predictor variables.  ML methods 
are known to be effective for big data analytics. As a future 
study, predictive performance of ensemble methods and 
CRM can be compared on different larger data sets. Also 
different popular ML methods such as artificial neural 
networks [30] and support vector machines [31] can be 
used for survival prediction.  
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Table 1. Summary of predictor variables 
Predictor variables 

(abbreviation) 
Levels Definition of levels Numbers 

Medical treatment type (trt) 
0 Tamoxifen (TMX)   59 
1 Phenylalanine mustard  (L-PAM) 65 

Radiotherapy (rth) 
0 Yes 66 
1 No 58 

Tumour size (size) 
0 <2 cm 31 
1 2-5 cm 66 
2 >5 cm 27 

Type of intervention (int) 
0 Fixed mastectopia 21 
1 Modified radke mastectopia 48 
2 Radke mastectopia 55 

Stage of disease (stage) 
0 Stage I 42 
1 Stage II 82 

Toxicity (tox)  
0 None 76 
1 Nausea/vomiting/ hot head 48 

Climacteric (clm) 
0 Cut 66 
1 Continue 58 

Number of axillary lymph 
nodes  

0 None 50 
1 1-2-3 52 
2 4+ 22 

Age  (median (min-max)) 49     (25-78) 

Table 4. IBS values (%95 confidence interval) 

Model Mean (74) Median (81) 1st quartile (36) 3rd quartile (108) 

CRM 0.227 (0.144,0.327) 0.236 (0.161,0.309) 0.221 (0.182,0.243) 0.245 (0.141,0.446) 

CRM (BSVS) 0.214 (0.165,0.317) 0.214 (0.170,0.302) 0.197 (0.169,0.234) 0.208 (0.125,0.304) 

Bagging 0.229 (0.161,0.356) 0.231 (0.162,0.332) 0.211 (0.169,0.256) 0.221 (0.140,0.367) 

RF 0.225 (0.161,0.312) 0.233 (0.174,0.306) 0.216 (0.187,0.237) 0.202 (0.160,0.281) 

GBM 0.218 (0.160,0.291) 0.223 (0.171,0.287) 0.196 (0.168, 0.224) 0.228 (0.141,0.411) 

     


