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Abstract 

Automatic sleep staging is aimed within the scope of this paper. Sleep staging is a study by a sleep specialist. Since this process takes 

quite a long time and sleep is a method based on the knowledge and experience, it is inevitable for each person to show different 

results. For this, an automatic sleep staging method has been introduced. In the study, EEG (Electroencephalogram), EOG 

(Electrooculogram), EMG (Electromyogram) data recorded by PSG (Polysomnography) device for seven patients in Necmettin 

Erbakan University sleep laboratory were used. 81 different features were taken from the data in time and frequency environment. 

Also, PCA (Principal component analysis) and SFS (Sequential forward selection) feature selection methods were used. The 

classification success of the sleep phases in different machine learning methods was measured by using the received features. Linear 

D. (Linear Discriminant Analysis), Cubic SVM (Support vector machine), Weighted kNN (k nearest neighbor), Bagged Trees, ANN 

(Artificial neural network) were used as classifiers. System success was achieved with a 5 fold cross-validation method. Accuracy 

rates obtained were respectively 55.6%, 65.8%, 67%, 72.1%, and 69.1%.  

 

Keywords: PSG, Sleep Stages, EEG, EOG, EMG, Bagged Trees. 

PSG Kayıt Sinyalleri Kullanılarak Uyku Evrelerinin Sınıflandırılması 

Öz 

Bu çalışma kapsamında uyku evrelerinin sınıflandırılması amaçlanmaktadır. Uyku evreleme uyku uzmanları tarafından 

gerçekleştirilen bir çalışmadır. Bu süreç oldukça uzun sürdüğü ve uyku bilgi ve deneyimine dayalı olduğu için her bir kişi için farklı 

sonuçlar göstermesi kaçınılmazdır. Bunun için, otomatik uyku evreleme yöntemi tanıtılmıştır. Çalışmada Necmettin Erbakan 

Üniversitesi uyku laboratuvarındaki yedi hasta için PSG (Polisomnografi) cihazı ile kaydedilen EEG (Elektroensefalogram), EOG 

(Elektrookülogram), EMG (Elektromyogram) verileri kullanılmıştır. Verilerden zaman ve frekans ortamlarında 81 farklı özellik elde 

edilmiştir. Ayrıca, temel bileşen analizi (Principal component analysis -PCA) ve sıralı ileri seçim (Sequential forward selection-SFS) 

özellik seçme yöntemleri kullanılmıştır. Uyku evrelerinin sınıflandırma başarıları farklı makine öğrenmesi yöntemleri ve elde edilen 

özellikler kullanılarak ölçülmüştür. Sınıflandırıcı olarak Doğrusal D. (Doğrusal Diskriminant Analizi), Kübik SVM (Destek vektör 

makinesi), Ağırlıklı kNN (k en yakın komşu), Torbalı Ağaçlar, YSA (Yapay sinir ağı) kullanılmıştır. Sistem başarısı 5-kat çarpraz 

doğrulama ile elde edilmiştir. Elde edilen doğruluk oranları sırasıyla % 55.6, % 65.8, % 67, % 72.1 ve % 69.1'dir. 

 

Anahtar Kelimeler: PSG, Uyku Evreleme, EEG, EOG, EMG, Torbalı Ağaçlar. 
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1. Introduction 

The process of sleep staging is carried out by an expert by examining the electroencephalogram (EEG), the electrooculogram 

(EOG), and electromyogram (EMG), electrocardiogram (EKG) tracings received from patients throughout the night (6-8 hours) and 

some other signals and by identifying stages of sleep in different parts of time called epoch (30-second parts). The process is executed 

by a sleep expert and takes quite a long time. Making these processes done automatically reduces processing load and  provides 

convenience for sleep expert in the diagnosis process and shortens the diagnosis period. Among the signals examined, 

Elektroensefalogram (EEG), right and left eye Elektrookülogram (EOG) and the chin Elektromiyogram (EMG) signals are the most 

frequently used ones (Iber, Ancoli-Israel,  Chesson & Quan, 2007). 

In spite of fact that EEG, EOG and EMG tracings are used basically in sleep staging, especially the density of EEG signal in 

staging process and the power in detecting stages higher than the other signals. There are five sleep stages: Awake (W), Non-REM1, 

Non-REM2, Non-REM3 and REM (Iber, Ancoli-Israel,  Chesson & Quan, 2007). 

In literature, many scientific researches has been done using automatic sleep staging methods relating to sleep staging process. 

Among them, Yücelbaş et al. (2015) went for the purification of EEG signals for a healthy evaluation due to the noises of EEG, EOG, 

EMG signals during recording and measured the staging success between the pure EEG signal and the impure EEG signal using ANN 

(Yücelbaş et al., 2015). Huang et al. (2020) have suggested a signal pre-processing and feature scanning method. They classified the 

features which are obtained with SVM method (Huang et al., 2020). Jiang et al. (2019) in the study, has presented multimode signal 

decomposition and feature extraction in order to obtain effective features from sub-band signals of single-channel EEG data (Jiang, 

Lu, Ma & Wang, 2019). Liu et al. (2020) in order to combine spectral information, have visualized sleep dynamics by employing 

diffusion geometry based sensor fusion algorithm and suggested an algorithm for automatic sleep staging (Liu, Lo, Malik, Sheu & 

Wu, 2020). Diykh et al. (2020) has divided each epoch of EEG signal into the blocks using sliding window technique and has 

extracted statistical features and presented to least-squares support-vector machine (LS-SVM) classifier (Diykh, Li & Abdulla, 2020). 

Abdulla et al. (2019) proposed a technique to classify sleep phases by using correlation graphics from sleep EEG signals (Abdulla, 

Diykh, Laft, Saleh & Deo, 2019). Fan (2018) has proposed automatic sleep staging system using combination of Multi scale entropy 

(MSE) and Principal components Analysis (PCA) (Fan, 2018). Savareh et al. (2018) used wavelet tree analysis (Savareh, Bashiri, 

Behmanesh, Meftahi & Hatef). 

In this study, the process of classification sleep stages has been performed using Linear D., Cubic SVM, Weigted kNN, Bagged 

Trees, ANN. The performances of these methods in sleep stage classification has been evaluated. 

2. Material and Method 

2.1. Data Used 

In the study, PSG (Polysomnography) recording data sampled with 200 Hz sampling frequency of 7 people recorded in the sleep 

laboratory of Necmettin Erbakan University Meram Medical Faculty was used. Taken from 7 patients; EEG signal (0.5-35 Hz 

bandpass filter Butterworth, 6th order), EMG signal (1-45 Hz bandpass filter Butterworth, 6th order), R / LEOG signal (0.3-30 Hz 

bandpass filter Butterworth, 6th degrees) filtered and divided into epochs. 6000 data correspond to each 30 sec epoch of the signal 

recorded with 200 Hz. The distribution of the total number of epochs for all signal recordings (EEG, REOG, LEOG, and EMG) by 

stages is given in Table 1. 

Table 1. Distribution of sleep stages 

Stages Number of epoch 

Awake(W) 1072 

Non-REM1(N1) 420 

Non-REM2(N2) 2863 

Non-REM3(N3/SWS) 385 

REM 650 

Total 5390 

 

For the classification process to proceed in a healthy way, 400 epochs randomly selected from other stages were taken on the 

basis of N3 (385) stage, which has the lowest epochs number of sleep stages. Thus, it is aimed to minimize the effect of stages on each 

other during the classification stage. 

2.2. Frequency Estimation Methods 

Plotting a signal in the time domain is expressed in time-amplitude representation. But depending on the nature of the signals, 

often discernible important information is kept secret in frequency components. In the study, features were extracted from all signal 

records (EEG, REOG, LEOG, EMG) in time and frequency environment. Welch method, which is one of the spectrum estimation 

methods, was used for all signal records in the frequency environment. 
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Welch Method: In this method, the signal whose frequency spectrum is to be estimated is divided into overlapping (or not 

overlapping) windows. The FFT (Fast Fourier Transform) of each signal particle passed through the window is taken and the average 

of the FFTs of all windows gives the spectrum of the actual signal. The factors that affect performance are window type, window 

length and overlap amount (Welch, 1967). 

 

2.3. Feature extraction and classification system 

The block diagram of the system used for the classification of sleep stages is shown in Figure 1.  

                           

Figure 1. The block diagram of for automatic sleep staging 

2.3.1. Feature generation 

Features in Table 2 were generated from the EEG signal. 

Table 2. Features of EEG signals 

Number Feature 

1 Mean value of the EEG signal in time domain  

2 Standard deviation of the EEG signal in time domain  

3 Skewness of the EEG signal in time domain  

4 Kurthosis of the EEG signal in time domain  

5 Energy of the EEG signal in time domain 

6 Hjorth mobility of the EEG signal in time domain (Hijorth, 1970) 

7 Hjorth complexity of the EEG signal in time domain (Hijorth, 1970) 

8 Sum of the powers of frequencies in alpha band (8-12Hz) 

9 Sum of the powers of frequencies in Beta band (12-16Hz) 

10 Sum of the powers of frequencies in theta band (4-8Hz) 

11 Sum of powers of frequencies in delta band (0-8Hz) 

12 Sum of powers of frequencies in 12–14 Hz (for sleep spindle detection) 

13 Relative powers of frequencies in alpha band that is power of alpha band/power of whole spectrum 

14 Relative powers of frequencies in beta band that is power of beta band/power of whole spectrum 

15 Relative powers of frequencies in theta band that is power of theta band/power of whole spectrum 

16 Relative powers of frequencies in delta band that is power of delta band/power of whole spectrum 

17 Relative powers of frequencies in Spindle freq. band that is power of Spindle freq, band/power of whole spectrum 

18 Power of alpha band in related epoch/power of alpha band in previous epoch 

19 Power of beta band in related epoch/power of beta band in previous epoch 

20 Power of theta band in related epoch/power of theta band in previous epoch 

21 Power of delta band in related epoch/power of delta band in previous epoch 

22 Power of Spindle freq, band in related epoch/power of Spindle ferq. band in previous epoch 

23 Mean value of the EEG signal in frequency domain 

24 Standard deviation of the EEG signal in frequency domain 

25 Sum of the powers in frequency spectrum of EEG signal 

26 Skewness of the left EEG signal in frequency domain 

27 Kurthosis of the left EEG signal in frequency domain 

 Features generated from the Left/ Right and F (LEOG-REOG) EOG signal are shown in Table 3. 
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Table 3. Features of EOG signals 

Number Feature 

28 Mean value of the L-EOG signal in time domain 

29 Standard deviation of the L-EOG signal in time domain   

30 Skewness of the L-EOG signal in time domain 

31 Kurthosis of the L-EOG signal in time domain 

32 Energy of the L-EOG signal in time domain 

33 Hjorth mobility of the L-EOG signal in time domain 

34 Hjorth complexity of the L-EOG signal in time domain 

35 Mean value of the R-EOG signal in time domain 

36 Standard deviation of the R-EOG signal in time domain  

37 Skewness of the R-EOG signal in time domain 

38 Kurthosis of the R-EOG signal in time domain 

39 Energy of the R-EOG signal in time domain  

40 Hjorth mobility of the R-EOG signal in time domain 

41 Hjorth complexity of the R-EOG signal in time domain 

42 Mean value of the F-EOG signal in time domain 

43 Standard deviation of the F-EOG signal in time domain 

44 Skewness of the F-EOG signal in time domain 

45 Kurthosis of the F-EOG signal in time domain 

46 Energy of the F-EOG signal in time domain 

47 Hjorth mobility of the F-EOG signal in time domain 

48 Hjorth complexity of the F-EOG signal in time domain 

49 Sum of the powers of frequencies in 0,5–2 Hz for L-EOG 

50 Relative powers of frequencies in 0,5–2 Hz that is power of 0,5–2 Hz/power of whole spectrum, for L-EOG  

51 Power of 0,5-2Hz, band in related epoch/power of 0,5-2Hz band in previous epoch, for L-EOG 

52 Mean value of the L-EOG signal in frequency domain 

53 Standard deviation of the L-EOG signal in frequency domain 

54 Sum of the powers in frequency spectrum of L-EOG signal 

55 Skewness of the L-EOG signal in frequency domain 

56 Kurthosis of the L-EOG signal in frequency domain 

57 Sum of the powers of frequencies in 0,5–2 Hz for R-EOG 

58 Relative powers of frequencies in 0,5–2 Hz that is power of 0,5–2 Hz/power of whole spectrum, for R-EOG 

59 Power of 0,5-2Hz, band in related epoch/power of 0,5-2Hz band in previous epoch, for R-EOG  

60 Mean value of the R-EOG signal in frequency domain 

61 Standard deviation of the R-EOG signal in frequency domain 

62 Sum of the powers in frequency spectrum of R-EOG signal 

63 Skewness of the R-EOG signal in frequency domain 

64 Kurthosis of the R-EOG signal in frequency domain 

65 Sum of the powers of frequencies in 0,5–2 Hz for F-EOG 

66 Relative powers of frequencies in 0,5–2 Hz that is power of 0,5–2 Hz/power of whole spectrum, for F-EOG 

67 Power of 0,5-2Hz, band in related epoch/power of 0,5-2Hz band in previous epoch, for F-EOG 

68 Mean value of the F-EOG signal in frequency domain 

69 Standard deviation of the F-EOG signal in frequency domain 

70 Sum of the powers in frequency spectrum of F-EOG signal  

71 Skewness of the F-EOG signal in frequency domain 

72 Kurthosis of the F-EOG signal in frequency domain 

Table 4 presents features generated from the EMG signal. 

Table 4. Features of EMG signals 

Number Feature 

73 Mean value of the EMG signal in time domain 

74 Standard deviation of the EMG signal in time domain 

75 Skewness of the EMG signal in time domain 

76 Kurthosis of the EMG signal in time domain 

77 Energy of the EMG signal in time domain  

78 Hjorth mobility of the EMG signal in time domain 

79 Hjorth complexity of the EMG signal in time domain 

80 Sum of the powers in frequency spectrum of EMGsignal 

81 The power of EMG signal in frequency domain for that epoch/The power of EMG signal in frequency domain for next 

epoch 
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2.3.2. Feature selection 

Feature reduction was performed with PCA (Principal Component Analysis) (Smith, 2002) and SFS (Sequential forward 

selection) (Whitney, 1971) in order to determine the most appropriate feature number among the 81 features obtained. The 

classification process with PCA was carried out for 6, 8, 10… 20 features, respectively. 15 features have been determined with SFS. 

The best classification performance was tried to be achieved with the selected features. 

3. Results and Discussion 

In this study, 81 different features were obtained by Welch method in time and frequency environment for automatic sleep 

staging. PCA and SFS methods were used to increase system classification performance. Matlab, Classification Learn and Neural 

Network toolboxes were used to evaluate the classification performance of the obtained properties. Table 5 shows the classification 

success results for 81 features 

Table 5. Classification success results for 81 features 

Classifier Accuracy(%) 

 

Sensitivity (%) 

W  

N1  

N2  

N3  

REM 

Precision (%) 

W 

N1 

N2 

N3 

REM 

Linear D. 55,6 45 

44 

52 

66 

72 

55 

41 

42 

79 
68 

SVM (Cubic) 65,8 60 

67 

47 

75 

81 

62 

59 

50 

75 

83 

kNN(Weigted) 67 60 

73 

43 

76 

83 

67 

62 

60 

72 

72 

Bagged Trees 72,6 69 

70 

56 

83 

86 

71 

67 

63 

78 

82 

ANN 69,1 60 

61 

57 

85 
83 

69 

58 

62 

77 

79 

If we look at the classification success of the 81 features in Table 5; we see the highest accuracy in the Bagged Trees algorithm. 

Then high success is seen in ANN. If we look at the sensitivity of class in the classification of 81 features, we see that N3 and REM 

phases are classified with a very good sensitivity. If we look at general Sensitivity, we see that the Bagged Trees algorithm gives the 

best sensitivity. If we look at the precision values, it is seen that the N3 and REM phases are still at high rates on the basis of class. 

Bagged Trees method gives the highest precision value among the methods used. 

When we look at the table in general, we see that the Bagged Trees algorithm gives the best success among the methods as the 

highest accuracy, sensitivity and precision rates. 

Classification results of 81 properties and properties selected with PCA are given in Figure 2, Sensitivity and Precision values are 

given in Figure 3 and Figure 4. Figure 5 shows the Accuracy rates for 15 features selected with SFS. 
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Figure 2. 81 features and PCA accuracy values 

 
Figure 3. Sensitivity rates for each class 

 

 
Figure 4. Precision rates for each class 

 

 
Figure 5. Accuracy rates for 15 features selected with SFS 

In Figure 2, if we look at the status of 81 features and the features selected with PCA, it is seen that 81 features show high 

accuracy success.  

When we look at Figure 3, the best classification in terms of sensitivity is seen in the REM stage and we see that the method that 

classifies the REM stage with the best sensitivity is Bagged Trees. When we look at the N3 stage, we see the best sensitivity rate in 

the ANN method. It is seen that the universe where the methods used have the lowest sensitivity is N2.  

In Figure 4, we see that the applied methods classify the N3 and REM stages with high precision. If we look at the REM phase, 

we see that the method that classifies the highest is SVM (Cubic). 

The SFS method was used to select the most suitable feature among the 81 features we extracted and the most suitable success 

was achieved with 15 features. In the SFS method, the most suitable feature search process starts with a blank feature set. As a result 

of the evaluation (the accuracy rate obtained with the kNN algorithm was used.) The best feature is added to the subset. Adding that 

feature continues until the stop criteria are met.  

As a result of SFS transaction; 11, 7, 2, 65, 36, 41, 34, 63, 55, 57, 21, 10, 50, 33, 40 numbered features were obtained. When we 

look at Figure 5, we see the accuracy rate of 15 features selected by the SFS method. Here we see that the highest accuracy rate is 
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taken by the Bagged Trees method. Confusion Matrix is given for the highest accuracy achieved in Table 6. Maximum values are 

given in bold. 

Table 6. Classification success results for 81 features 

  
Predicted Class 

 

T
ru

e C
la

ss 

  W N1 N2 N3 REM   

W 272 58 36 11 23 68% 

N1 70 266 35 13 16 67% 

N2 42 52 227 47 32 57% 

N3 9 14 26 331 5 86% 

REM 26 15 20 3 336 84% 

 
  65% 66% 66% 82% 82% 72.1% 

 

When we look at the confusion matrix in Table 6, we see that the Bagged Trees method achieved 72.1% accuracy with 15 

features. If we examine the Bagged Trees method on a class basis, it shows the highest sensitivity in N3 stage and the highest 

precision in N3 and REM stages. 

4. Conclusions  

As can be seen in Figure 2, the best classification success appears for 81 features. When PCA is applied, the success of the system 

is generally expected to increase, but this has not been the case in this data set. The reason is the relation of the data that the classes 

have. Data loss is noticeable when applying PCA. It has been observed that the success in the PCA has increased with the increase of 

the features processed. It can be seen in Figure 5 that the 15 features selected with SFS give close results with 81 feature accuracy 

rates. When we look at all classes as Accuracy, Sensitivity and Precision, we can say that the Bagged Trees algorithm is the most 

successful algorithm in this study. 
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