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Abstract
In this paper, we determine necessary and sufficient conditions for a non-Frenet Legendre
curve to be f -harmonic, f -biharmonic, bi-f -harmonic, biminimal and f -biminimal in
three-dimensional normal almost paracontact metric manifold. Besides, we obtain some
nonexistence theorems.
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1. Introduction
Theory of curves is one of the most important subject of differential geometry and

it keeps up to date from past to present. The most popular curves in this theory are
Frenet curves since these curves can be studied in many different manifolds. In particular,
Legendre curves have an important role in geometry and topology of almost contact man-
ifolds. In the literature, the most basic papers about Legendre curves studied in contact
manifolds can be listed as, [2, 4, 5, 30].

On the other hand, studies on Frenet Legendre curves are more recent in the literature.
The latest studies which are a source of motivation for us can be briefly listed as, [23,31]. In
the mentioned Frenet Legendre curve studies, the authors focused especially on curvature
and torsion of the curve. However, in this study, different from previous studies, we
handled properties of the maps, which briefly mentioned below.

Harmonic maps, which were defined by Sampson and Eells in [9], have a wide range of
application areas such as physics, mathematics and engineering.

Jiang obtained biharmonic maps between Riemannian manifolds by generalizing har-
monic maps, in [13]. The definition of biharmonic maps for Riemannian immersions into
Euclidean space coincides with the Chen’s definition of biharmonic submanifold given by
using bienergy functional. In recent years, there has been a growing interest in the the-
ory of biharmonic maps which can be divided into two main research directions. On the
one side, constructing the examples and classifing results have become important from
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the differential geometric aspect. The other side, using partial differential equations from
the analytic aspect (see [7, 15, 16, 24, 27–29]), because biharmonic maps are solutions of a
fourth order strongly elliptic semilinear partial differential equation.
f -harmonic maps between Riemannian manifolds were introduced by Lichnerowicz in

1970 and then were examined by Eells and Lemaire, in [10]. f -harmonic maps have a phys-
ical meaning as the solution of inhomogeneous Heisenberg spin systems and continuous
spin systems, [3]. For this reason, these maps are of interest not only to mathematicians
but also to physicists.

On the other hand, the relations between biharmonic and f -harmonic maps were sum-
marized by Perktaş et.al. in two ways, in [25]. The first one is to extend bienergy functional
to bi-f -energy functional and obtain a new type of harmonic map called as bi-f -harmonic
map. The second one is to extend the f -energy functional to the f -bienergy functional and
achieve a new type harmonic map called as f -biharmonic map which are critical points of
f -bienergy functional, [22, 33].
f -biharmonic maps and bi-f -harmonic maps between Riemannian Manifolds were de-

fined by Lu, in [18, 19]. Furthermore in [21], Ou gave complete classification of f -
biharmonic curves in three-dimensional Euclidean space and characterization of f -biharmonic
curves in n-dimensional space forms. Moreover, bi-f -harmonic maps as a generalization of
biharmonic and f -harmonic maps were introduced by Ouakkas et.al., in [22]. In addition,
Roth defined a non-f -harmonic, f -biharmonic map as a proper f -biharmonic map, [26]. It
should be emphasized that there is no relation between f -biharmonic and bi-f -harmonic
maps.

Biminimal immersions and biminimal curves in a Riemannian manifold were defined
by Loubeau and Montaldo, [17]. Finally, f -biminimal immersions were defined by Karaca
and Özgür, in [11].

Motivating by these studies, in this paper, we study non-Frenet Legendre curves in
three-dimensional normal almost paracontact metric manifold. First, we give the basic
notions in preliminary section. Then in section 3, we give some theorems which will be
needed in following subsections. In subsection 3.1, we obtain f -harmonicity conditions. In
subsection 3.2, we get f -biharmonicity conditions and we determine these conditions also
in α-para-Kenmotsu manifolds. In subsection 3.3, we obtain bi-f -harmonicity conditions
and also discuss these conditions in various cases. Finally in subsection 3.4 and 3.5, we
get biminimality and f -biminimality conditions respectively.

2. Preliminaries
This section includes some definitions and propositions that will be required throughout

the paper.

Definition 2.1. For any curve γ, if ∥γ′∥ = 1, then curve γ is unit speed curve in Eu-
clidean space. Let γ : I −→ E3 be a unit speed curve in the Euclidean three-space with
{κ, τ, T,N,B} Serret-Frenet apparatus. Here κ, τ denote the curvature and the torsion;
{T,N,B} denote the tangent, principal normal and binormal unit vectors of the curve γ,
respectively. Then there exists an orthogonal frame {T,N,B} which satisfies the Serret-
Frenet equation 

T
′ = κN

N
′ = −κT + τB

B
′ = −τN.

Here γ is called a Frenet curve if κ > 0 and τ ̸= 0. Frenet frame, the best known and most
frequently used frame on a curve, plays an important role in differential geometry, [12].
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Definition 2.2. Let (N, g) and (N̄ , ḡ) be Riemannian manifolds. If a map ψ : (N, g) →
(N̄ , ḡ) is a critical point of the energy functional

E(ψ) = 1
2

∫
N

|dψ|2dvg,

then it is defined as a harmonic map, where vg is the volume element of (N, g). Besides,
a map called as harmonic if

τ(ψ) := trace∇dψ = 0. (2.1)
Here τ(ψ) is the Euler-Lagrange equation of the energy functional E(ψ), where it is the
tension field of map ψ and ∇ is the connection induced from the Levi-Civita connection
∇N̄ of N̄ and the pull-back connection ∇ψ, [9, 11].

Biharmonic maps are defined as below:

Definition 2.3. If ψ : (N, g) → (N̄ , ḡ) map is a critical point, for all variations, of the
bienergy functional

E2(ψ) = 1
2

∫
N

|τ(ψ)|2dvg,

then it is called as a biharmonic map.
Bitension field τ2(ψ), namely the Euler-Lagrange equation of a biharmonic map is given
as:

τ2(ψ) = trace(∇ψ∇ψ − ∇ψ
∇)τ(ψ) − trace(RN̄ (dψ, τ(ψ))dψ) = 0, (2.2)

where RN̄ is the curvature tensor field of N̄ . RN̄ is defined as follows

RN̄ (X1, X2)X3 = ∇N̄
X1∇N̄

X2X3 − ∇N̄
X2∇N̄

X1X3 − ∇N̄
[X1,X2]X3,

for any X1, X2, X3 ∈ Γ(TN̄) and ∇ψ is the pull-back connection, [11].

Note that harmonic maps are always biharmonic. On the other hand, non-harmonic
biharmonic maps are called as proper biharmonic maps.

Definition 2.4. If ψ : (N, g) → (N̄ , ḡ) map is a critical point of the f -energy functional

Ef (ψ) = 1
2

∫
N
f |dψ|2dvg,

where f ∈ C∞(N,R) is a positive smooth function then it is defined as an f -harmonic
map.
f -Tension field τf (ψ), namely the Euler-Lagrange equation for the f -harmonic map, is
defined as:

τf (ψ) = fτ(ψ) + dψ(gradf) = 0. (2.3)
f -Harmonic maps are generalizations of harmonic maps, [1, 8].

Definition 2.5. If ψ : (N, g) → (N̄ , ḡ) map is a critical point of the f -bienergy functional

E2,f (ψ) = 1
2

∫
N
f |τ(ψ)|2dvg,

then it is defined as an f -biharmonic map. For an f -biharmonic map, the Euler-Lagrange
equation is given by

τ2,f (ψ) = fτ2(ψ) + ∆fτ(ψ) + 2∇ψ
gradfτ(ψ) = 0, (2.4)

where τ2,f (ψ) is the f -bitension field of the map ψ. If f is a constant, the f -biharmonic
map is called as a biharmonic map, [19].
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Definition 2.6. [25] If ψ : (N, g) → (N̄ , ḡ) map is a critical point of the bi-f -energy
functional

Ef,2(ψ) = 1
2

∫
N

|τf (ψ)|2dvg,

then it is called as a bi-f -harmonic map.
For τf,2(ψ) bi-f -tension field of the map ψ, the Euler-Lagrange equation of a bi-f -harmonic
map is given as

τf,2(ψ) = trace
(
(∇ψf(∇ψτf (ψ)) − f∇ψ

∇N τf (ψ) + fRN̄ (τf (ψ), dψ)dψ)
)

= 0. (2.5)

Definition 2.7. If an immersion ψ : (N, g) → (N̄ , ḡ) is a critical point of the bienergy
functional E2(ψ), for variations normal to the image ψ(N) ⊂ N̄ with fixed energy, then it
is called biminimal. Equivalently, ψ is a critical point of the λ-bienergy functional

E2,λ(ψ) = E2(ψ) + λE(ψ),
where λ ∈ R is a constant. For a λ-biminimal immersion, the Euler-Lagrange equation is

[τ2,λ(ψ)]⊥ = [τ2(ψ)]⊥ − λ[τ(ψ)]⊥ = 0, (2.6)

where [.]⊥ denotes the normal component of [.], [11, 17].

Definition 2.8. If an immersion ψ : (N, g) → (N̄ , ḡ) is a critical point of the f -bienergy
functional E2,f (ψ), for variations normal to the image ψ(N) ⊂ N̄ with fixed energy, then
it is called f -biminimal. Equivalently, ψ is a critical point of the λ-f -bienergy functional

E2,λ,f (ψ) = E2,f (ψ) + λEf (ψ),
where λ ∈ R is a constant. Then an immersion is f -biminimal if

[τ2,λ,f (ψ)]⊥ = [τ2,f (ψ)]⊥ − λ[τf (ψ)]⊥ = 0. (2.7)
If f is a constant then the f -biminimal map turns into a biminimal map, [11].

Definition 2.9. A differentiable manifold N2n+1 is called an almost paracontact metric
manifold if the following conditions are satisfied:
φ2 = I − η ⊗ ξ, φξ = 0, η(ξ) = 1, g(φX1, φX2) = −g(X1, X2) + η(X1)η(X2). (2.8)

Here φ is a tensor field type (1, 1), ξ is a vector field, η is a 1-form, X1, X2 ∈ TN , I is the
identity endomorphism on vector fields and finally g is a pseudo-Riemannian compatible
metric with signature (n + 1, n). Besides this, η ◦ φ = 0 and rank(φ) = 2n in an almost
paracontact metric manifold. From (2.8) it is easy to see that g(X1, φX2) = −g(φX1, X2)
and g(X1, ξ) = η(X1) for any X1, X2 ∈ TN and the fundamental 2-form of N is defined
by Φ(X1, X2) = g(X1, φX2).
An almost paracontact metric manifold (N,φ, ξ, η, g) is said to be normal if

N(X1, X2) − 2dη(X1, X2)ξ = 0,
where N is the Nijenhuis torsion tensor of φ, [14, 32].

The curvature tensor field equation of a three-dimensional normal almost paracontact
metric manifold with α, β = constant is as follows.

R(X1, X2)X3 =
(
r

2
+ 2

(
α2 + β2

))
(g(X2, X3)X1 − g(X1, X3)X2) (2.9)

+ g(X1, X3)
(
r

2
+ 3

(
α2 + β2

))
η(X2)ξ −

(
r

2
+ 3(α2 + β2)

)
η(X2)η(X3)X1

− g(X2, X3)
(
r

2
+ 3(α2 + β2)

)
η(X1)ξ +

(
r

2
+ 3(α2 + β2)

)
η(X1)η(X3)X2,

where X1, X2, X3 ∈ TN and r is the scalar curvature, [24].
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Proposition 2.10. [31]For a three-dimensional almost paracontact metric manifold N ,
the following conditions are mutually equivalent:

i- N is normal,
ii- there exist α, β functions on N such that
(∇X1 φ)X2 = α (g(φX1, X2) ξ − η(X2)φX1) + β (g(X1, X2)ξ − η(X2)X1) , (2.10)

iii- there exist α, β functions on N such that
∇X1 ξ = α (X1 − η(X1)ξ) + βφX1. (2.11)

Moreover, the functions α, β appearing in (2.10) and (2.11) are given by
2α = trace{X1 → ∇X1 ξ}, 2β = trace{X1 → φ∇X1 ξ} (2.12)

where X1, X2 ∈ TN .
Definition 2.11. A three-dimensional normal almost paracontact metric manifold is
called as α-para-Kenmotsu Manifold if α ̸= 0, β = 0 and α is constant, [31].
Definition 2.12. Let (N,φ, ξ, η, g) be a three-dimensional normal almost paracontact
metric manifold where α, β = constant and γ : I ⊆ R → (N, g) be an immersed curve.
The map cγ : I → R given with the formula

cγ(s) = g(V (s), ξ) = η(V (s)),

is the structural function of γ where V = γ
′ . Then γ is called as Legendre curve if

cγ = η(V (s)) = 0, [6].
Note that in this paper, we study with a non-Frenet Legendre curve γ : I ⊆ R −→ N ,

parametrized by arc length on a pseudo-Riemannian space form N (a three-dimensional
normal almost paracontact metric manifold with α, β = constant).
Throughout this study, we will say Legendre curves with null normal instead of non-Frenet
Legendre curves with null normal.

3. Non-Frenet Legendre curves
In this section, before presenting our main results about some types of non-Frenet Le-

gendre curves in three-dimensional normal almost paracontact metric manifolds, we will
give some theorems which will be needed throughout the paper.
γ : I ⊆ R −→ N is a non-Frenet Legendre curve in a three-dimensional pseudo-

Riemannian manifold and has two types defined as follows, [31].

The first type is called a Legendre curve with null tangent (null curve) and satisfies

g(γ′
, γ

′) = 0,
and the second type is called a Legendre curve with null normal and satisfies

g(γ′
, γ

′) = ε1 = 1.
Theorem 3.1. [31] Let N be a three-dimensional normal almost paracontact metric man-
ifold. If γ : I ⊆ R −→ N is a Legendre curve with null tangent, then

∇γ′γ
′ = ϑγ

′
,

where ϑ is a function. Note that after a reparametrization γ is a geodesic.
Theorem 3.2. [31] Let N be a three-dimensional normal almost paracontact metric man-
ifold. γ : I ⊆ R −→ N is a Legendre curve with null normal iff g(γ′

, γ
′) = ε1 = 1

and
∇γ′γ

′ = −α(ξ ± φγ
′),

where α is a function defined in (2.12), α = ±δ ̸= 0 along γ and δ = g(∇γ′γ
′
, ϑγ

′).
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Here ∇γ′ denotes the covariant differentiation along γ.

Theorem 3.3. [31] There is no Legendre curve with null binormals in a three-dimensional
normal almost paracontact metric manifold.

Let γ : I ⊆ R −→ N be a non-Frenet Legendre curve in a three-dimensional normal
almost paracontact metric manifold and

{
γ

′ = V, φγ
′ = φV, ξ

}
are orthonormal vector

fields along γ. In this case, the tension fields reduce to

τ(γ) = ∇V V (3.1)

and
τ2(γ) = ∇3

V V −R(V,∇V V )V, (3.2)
see [20].

Using the information given above, we can rewrite ∇γ′γ
′ for a non-Frenet Legendre

curve with null normal as
∇V V = −α(ξ ± φV ), (3.3)

in a three-dimensional normal almost paracontact metric manifold.

3.1. f-harmonic non-Frenet Legendre curves
In this subsection, we obtained the f -harmonicity conditions for a Legendre curve with

null normal in a three-dimensional normal almost paracontact metric manifold N where
α, β = constant.
Let γ : I ⊆ R −→ N be a Legendre curve with null normal. With the help of Definition
2.4 and equations (3.1), (3.3), the f -harmonicity condition for a Legendre curve with null
normal is given as below:

τf (γ) = fτ(γ) + dγ(gradf)
= f∇V V + f

′
V

= f(−α(ξ ± φV )) + f
′
V

= f
′
V ∓ αfφV − αfξ

= 0. (3.4)

With the help of equation (3.4), we can state the following nonexistence theorem.

Theorem 3.4. There is no f -harmonic Legendre curve with null normal in a three-
dimensional normal almost paracontact metric manifold where α, β = constant.

Proof. From (3.4), it is clear that f ′ is zero so f is a constant function. �

3.2. f-biharmonic non-Frenet Legendre curves
Here, we get the f -biharmonicity conditions for a Legendre curve with null normal in a

three-dimensional normal almost paracontact metric manifold N , where α, β = constant.
Let determine the f -biharmonicity condition for γ : I ⊆ R −→ N Legendre curve with
null normal. We determine ∇2

V V , ∇3
V V and R(V,∇V V )V for a Legendre curve with null

normal given as below:
∇2
V V = −αβ(φV ± ξ), (3.5)

∇3
V V = −αβ2(±φV + ξ), (3.6)

R(V,∇V V )V = ±α(r
2

+ 2(α2 + β2))φV − α(α2 + β2)ξ. (3.7)
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Here by substituting equations (3.1), (3.2), (3.5), (3.6) and (3.7) into the f -bitension field
formula, we obtain the f -biharmonicity condition for a Legendre curve with null normal
as:

τ2,f (γ) = fτ2(γ) + ∆fτ(γ) + 2∇γ
gradfτ(γ)

= f(∇3
V V −R(V,∇V V )V ) + f

′′∇V V + 2f ′∇2
V V

= (∓(3β2 + r

2
+ 2α2)f − 2βf ′ ∓ f

′′)φV + (α2f ∓ 2βf ′ − f
′′)ξ

= 0. (3.8)
From (3.8), we get following theorem.
Theorem 3.5. Let N be a three-dimensional normal almost paracontact metric manifold
where α, β = constant and γ : I ⊆ R −→ N be a Legendre curve with null normal. Then
γ is an f -biharmonic Legendre curve with null normal iff following differential equations
satisfied, {

∓(3β2 + r
2 + 2α2)f − 2βf ′ ∓ f

′′ = 0,
α2f ∓ 2βf ′ − f

′′ = 0.
(3.9)

Now we give an interpretation of Theorem 3.5.

Case I: If N is a α-para-Kenmotsu manifold then we have following equations from
(3.9): {

∓( r2 + 2α2)f ∓ f
′′ = 0,

α2f − f
′′ = 0.

From this case, we obtain the following corollary.
Corollary 3.6. Let N be a three-dimensional α-para-Kenmotsu manifold and γ : I ⊆
R −→ N be a Legendre curve with null normal. Then γ is an f -biharmonic Legendre
curve with null normal iff the function f and the constant scalar curvature r are given by

f(s) = c1e
αs + c2e

−αs and r = −6α2,

respectively.

3.3. Bi-f-harmonic non-Frenet Legendre curves
In this subsection, we handle bi-f -harmonic non-Frenet Legendre curves in three-

dimensional normal almost paracontact metric manifold where α, β = constant and we
obtain the bi-f -harmonicity condition for this type of curves. Moreover, we determine
this condition for different cases of a Legendre curve with null normal in α-para-Kenmotsu
manifold.

Let determine the bi-f -harmonicity condition for a Legendre curve with null normal.
By using the equations (3.3), (3.5), (3.6) and the curvature tensor

R(∇V V, V )V = ∓α(r
2

+ 2(α2 + β2))φV + α(α2 + β2)ξ, (3.10)

we obtain the bi-f -harmonicity condition for a Legendre curve with null normal as below:

τf,2(γ) = trace
(
(∇γf(∇γτf (γ)) − f∇γ

∇N τf (γ) + fRN̄ (τf (γ), dγ)dγ
)

= (ff ′′)′
V + (3ff ′′ + 2(f ′)2)∇V V + 4ff ′∇2

V V + f2∇3
V V + f2R(∇V V, V )V

=
[
(ff ′′)′]

V

+
[

∓ (3ff ′′ + 2(f ′)2)α− 4ff ′
αβ ∓ αβ2f2 ∓ α

r

2
f2 ∓ 2α(α2 + β2)f2]

φV

+
[

− (3ff ′′ + 2(f ′)2)α∓ 4ff ′
αβ − αβ2f2 + α(α2 + β2)f2]

ξ

= 0. (3.11)
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Via (3.11), we get the following theorems.

Theorem 3.7. Let N be a three-dimensional normal almost paracontact metric manifold
where α, β = constant and γ : I ⊆ R −→ N be a Legendre curve with null normal. Then
γ is a bi-f -harmonic curve iff following differential equation system satisfied,

(ff ′′)′ = 0,

∓(3ff ′′ + 2(f ′)2) − 4ff ′
β ∓ β2f2 ∓ r

2f
2 ∓ 2(α2 + β2)f2 = 0,

−(3ff ′′ + 2(f ′)2) ∓ 4ff ′
β − β2f2 + (α2 + β2)f2 = 0.

(3.12)

From now, our calculations will be made according to the positive sign of the (3.12)
differential equation system. We have similar results for negative sign.

Theorem 3.8. Let N be a three-dimensional normal almost paracontact metric manifold
where α, β = constant and γ : I ⊆ R −→ N be a Legendre curve with null normal. Then
γ is a bi-f -harmonic Legendre curve with null normal iff the function f is the solution of
following differential equation

3ff ′′ + 2(f ′)2 − 4ff ′
β − α2f2 = 0

where (ff ′′)′ = 0 and the constant scalar curvature r is given by

r = −6(α2 + β2).

Now we give interpretations of Theorem 3.7.

Case I: If N is a α-para-Kenmotsu manifold then we have following differential equation
system from (3.12); 

(ff ′′)′ = 0,

(3ff ′′ + 2(f ′)2) + r
2f

2 + 2α2f2 = 0,

−(3ff ′′ + 2(f ′)2) + α2f2 = 0.
So we have the following corollary.

Corollary 3.9. Let N be a three-dimensional α-para-Kenmotsu manifold and γ : I ⊆
R −→ N be a Legendre curve with null normal. Then γ is a bi-f -harmonic Legendre
curve with null normal iff the function f is the solution of following differential equation,

3ff ′′ + 2(f ′)2 − α2f2 = 0

where (ff ′′)′ = 0 and the constant scalar curvature r is given by

r = −6α2.

Case II: If N is a three-dimensional normal almost paracontact metric manifold where
α, β = constant and f.f ′′ = c = constant ̸= 0 then we have following differential equation
system from (3.12);3c+ 2(f ′)2 − 4ff ′

β + β2f2 + r
2f

2 + 2(α2 + β2)f2 = 0,

−3c− 2(f ′)2 + 4ff ′
β − β2f2 + (α2 + β2)f2 = 0.

Therefore we obtain the following corollary.

Corollary 3.10. Let N be a three-dimensional normal almost paracontact metric manifold
where α, β = constant, γ : I ⊆ R −→ N be a Legendre curve with null normal and
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f.f
′′ = c = constant ̸= 0. Then γ is a bi-f -harmonic Legendre curve with null normal iff

function f is the solution of following differential equation,

3c+ 2(f ′)2 − 4βff ′ − α2f2 = 0

and the constant scalar curvature r is given by

r = −6(α2 + β2).

Case III: If N is a α-para-Kenmotsu manifold and f.f
′′ = c = constant ̸= 0 then we

have following differential equation system from (3.12);3c+ 2(f ′)2 + r
2f

2 + 2(α2)f2 = 0,

−3c− 2(f ′)2 + (α2)f2 = 0.

Then we have the following corollary.

Corollary 3.11. Let N be a three-dimensional α-para-Kenmotsu manifold, γ : I ⊆ R −→
N be a Legendre curve with null normal and f.f

′′ = c = constant ̸= 0. Then γ is a
bi-f -harmonic Legendre curve with null normal iff the function f either

f(s) = ∓
√

3c tanh(1
2(2αc1 −

√
2αs))√

α2 tanh2(1
2(2αc1 −

√
2αs)) − α2

or

f(s) = ∓
√

3c tanh(1
2(2αc1 +

√
2αs))√

α2 tanh2(1
2(2αc1 +

√
2αs)) − α2

where c1 = constant and the constant scalar curvature r are given by

r = −6α2.

3.4. Biminimal non-Frenet Legendre curves
In this subsection, we handle biminimal Legendre curves with null normal in a three-

dimensional normal almost paracontact metric manifold N where α, β = constant.
From Definition 2.7, we know that if a curve is biminimal then its tension and bitension
fields satisfy the following formula;

[τ2,λ(γ)]⊥ = [τ2(γ)]⊥ − λ[τ(γ)]⊥ = 0. (3.13)

Let determine the biminimality condition for a Legendre curve with null normal. For a
Legendre curve with null normal, the tension and bitension fields are given by

τ(γ) = ∓αφV − αξ,

τ2(γ) = α3ξ ∓ α(r
2

+ 2α2 + 3β2)φV,

respectively. Then with the help of equation (3.13), we get the biminimality condition for
a Legendre curve with null normal given as below:

[τ2,λ(γ)]⊥ = [τ2(γ)]⊥ − λ[τ(γ)]⊥

= (α3 + λα)ξ ∓ α(r
2

+ 2α2 + 3β2 − λα)φV

= 0. (3.14)

Then from (3.14), we get following corollary.
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Theorem 3.12. Let N be a three-dimensional normal almost paracontact metric manifold
and γ : I ⊆ R −→ N be a Legendre curve with null normal. Then γ is a biminimal
Legendre curve with null normal iff the constant scalar curvature r is given by

r = −4α2 − 6β2 − 2α3,

for λ = −α2.

3.5. f-biminimal non-Frenet Legendre curves
In this last subsection, we give f -biminimality conditions for a non-Frenet Legendre

curve in a three-dimensional normal almost paracontact metric manifold and α-para-
Kenmotsu manifold.

A curve is called as f -biminimal if following equation satisfied,

[τ2,λ,f (γ)]⊥ = [τ2,f (γ)]⊥ − λ[τf (γ)]⊥ = 0. (3.15)

Let determine the f -biminimality condition for a Legendre curve with null normal. For a
Legendre curve with null normal, the f -tension and f -bitension fields are given by,

τf (γ) = f
′
V ∓ αfφV − αfξ,

τ2,f (γ) = (∓(3β2 + r

2
+ 2α2)f − 2βf ′ ∓ f

′′)φV + (α2f ∓ 2βf ′ − f
′′)ξ,

respectively. By substituting these tension fields to the equation (3.15), we obtain the
f -biminimality condition for a Legendre curve with null normal as follows:

[τ2,λ,f (γ)]⊥ = (α2f ∓ 2βf ′ − f
′′ + αλf)ξ + (∓(r

2
+ 2α2 + 3β2 − αλ)f − 2βf ′ ∓ f

′′)φV
= 0.

Hence, we obtain following theorems.

Theorem 3.13. Let N be a three-dimensional normal almost paracontact metric manifold
where α, β = constant and γ : I −→ N be a Legendre curve with null normal. Then γ is
an f -biminimal Legendre curve with null normal iff following differential equation system
satisfied, 

(α2 + αλ)f ∓ 2βf ′ − f
′′ = 0,

∓(r
2

+ 2α2 + 3β2 − αλ)f − 2βf ′ ∓ f
′′ = 0.

(3.16)

Theorem 3.14. Let N be a three-dimensional normal almost paracontact metric manifold
where α, β = constant and γ : I ⊆ R −→ N be a Legendre curve with null normal. Then
γ is an f -biminimal Legendre curve with null normal iff the function f and the constant
scalar curvature r are given by

f(s) = c1e
(
β−

√
β2+(α2+αλ)

)
s + c2e

(
β+

√
β2+(α2+αλ)

)
s,

r = −6(α2 + β2).

Now we give an interpretation of Theorem 3.13.

Case I: If N is a α-para-Kenmotsu manifold then we get following differential equation
system from (3.16): 

(α2 + αλ)f − f
′′ = 0,

(r
2

+ 2α2 − αλ)f + f
′′ = 0.

Hence, we have the following corollary.
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Corollary 3.15. Let N be a α-para-Kenmotsu manifold and γ : I ⊆ R −→ N be a
Legendre curve with null normal. Then γ is an f -biminimal Legendre curve with null
normal iff the function f is given by

f(s) = c1e
(−

√
α2+αλ)s + c2e

(
√
α2+αλ)s

and the constant scalar curvature r is given by

r = −6α2.
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