

Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi International Journal of Engineering Research and Development

Cilt/Volume:13 Sayı/Issue:1 Ocak/January 2021

Araştırma Makalesi / Research Article

Ahşap Bağlantı Noktalarında Mekanik Ankraj Sayısı ve Yerleşim Şeklinin Kayma Gerilmesi-Kayma Deplasmanı Davranışı Üzerindeki Etkilerinin Deneysel Olarak İncelenmesi

Experimental Investigation of The Effects of Mechanical Anchor Number and Layout Shape on Bond Stress-Slip Displacement Behavior at Timber Joints

Ayşegül Özden Acehan¹, Ömer Mercimek², Rahim Ghoroubi³, Özgür Anıl*⁴

¹Yüksek Lisans Öğrencisi, Gazi Üniversitesi Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, 06570, Ankara, Türkiye
²Araştırma Görevlisi, Yıldırım Beyazıt Üniversitesi Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, 06010, Ankara, Türkiye
³Öğretim Görevlisi, Çankaya Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, 06790, Ankara, Türkiye
⁴Prof. Dr., Gazi Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, 06570, Ankara, TÜRKİYE

 Başvuru/Received:
 26/05/2020
 Kabul / Accepted:
 05/10/2020
 Çevrimiçi Basım / Published Online:
 10/12/2020

 Son Versiyon/Final Version:
 18/01/2021

Öz

Ahşap yapılar ve yapı elemanlarında yapıştırıcı ve mekanik bağlantı elemanları ile bir araya getirilmiş birleşim bölgerinin genel yük-deplasman davranışı, kayma gerilmesi- kayma deplasmanı davranışları, yapısal sistemin kapasitesi ve göçme mekanizmaları üzerinde son derece etkilidir. Ahşap-ahşap bağlantı bölgelerinin davranışları, malzemenin mekanik özelliklerine, yapısına ve türüne göre çok büyük oranda değişim gösteren farklı kayma gerilmesi-kayma deplasmanı davranışları sergileyen, incelenmesi gerekli olan önemli bir konudur. Ahşap yapı elemanlarının yapıştırıcı ve yapıştırıcı ile birlikte mekanik ankrajlar ile birleştirilmesi durumunda genel yük-deplasman davranışlarının, bağlantı bölgesindeki gerilme dağılımları ile kayma gerilmesi - kayma deplasmanı davranışlarının incelendiği kapsamlı bir deneysel çalışmaya literatürde rastlanmamıştır. Bu nedenle deneysel bir çalışma planlanmıştır. Bu çalışma kapsamında birbirlerine yapıştırıcı ve yapıştırıcı ile birlikte mekanik ankrajlar ile bağlanmış olan, kenetlenme uzunlukları 180, 240 ve 350 mm olarak değişim gösteren ahşap bağlantı bölgelerinin, eksenel çekme yükü etkisi altındaki genel yük deplasman davranışları deneysel olarak incelenmiştir. Ayrıca çalışma kapsamında birleşim bölgesinde kullanılan mekanik ankraj sayısı ve yerleşiminin değişim göstermesinin, genel yük-deplasman davranışı ve kayma gerilmesi-kayma deplasmanı davranışları üzerindeki etkileri de araştırılmıştır.

Anahtar Kelimeler

"Ahşap bağlantı, Ankraj, Gerilme Dağılmı, Gerilme-kayma deplasmanı"

Abstract

The general load-displacement and shear stress-shear displacement behavior of the joining area combined with adhesive and mechanical connectivity in wooden structures and structural elements are highly effective on the capacity of the structural system and collapse mechanisms. The behavior of the wood joining area is an important subject that needs to be examined. Also, it exhibits different shear stress-shear displacement behaviors that vary greatly according to the mechanical properties, structure, and type of the material. The comprehensive experimental study examining the general load-displacement behavior, stress distributions and shear stress-shear displacement behaviors in the connection area which wood structural elements are combined with adhesive or adhesive and mechanical anchors have not been found in the literature. Therefore, an experimental study was planned. In this study, the general load-displacement behavior of the timber connection regions which are connected by adhesive and mechanical anchors together with adhesive, with varying length of 180, 240 and 350 mm are investigated experimentally. Besides, the effect of changing in the number and location of mechanic anchors used in the connection area on the general load-displacement and shear stress-shear displacement behavior was also investigated.

Key Words

"Timber to timber joint; Anchorage; Stress distribution; Bond-slip model"

1. Giriş

Son yıllarda yürütülen çalışmalarda, çeşitli yapı tiplerinin farklı teknikler kullanılarak taşıma gücü kapasiteleri arttırılmaya çalışılmaktadır (Mercimek et al. 2019; Ghoroubi et al., 2020; Dönmez et al., 2020; Mercimek et al. 2020). Bu yapı tiplerinin içerisinde betonarme ve çelik yapılarla kıyaslandığında, ahşap yapıların taşıma güçlerini arttırmaya yönelik çalışmalar oldukça azdır. Ahşap yapılarda, ahşap-ahşap bağlantı yüzeyleri çok sık kullanılan ve tüm sistemin taşıma gücü, genel yük-deplasman davranışı, deplasman yapabilme potansiyeli, rijitliği ve enerji tüketim kapasitesi gibi yapısal parametreler üzerinde önemli etkileri olan bağlantı noktalarının nasıl bir davranış gösterdikleri ve taşıma güçleri gibi önemli parametrelerin bağlantının türü ve bağlantı boyundan nasıl etkilendikleri incelenmesi ve araştırılması gerekli önemli bir konudur.

Birbirinden bağımsız iki ahşap taşıyıcı eleman yapıştırıcı ile herhangi bir bağlantı noktasında birbirlerine yük aktarmak için birleştirilebildikleri gibi, Glulam ahşap kirişler gibi özel olarak üretilen, ahşap taşıyıcı sistem yapısal elemanlarında da yapıştırıcı kullanılarak ahşap lamellerin birbirlerine bağlanması kullanılan bir tekniktir. Bu bağlantıların göstereceği aderans davranışı ve taşıma güçleri tüm yapı elemanının kapasitesi ve davranışı üzerinde son derece etkilidir. Literatürde yapılan incelemelerde ahşap yapışma yüzeylerinde aderansı artırarak, yapı elemanlarının dayanım ve davranışlarını iyileştirmek için farklı güçlendirme tekniklerinin kullanıldığı çalışmalara rastlanmıştır. Bu tür yapısal elemanların başında Glulam kirişler gelmektedir (Sena-Cruz et al., 2013; Tran et al., 2015; Dietsch and Tannert, 2015, Weidong et al., 2015; Fosetti et al., 2015; Raftery and Rodd, 2015; Raftery and Harte, 2013, Yang et al., 2016a, Haiman et al., 2010; Ansari et al., 2017; Ansari et al., 2012; Yang et al., 2016b). Ahsap-ahsap bağlantı noktalarında aderansı artırmak ve bağlantı noktasının taşıma gücü ile genel yük-deplasman davranışlarını iyileştirmek amacıyla çeşitli güçlendirme yöntemlerinin kullanılması haricinde, uygulanan tekniklerden biri de bağlantı bölgesinde birleşimi sağlamak için sadece yapıştırıcı kullanmak yerine ek olarak bu bölgede ankraj gibi ek bağlantı elemanlarının kullanılmasıdır. Bu bağlantı bölgesinde çivi, vida veya mekanik ankraj benzeri bağlantı elemanlarının kullanılmasının bağlantının tasıma gücü, genel yük-deplasman davranışı, bağlantı bölgesi boyunca meydana gelen gerilme dağılımı ve kayma gerilmesi-kayma deplasmanı davranısları üzerinde ne ölcüde etkili olduğu incelenmesi gerekli olan, bu konudaki literatüre katkı sağlayacağı düsünülen önemli bir konudur. Ahşap-ahşap bağlantı noktaları ile oluşturulan genel ahşap yapı taşıyıcı sistemlerinin taşıma güçleri ve genel yükdeplasman davranışlarının gerçekçi bir şekilde hesaplanabilmesi için bu sistemlerde yer alan bağlantı noktalarının kapasitelerinin gerçekçi bir şekide hesaplanabilmesi bir gereklilik haline gelmiştir (Schiere et al., 2018; Mehra et al., 2018; Izzi et al., 2018). Bu nedenle kapsamlı deneysel bir çalışma planlanmıştır. Deneysel çalışmada incelenen değişkenler ahşap-ahşap bağlantı noktasında sadece yapıştırıcı ile bağlantı yapılması ve bağlantı bölgesinde yapıştırcıya ek olarak mekanik çelik dubeller ile bağlantının gerçekleştirilmesi, bağlantı bölgesi uzunluğu, bağlantıda kullanılan ankraj sayısı ve yerleşim düzenidir. Çalışma kapsamında toplam 21 adet ahşap-ahşap bağlantı noktası deney elemanı yazarlardan biri tarafından geliştirilen özel bir eksenel çekme test düzeneği kullanılarak test edilmiştir (Anıl et al., 2016; Mertoğlu et al., 2016; Sakin et al. 2019; Ghoroubi et al. 2020). Deneysel çalışma sonucunda ahşap-ahşap bağlantı noktalarının genel yük-deplasman davranışı, bağlantı bölgesi boyunca gerilme dağılımları, kayma gerilmesi-kayma deplasmanı modelleri elde edilmiş ve incelenen değişkenlerin bu sonuçlar üzerindeki etkileri yorumlanmıştır. Yapılan literatür taramasında ahşap-ahşap yapışma yüzeylerinde ve özellikle mekanik dubeller ile birlikte yapıştırılmış yüzeylerde sonlu elemanlar bilgisayar modellerinde kullanılabilecek, genelleştirilmiş bir yapışma yüzeyi kayma gerilmesi-kayma deplasmanı modeline rastlanmamıştır. Yapılan deneysel çalışma sonucunda elde edilen ankrajsız ve ankrajlı kayma gerilmesi- kayma deplasman (bond-slip) modellerinin araştırmanın bu konudaki literatüre önemli katkı sağlayabilecek yenilikçi bir yönü olduğu düşünülmektedir.

2. Deneysel Çalışma

Çalışma kapsamında ahşap-ahşap yapışma bağlantı noktalarına uygulanan eksenel çekme kuvveti etkisi altında bağlantı bölgesinin genel yük-deplasman davranışı, kayma gerilmesi-kayma deplasmanı davranışı ve kayma birim şekil değiştirmesinin yapışma bölgesi boyunca dağılımının incelenmesi amaçlanmıştır. Deneysel programda incelenen değişkenler ahşap bağlantı noktasının uzunluğu, ahşap bağlantı noktasında mekanik ankraj uygulanmış olması veya olmaması, bağlantı bölgesinde kullanılan mekanik ankraj sayısı ve ankrajların birleşim bölgesindeki yerleşim şeklidir. Deney elemanlarının özellikleri Tablo 1'de özetlenmiştir. Deneysel çalışmada toplam 21 adet deney elemanı üretilmiş ve monotonik olarak artırılan eksenel çekme yüklemesi etkisinde test edilmiştir. Deney elemanlarının tanımlanmasında kullanılan simgede yer alan ilk üç rakam ahşap-ahşap bağlantı bölgesinin yapışma uzunluğu olan 180, 250 veya 350 mm değerlerini göstermektedir. İsimlendirmede kullanılan tanımlama ifadesinde tire sembolünden sonra ver alan 0, 1, 2 veya 3 rakamları ankraj sayısını, tanımlamada ver alan son rakam olan 0, 1, veya 2 ise bağlantı bölgesine yerleştirilen ankrajların kaç sıra yerleştirildiğini ifade etmektedir. Örneğin Specimen 12 deney elemanının tanımlanması 350-1-2 olup, bu elamanda bağlantı bölgesinin uzunluğu 350 mm, her sırada 1 ankraj olmak üzere 2 sıra ankraj bağlantıda yer almaktadır. Deney elemanları Pinus Sylvestris sarı çam ahşap malzemesi kullanılarak üretilmiştir. Deney elemanlarının üretimi için seçilen sarı çam ahşap malzemesinde çatlak, budak ve lif kusurlarının bulunmaması için özen gösterilmiş ve kusurlu ahşap malzemeleri kullanılmamıştır. Çalışmada kullanılan sarı çam malzemesinin mekanik özellikleri Tablo 2'de verilmiştir. Üretilen deney elemanlarının geometrik boyutları ise Sekil 1'de sunulmuştur. Deney elemanları 100 mm genişliğinde ve 20 mm kalınlığında ahşap parçaların 180, 250 ve 350 mm uzunluğunda üst üste bindirilmesi ve yapıştırılması ile üretilmiştir. Ahşap-ahşap bağlantı bölgesi deney elemanları toplam 1400 mm uzunlukta olacak şekilde üretilmiştir. Çalışmada ahşap yapışma bölgesinde yapıştırıcı olarak poliüretan türü bir yapıştırıcı kullanılmıştır. Poliüretan yapıştırıcı yüksek oranda elastik, suya, kimyasallara, yağ ve mikroorganizmalara karşı dirençli bir yapıştırıcıdır. Poliüretan yapıştırıcının yangın gibi dışarıdan gelen sıcaklık kaynaklarına karşı direnci yüksektir. Yapıştırma işleminden daha yüksek düzeyde başarı elde edilebilmesi için yapışma yüzeylerinin tozdan arındırılmış, temiz, kuru ve yağ benzeri malzemeler ile kaplı olmaması gereklidir. Yapıştırılacak ahşapların nem oranlarının %8 ile %12 arasında olması yapışmanın başarılı olabilmesi için önerilmektedir. Çalışma kapsamında kullanılan poliüretan yapıştırıcının özellikleri Tablo 3'de verilmiştir.

UMAGD, (2021) 13(1), 1-12,	Acehan	et al.
--------------	----------------	--------	--------

Deney El. No	Tanımlama	Yapışma Uzunluğu (mm)	Ankraj Sayısı	Ankraj Sıra Sayısı
1	180-0-0	180	0	0
2	250-0-0	250	0	0
3	350-0-0	350	0	0
4	180-1-1	180	1	1
5	250-1-1	250	1	1
6	350-1-1	350	1	1
7	180-2-1	180	2	1
8	250-2-1	250	2	1
9	350-2-1	350	2	1
10	180-1-2	180	1	2
11	250-1-2	250	1	2
12	350-1-2	350	1	2
13	180-3-1	180	3	1
14	250-3-1	250	3	1
15	350-3-1	350	3	1
16	180-2-2	180	2	2
17	250-2-2	250	2	2
18	350-2-2	350	2	2
19	180-3-2	180	3	2
20	250-3-2	250	3	2
21	350 3 2	350	3	2

Tablo 1. Deney elemanlarının özellikleri

Fablo 2. Pinus Sylvestris (Sarı Çam) Ahşabının Mekanik Özelli
--

Tanımlama	Sembol	Değer	Birim
Vočunluli	ρ_k	490	kg/m ³
rogumuk	ρ ₁₂	520	kg/m ³
	β _r	4.0	%
Sünme Katsayıları	β _t	7.7	%
	β_v	12.1	%
Elastik Modül	E _{0,mean}	11700	MPa
Kayma Modül	G _{mean}	731.25	MPa
Eğilme Dayanım	f _{m,k}	98	MPa
Eksenel Çekme Dayanımı	f _{t,0,k}	102	MPa
Basınç Dayanımı	f _{c,0,k}	54	MPa

Tablo 3. Poliüretan Yapıştırcının Mekanik Özellikleri

Özellik	Açıklama
Temel	Poliüretan
Özgül Ağırlık	$0.0011 + 0.0002 \text{ kg/m}^3$
Çalışma Sıcaklığı	Optimum çalışma sıcaklığı 20 ⁰ C Minimum çalışma sıcaklığı 5 ⁰ C
Basınç Dayanımı	60 MPa
Eksenel Çekme Dayanımı	26.2 MPa
Elastik Modül	830 MPa
Kopma Uzaması	13%
Kopma Uzaması	13%

Deney elemanlarının üretilmesinde ilk olarak bağlantıyı oluşturacak olan 20 mm kalınlığındaki ve 100 mm genişliğindeki ahşap lameller gerekli boylarda hassas bir şekilde boyutlarına göre üretilmiştir. Daha sonra tüm deney elemanları bağlantı bölgeleri özdeş bir prosedür uygulanılarak aynı presleme süresi ve basıncı altında yapıştırılmıştır. Yapıştırılma işlemi tamamlanan mekanik bağlantı ankrajları kullanılacak olan deney elemanlarında ankrajların yer alacağı noktalara delikleri yerleşim detayı Şekil 1'de verildiği şekilde açılmıştır. Deney elemanlarında standart M10 mekanik ankraj kullanılmış olup, deney elemanlarında ankrajların yerleşimi için 10 mm çapında delikler açılarak mekanik ankrajlar bu deliklere yerleştirilmiştir. Deney elemanlarına yerleştirilen mekanik ankrajların ahşap bağlantı elemanlarına hasar vermemesi için yüksek bir tork ile sıkıştırma işlemi yapılmamış, sadece ankrajlar birbirleri ile özdeş sıkılıkta yerleştirilmelerinin sağlanması amacıyla çok düşük bir tork düzeyinde hepsi ayarlı bir tork anahtarı kullanılarak yerlerine yerleştirilmiştir.

UMAGD, (2021) 13(1), 1-12, Acehan et al.

Şekil. 1. Deney elemanlarının geometrik boyutları (Tüm ölçüler mm'dir.)

Deneysel çalışma kapsamında ahşap-ahşap bağlantı noktalarına eksenel çekme kuvveti uygulayarak yapışma bölgesinde meydana gelen kayma birim şekil değiştirmesi dağılımı ve bağlantının kayma gerilmesi- kayma deplasmanı davranışının elde edilebilmesi amacıyla yazarlardan biri tarafından geliştirilmiş özel bir deney düzeneği kullanılmıştır. Bu deney düzeneği daha önce yazarlar tarafından başka çalışmalarda kullanılmış ve literatürde yer alan benzer deney düzenekleri incelenerek tasarlanmıştır (Anıl et al., 2016; Mertoğlu et al. 2016; Sakin et al. 2019; Ghoroubi et al. 2020). Deney düzeneğinin 3 boyutlu görüşünü ve test esnasında alınan fotoğraflar **Şekil 2'de** verilmiştir.

Şekil. 2. Deney ve ölçüm düzeneği

Deneylerde ahşap bağlantı noktasını oluşturan, iki parçanın yapıştırılması ile meydana getirilen test elemanı, deney düzeneği üzerindeki sabit bir levhaya dayanarak mesnetlenmiş ve diğer ucu ise hidrolik yükleme sistemi aracılığı ile hareket ettirilen hareketli çelik bir kafanın üzerine bağlanarak ahşap bağlantıya eksenel çekme kuvveti uygulanmıştır. Deney elemanlarına yükleme 600 kN çekme kapasiteli bir hidrolik sistem ile uygulanmış ve 400 kN kapasiteli bir yük hücresi ile uygulanan yükleme ölçülmüştür. Deney elemanlarına yükleme hızı sabit olarak ayarlanabilen bir hidrolik sistem ile uygulanmış ve tüm testlerde yükleme hızı sabit tutulmıştur. Ahşap bağlantı elemanlarının eksenel kayma deplasmanı elektronik deplasman ölçer (LVDT), bağlantı noktasındaki kayma birim şekil değiştirmesi dağılımı ise birim deformasyon ölçerler ile ölçülmüştür. 180, 250 ve 350 mm yapışma boyuna sahip deney elemanlarından sırasıyla 4, 6, ve 8 adet birim deformasyon ölçer kullanılarak ölçüm alınmıştır. Deneyler esnasında bütün ölçümler bir veri toplama sistemi ile bilgisayara aktarılmış ve testler esnasında kayma gerilmesi- kayma deplasmanı grafikleri çizilerek deneyler izlenmiştir.

3. Deneysel Sonuçlar ve Yorumlar

Deneysel çalışma sonucunda deney elemanlarının ahşap-ahşap yapışma bölgesinde kayma gerilmesi - kayma deplasmanı grafikleri ve yapışma bölgesi uzunluğu boyunca birim deformasyon dağılımlarının değişimi elde edilmiş olup, sırasıyla **Şekil 3** ve **Şekil 4'de** verilmiştir. Ayrıca deneysel çalışma sonucunda elde edilen sonuçlar ise **Tablo 4'de** sunulmuştur. Deney elemanlarının testler tamamlandıktan sonra göçme mekanizmaları ise **Şekil 5'de** verilmiştir.

Tablo 4. Deney Sonuçları						
Deney No	Tanımlama	Maksimum Taşıma Gücü (kN)	Maksimum Kesme Gerilmesi (MPa)	Maksimum Kesme Gerilmesinde Deplasman (mm)	Maksimum Kayma Deplasmanı (mm)	Maksimum Birim Şekil Değiştirme (mv)
1	180-0-0	46.23	2.57	4.79	26.72	354
2	250-0-0	51.99	2.08	5.00	25.18	940
3	350-0-0	55.99	1.60	5.15	24.82	834
4	180-1-1	51.35	2.85	5.28	25.34	488
5	250-1-1	65.12	2.60	5.51	23.50	4122
6	350-1-1	76.41	2.18	5.63	21.57	4064
7	180-2-1	57.41	3.19	5.82	24.13	710
8	250-2-1	72.88	2.92	6.08	22.38	4340
9	350-2-1	85.70	2.45	6.18	18.75	4179
10	180-1-2	60.20	3.34	6.12	23.54	814
11	250-1-2	76.51	3.06	6.39	21.80	4449
12	350-1-2	89.96	2.57	6.47	18.20	4223
13	180-3-1	63.23	3.51	6.42	22.42	1180
14	250-3-1	79.11	3.16	6.71	20.76	4657
15	350-3-1	92.12	2.63	6.79	17.35	4378
16	180-2-2	69.70	3.87	7.06	20.18	4218
17	250-2-2	87.08	3.48	7.37	18.68	5198
18	350-2-2	101.37	2.90	7.48	15.62	4524
19	180-3-2	76.82	4.27	7.80	18.16	4469
20	250-3-2	95.74	3.83	8.11	16.81	5569
21	350-3-2	111.51	3.19	8.22	14.06	4708

Deneysel çalışma kapsamında incelenen değişkenlerden biri ahşap-ahşap birleşim bölgesinin uzunluğudur. Çalışma kapsamında 180, 250 ve 350 mm olmak üzere 3 farklı birleşim bölgesi uzunluğu incelenmiştir. Deneysel sonuçlar incelendiğinde bağlantı uzunluğu arttıkça ahşap-ahşap birlesim bölümlerinin maksimum tasıma gücü değerlerinde de artış meydana geldiği belirlenmiştir. Deney elemanlarında birleşim bölgesi uzunluğu 180 mm'den 250 mm'ye çıktığında maksimum taşıma gücü değerleri ortalama 24%, 250 mm'den 350'ye artış gösterdiğinde ise maksimum taşıma gücü değerlerinde ortalama 16% oranında artış meydana geldiği görülmüştür. Mekanik ankraj kullanılmayan sadece yapıştırıcı ile oluşturulan ahşap-ahşap bağlantılarında birleşim bölgesi uzunluğu arttıkca maksimum tasıma gücü değerlerinde meydana gelen artıs daha düsük oranda meydana gelirken, bağlantı bölgelerinde yapıştırıcı ile birlikte mekanik ankraj kullanılması maksimum taşıma gücü değerleri üzerinde daha büyük oranda etkili olmus ve daha fazla oranda artış meydana gelmesine neden olmuştur. Sadece yapıştırıcı kullanılan deney elemanlarında birleşim uzunluğu 180 mm'den 250 mm'ye ve 250 mm'den 350 mm'ye artış gösterdiğinde maksimum taşıma gücü değerlerinden sırasıyla ortalama 12% ve 8% oranlarında artış meydana gelirken, yapıştırıcının yanısıra mekanik ankraj kullanılan deney elemanlarında maksimum taşıma gücü değerlerindeki artış oranları sırasıyla 26% ve 17% olarak hesaplanmıştır. Birleşim bölgesinin uzunluğunun artması ise deney elemanlarından ölçülen maksimum kayma gerilmesi değerlerinin azalmasına neden olmuştur. Deney elemanları için kayma gerilmesi değerleri uygulanan kesme kuvvetlerinin kesilmeye çalışılan alana oranlanması ile hesaplanmıştır. Birleşim bölgesi uzunluğunun artması deney elemanlarının taşıma gücü değerlerini artırmasının yanısıra birleşim bölgesi alanının da artmasına neden olduğu ve alandaki artış oranı daha fazla meydana geldiği için birleşim bölümü uzunluğunun artması ile maksimum kayma gerilmesi değerleri azalmıştır. Ahşap-ahşap birleşim bölgesi uzunluğunun 180 mm'den 250 mm'ye ve 250 mm'den 300 mm değerine uzaması sonucunda genel olarak maksimum kesme gerilmesi değerleri sırasıyla ortalama 12% ve 21% oranlarında azalmıştır.

Şekil 3. Deney elemanlarının kayma gerilmesi-kayma deplasmanı grafikleri

Şekil 4. Deney elemanlarının yapışma uzunluğu boyunca birim şekil değiştirme dağılımı grafikleri

UMAGD, (2021) 13(1), 1-12, Acehan et al.

Şekil 5. Deney elemanlarının göçme mekanizmaları

Birleşim bölgesinde sadece yapıştırıcının kullanıldığı deney elemanlarında bağlantı uzunluğunun artması sonucunda maksimum kesme gerilmesi değerlerinde meydana gelen azalım daha büyük oranda meydana gelirken, birleşim bölgesinde yapıştırıcı ile birlikte mekanik ankrajların kullanıldığı deney elemanlarında bağlantı bölümünün uzaması kesme gerilmesi değerlerinin daha düşük oranda azalmasına neden olmuştur. Sadece yapıştırıcının kullanıldığı deney elemanlarında bağlantı bölümü uzunluğunun 180 mm'den 250 mm'ye ve 250 mm'den 300 mm degerine uzaması sonucunda maksimum kesme gerilmesi degerlerinde sırasıyla ortalama 24% ve 30% oranlarında azalım meydana gelmiştir. Birleşim bölgesinde yapıştırıcı ile birlikte mekanik ankraj kullanılan deney elemanlarında ise bağlantı uzunluğunun 180 mm'den 250 mm'ye ve 250 mm'den 300 mm değerine uzaması sonucunda maksimum kesme gerilmesi değerleri sırasıyla ortalama 10% ve 20% oranlarında azalmıştır. Denev elemanlarında bağlantı bölgesi uzunluğunun değişim göstermesi testlerde meydana gelen kayma deplasmanı değerleri üzerinde de etkli olmuş ve değişime neden olmustur. Ahsap-ahsap birlesim bögesi uzunluğunun artması denev elemanlarında maksimum kesme gerilmesi değerinde meydana gelen kayma deplasmanı değerlerinin artmasına ve maksimum kayma deplasmanı değerlerinin ise azalmasına neden olmuştur. Ahşap-ahşap birleşim bölgesi uzunluğunun 180 mm'den 250 mm'ye ve 260 mm'den 350 mm değerine artış göstermesi durumunda maksimum kesme gerilmesi düzeyinde ölçülen kayma deplasmanı değerleri sırasıyla ortalama 4% ve 2% oranlarında artış göstermiştir. Deney elemanlarından ölçülen maksimum kayma deplasmanı değerleri ise birleşim bölgesinin uzaması ile azalım göstermiş, ahşap-ahşap birleşim bölgesi uzunluğunun 180 mm'den 250 mm'ye ve 260 mm'den 350 mm değerine artış göstermesi durumunda maksimum kayma deplasmanı değerleri sırasıyla ortalama 8% ve 15% oranlarında azalmıştır. Deneysel çalışma kapsamında ahşap-ahşap birleşim bölgesi boyunca birim deformasyon dağılımı değerleri ölçülmüştür. 180, 250 ve 350 mm birleşim bölgesi boyunca sırasıyla 4, 6 ve 8 noktadan birim deformasyon değerleri ölçülerek birleşim bölgesi boyunca gerilme dağılımının nasıl değisim gösterdiği ve maksimum değerleri incelenerek yorumlanmıştır. Denevsel calısma kapsamında alınan birim deformasyon ölçümleri incelendiğinde en büyük birim deformasyon değerlerinin 250 mm uzunluğundaki birleşimde meydana geldiği görülmüştür. Maksimum birim deformasyon değerleri 350 mm ve 180 mm uzunluğundaki birleşim bölgelerinde azalım göstermiştir. 250 mm uzunluğundaki birleşim bölgesine sahip deney elemanlarından ölçülen maksimum birim deformasyon değerleri, 350 mm uzunluğa sahip deney elemanlarından ortalama 9% daha büyük ölçülmüştür. 350 mm uzunluğa sahip birleşim bölgeli deney elemanları ise 180 mm birleşim bölgei uzunluğu olan deney elemanlarından ortalama 316% daha büyük maksimum birim deformasyon değerlerine sahiptir. Elde edilen bu sonuç ahşap-ahşap birleşim bölgesi uzunluğunun çok fazla uzatılmasının etkili bir sekilde kesme gerilmesi aktarımı üzerinde faydalı bir etkisi olmadığını göstermiştir. Bağlantı bölgesi uzunluğu artırılmasına rağmen ölçülen maksimum birim deformasyon değeri 250 mm'den sonra azalım göstermiştir. Bu bulgu 350 mm uzunluğundaki birlesim bölgelerinde maksimum tasıma gücünde daha düsük oranda bir artıs olması ve maksimum kesme gerilmesi değerlerinde ise daha yüksek bir oranda azalım olması bulguları ile örtüşmektedir.

Deneysel çalışma kapsamında diğer incelenen bir değişken ise ahşap-ahşap birleşim bölgelerinde yapıştırıcıya ek olan kullanılan mekanik ankraj sayısıdır. Çalışma kapsamında mekanik ankraj kullanılmayan ankrajsız deney elemanları haricinde 1, 2, 3, 4 ve 6 adet mekanik ankraj kullanılan deney elemanları üretilmiş ve test edilmiştir. Deneysel çalışmada elde edilen sonuçlar incelendiğinde ahşap-ahşap birleşim bölgelerinde yapıştırıcı haricinde mekanik ankraj kullanılması durumunda birleşim bölgelerinin maksimum taşıma gücü değerleri, maksimum kesme gerilmesi değerleri, maksimum kesme gerilmesi düzeyindeki kayma deplasmanı değerleri ve maksimum birim deformasyon değerleri önemli oranlarda artış göstermiş, maksimum kayma deplasmanı değerleri ise azalım göstermiştir. Elde edilen bu sonuçlar birleşim bölgesinde yapıştırıcı haricinde mekanik ankraj kullanılmasının bağlantı bölgesinin performansını olumlu vönde etkilediğini ve ivilestirdiğini göstermektedir. Ahsap-ahsap birleşim bölgesinde mekanik ankraj kullanılması bağlantıların maksimum taşıma gücü değerlerini sadece yapıştırıcı ile birleşim sağlanan deney elemanlarına göre ortalama 52% oranında önemli miktarda artırmıştır. Maksimum taşıma gücü değerlerindeki artış oranları incelendiğinde birleşim bölgesindeki mekanik ankraj sayısındaki artış ile maksimum taşıma gücü değerlerinin çok daha fazla miktarda artış gösterdiği görülmektedir. Birleşim bölgesinde 1, 2, 3, 4 ve 6 adet mekanik ankraj kullanılan deney elemanları, birleşim bölgesinde sadece yapıştırıcı ile bağlantı sağlanan deney elemanlarından sırasıyla ortalama 24%, 43%, 51%, 66% ve 83% oranlarında daha fazla maksimum taşıma gücü değerleri sergilemişlerdir. Ayrıca birleşim bölgesinde ankraj kullanılması ile birlikte bağlantı uzunluğunun da artış göstermesi deney elemanlarının maksimum taşıma güçlerinin daha fazla oranda artmasına neden olmuştur. 180 mm, 250 mm ve 350 mm uzunluğunda birleşim bölgesi olan bağlantıda yapıştırıcı ile birlikte mekanik ankraj kullanılan deney elemanlarının maksimum taşıma gücü değerleri, bağlantıda sadece yapıştırıcı kullanılan deney elemanlarından sırasıyla ortalama 37%, 53% ve 66% oranlarında daha büyük elde edilmiştir. Bağlantı bölgesinde mekanik ankraj kullanılan deney elemanlarında hesaplanan maksimum kesme gerilmesi değerlerinin davranış trendi tamamen maksimum taşıma gücü değerleri ile örtüşmektedir. Mekanik ankrajlı deney elemanlarının maksimum kesme gerilmesi değerleri ankraj kullanılmayan deney elemanlarından ortalama 52% oranında büyük hesaplanmıştır. Elde edilen bu sonuç mekanik ankraj kullanılmasının ahşap-ahşap bağlantı bölgelerinin performansını iyileştirerek taşıma gücünü olumlu etkilediğini göstermiştir. Mekanik ankraj kullanılan deney elemanlarında maksimum kesme gerilmesi kapasitesine ulaşılana kadar meydana gelen kayma deplasmanı değerleri, sadece yapıştırıcının kullanıldığı ankrajsız deney elemanlarından ortalama 33% oranında daha fazla ölçülmüştür. Ankrajlı deney elemanlarının taşıma gücü ve kesme gerilmesi değerleri önemli oranda artış gösterdiği için daha fazla kapasite değerlerine deney elemanları ankrajsız deney elemanlarına göre bir miktar daha fazla kayma deplasmanı yaparak ulaşmışlardır. Ancak bağlantı bölgesinde ankraj kullanılması deney elemanlarından ölçülen maksimum göçme anındaki kayma deplasmanı değerlerini, ankrajsız deney elemanlarına göre ortalama 30% oranında azalmasına neden olmuştur. Deney elemanlarında birlesim bölgesinde ankraj kullanılması birleşim bölgesinde meydana gelen kayma deplaşmanı değerlerini sınırlandırarak, taşıma gücünde önemli bir miktarda artış sağlamasına rağmen, birleşimlerde göçme meydana gelene kadar çok daha az deplasman oluşmasına neden olmuştur. Elde edilen bu sonuç birleşim bölgelerinde ankraj kullanılmasının taşıma gücünü artımanın yanısıra, hasar meydana gelme potansiyelini de sınırlandırdığını göstermiştir. Ahşap-ahşap birleşim bölgelerinde ankraj kullanılması deney elemanlarında birleşim bölgesinde ölçülen maksimum birim deformasyon değerlerinde çok büyük oranda artış meydana gelmesine neden olmuştur. Ankrajlı deney elemanlarından ölçülen maksimum birim deformasyon değerleri ankrajsız sadece yapıştırıcı ile bağlantının yapıldığı deney elemanlarına göre ortalama 428% oranında daha büyük ölçülmüştür. Elde edilen bu sonuç birleşim bölgesinde kullanılan

ankrajların bağlantı bölgesininde daha verimli bir şekilde kesme gerilmesi aktarılmasına sağladığını göstermiş olup, maksimum taşıma gücü ve kesme gerilmesi değerlerindeki artışın daha verimli bir şekilde gerilme aktarılmasının sağlanması ile başarıldığını göstermiştir. Deneysel çalışma kapsamında incelenen bir diğer değişken ise birleşim bölgesinde kullanılan mekanik ankrajların yerleşim şeklidir. Çalışma kapsamında birleşim bölgesinde ankrajlar tek sıra şeklinde deney elemanına uygulanan eksenel çekme yüklemesi ile konsantrik olarak yükleme ekseninde ve iki sıra şeklinde yükleme ekseni dışında ekzantrisite ile bağlantı bölgesine yerleştirilmiştir. Çalışma kapsamında bu değişken deney elemanı 7, 8, 9 ile deney elemanı 10, 11, 12 arasında bir karşılaştırma yapılarak incelenmiştir. 7, 8 ve 9 nolu deney elemanlarında 2 adet mekanik ankraj tek sıra şeklinde yükleme ekseninde ve 10, 11, 12 nolu deney elemanlarında ise 2 sıra şeklinde yükleme ekseninin üst ve altında yerleştirilmiştir. Deneysel çalışmadan elde edilen sonuçlar incelendiğinde birleşim bölgesindeki ankrajların 2 sıra şeklinde yerleştirilmesinin, tek sıra şeklinde yerleştirildiği duruma göre daha iyi performans sergilediği, maksimum taşıma gücü, maksimum kesme gerilmesi ve maksimum birim deformasyon değerlerini artırdığı, maksimum kayma deplasmanı değerlerini ise azalttığı görülmüştür. Ahşap-ahşap birleşim bölgesinde 2 sıra şeklinde bir sıra şeklinde yerleştirilen deney elemanlarında artmış, maksimum kesme gerilmesi ve maksimum taşıma gücü, maksimum kesme gerilmesi 2 sıra şeklinde artmış, maksimum kayma deplasmanı değerlerini ise azalttığı görülmüştür. Ahşap-ahşap birleşim bölgesinde 2 sıra şeklinde mekanik ankraj yerleştirilen deney elemanlarında bir sıra şeklinde yerleştirilen deney elemanlarına göre maksimum taşıma gücü, maksimum kesme gerilmesi ve maksimum taşıma gücü, maksimum kesme gerilmesi ve maksimum taşıma gücü, maksimum kesme gerilmesi ve maksimum taşıma şeklinde yerleştirilen deney elemanlarında bir sıra şeklinde yerleştirilen deney elemanla

4. Sonuçlar

Yürütülen çalışma kapsamında sadece yapıştırıcı ve yapıştırıcı ile birlikte mekanik ankraj yerleştirilen ahşap-ahşap birleşim bölgelerinin eksenel çekme kuvveti etkisi altında kayma gerilmesi – kayma deplasmanı davranışı ve birleşim bölgesi boyunca birim deformasyon dağılımlarının incelenmesi için kapsamlı bir deneysel çalışma gerçekleştirilmiştir. Çalışmada toplam 21 adet ahşapahşap birleşim bölgesi deney elemanı tasarımı yazarlar tarafından gerçekleştirilen özel bir deney düzeneği ile eksenel çekme kuvveti etkisinde göçme meydana gelene kadar monotonik olarak artılan yükleme ile test edilmiştir. Deneysel çalışma sonucunda elde edilen kesme gerilmesi - kayma deplasmanı davranışları kullanılarak ankrajsız ve ankrajlı ahşap-ahşap birleşim bölgeleri için genelleştirilmiş bir bond stress- slip displacement (bond-slip) modeli önerisi oluşturulmuştur. Ahşap-ahşap birleşim bölgeleri için oluşturulan bu yeni kesme gerilmesi - kayma deplasmanı modeli oluşturulurken literatürde beton ve CFRP malzemesi arasındaki kesme gerilmesi - kayma deplasmanı modeli oluşturulurken literatürde beton ve CFRP malzemesi arasındaki kesme gerilmesi - kayma deplasmanı modeli oluşturulurken literatürde beton ve CFRP malzemesi arasındaki kesme gerilmesi - kayma deplasmanı modeli oluşturulurken literatürde beton ve CFRP malzemesi arasındaki kesme gerilmesi - kayma deplasmanı modeli oluşturulurken literatürde beton ve CFRP malzemesi arasındaki kesme gerilmesi - kayma deplasmanı modeli oluşturulurken literatürde beton ve CFRP malzemesi arasındaki kesme gerilmesi - kayma deplasmanı modeli olarak kullanılan Lu et al., 2005 tarafından önerilen Cohessive Zone Modelling (CZM) metodu temel alınarak, bu model modifiye edilerek ahşap-ahşap birleşimleri arayüzeyleri için yeni bir bond-slip modeli önerisi oluşturulmuştur. Yapılan literatür taramasında ankrajızı yapıştırıcı ile birleştirilen ve yapıştırıcıya ek olarak mekanik ankrajlar ile birleştirilmiş ahşap-ahşap bağlantı bölümleri için genelleştirilmiş bir kayma gerilmesi- kayma deplasmanı malzeme

- Ahşap-ahşap birleşim bölgesi uzunluğu arttıkça maksimum taşıma gücü değerlerinde artış meydana geldiği belirlenmiştir. Mekanik ankraj kullanılmayan sadece yapıştırıcı ile oluşturulan ahşap-ahşap bağlantılarında birleşim bölgesi uzunluğu arttıkça maksimum taşıma gücü değerlerinde meydana gelen artış daha düşük oranda meydana gelirken, bağlantı bölgelerinde yapıştırıcı ile birlikte mekanik ankraj kullanılması maksimum taşıma gücü değerleri üzerinde daha büyük oranda etkili olmuş ve daha fazla oranda artış meydana gelmesine neden olmuştur.
- Ahşap-ahşap birleşim bölgesinin uzunluğunun artması deney elemanlarından ölçülen maksimum kayma gerilmesi değerlerinin azalmasına neden olmuştur. Birleşim bölgesinde sadece yapıştırıcının kullanıldığı deney elemanlarında bağlantı uzunluğunun artması sonucunda maksimum kesme gerilmesi değerlerinde meydana gelen azalım daha büyük oranda meydana gelirken, birleşim bölgesinde yapıştırıcı ile birlikte mekanik ankrajların kullanıldığı deney elemanlarında bağlantı bölümünün uzaması kesme gerilmesi değerlerinin daha düşük oranda azalmasına neden olmuştur.
- Ahşap-ahşap birleşim bögesi uzunluğunun artması deney elemanlarında maksimum kesme gerilmesi değerinde meydana gelen kayma deplasmanı değerlerinin artmasına ve maksimum kayma deplasmanı değerlerinin ise azalmasına neden olmuştur.
- Deneysel çalışma kapsamında alınan birim deformasyon ölçümleri incelendiğinde en büyük birim deformasyon değerlerinin 250 mm uzunluğundaki birleşimde meydana geldiği görülmüştür. Maksimum birim deformasyon değerleri 350 mm ve 180 mm uzunluğundaki birleşim bölgelerinde azalım göstermiştir.
- Ahşap-ahşap birleşim bölgesi uzunluğunun çok fazla uzatılmasının etkili bir şekilde kesme gerilmesi aktarımı üzerinde faydalı bir etkisi olmadığı görülmüştür.
- Deneysel çalışmada elde edilen sonuçlar incelendiğinde ahşap-ahşap birleşim bölgelerinde yapıştırıcı haricinde mekanik ankraj kullanılması durumunda birleşim bölgelerinin maksimum taşıma gücü değerleri, maksimum kesme gerilmesi değerleri, maksimum kesme gerilmesi düzeyindeki kayma deplasmanı değerleri ve maksimum birim deformasyon değerleri önemli oranlarda artış göstermiş, maksimum kayma deplasmanı değerleri ise azalım göstermiştir.
- Maksimum taşıma gücü değerlerindeki artış oranları incelendiğinde birleşim bölgesindeki mekanik ankraj sayısındaki artış ile maksimum taşıma gücü değerlerinin çok daha fazla miktarda artış gösterdiği görülmektedir. birleşim bölgesinde ankraj kullanılması ile birlikte bağlantı uzunluğunun da artış göstermesi deney elemanlarının maksimum taşıma güçlerinin daha fazla oranda artmasına neden olmuştur.
- Deney elemanlarında birleşim bölgesinde ankraj kullanılması birleşim bölgesinde meydana gelen kayma deplasmanı değerlerini sınırlandırarak, taşıma gücünde önemli bir miktarda artış sağlamasına rağmen, birleşimlerde göçme meydana gelene kadar çok daha az deplasman oluşmasına neden olmuştur. Elde edilen bu sonuç birleşim bölgelerinde ankraj kullanılmasının taşıma gücünü artımanın yanısıra, hasar meydana gelme potansiyelini de sınırlandırdığını göstermiştir.

- Ahşap-ahşap birleşim bölgelerinde ankraj kullanılması deney elemanlarında birleşim bölgesinde ölçülen maksimum birim deformasyon değerlerinde çok büyük oranda artış meydana gelmesine neden olmuştur.
- Deneysel çalışmadan elde edilen sonuçlar incelendiğinde birleşim bölgesindeki ankrajların 2 sıra şeklinde yerleştirildiği duruma göre daha iyi performans sergilediği, maksimum taşıma gücü, maksimum kesme gerilmesi ve maksimum birim deformasyon değerlerini artırdığı, maksimum kayma deplasmanı değerlerini ise azalttığı görülmüştür.

Referanslar

Anshari, B., Guan, Z.W., Wangc, Q.Y. (2017). Modelling of Glulam beams pre-stressed by compressed wood, Composite Structures 165 (2017) 160–170.

Anshari, B, Guan, Z.W., Kitamori, A., Jung, K., Komatsu, K., (2012). Structural behaviour of glued laminated timber beams prestressed by compressed wood. Constr Build Mater; 29:24–32.

Anıl, Ö., Durucan, C., Wali Din, S., (2016). Experimental Study on the Stress Distribution at the Interface Between CFRP and Three Different Types of Masonry Units, Composites Part B: engineering, Vol. 92, 63-73.

Dietsch, P., Tannert, T. (2015). Assessing the integrity of glued-laminated timber elements, Construction and Building Materials 101: 1259–1270.

Dönmez, T. Ü., Türer, A., Anil, Ö., Erdem, R. T. (2020). Experimental and numerical investigation of timber formwork beam under different loading type, Mechanics Based Design of Structures and Machines, DOI: 10.1080/15397734.2020.1749071.

Fossetti, M., Minafò, G., Papia, M., (2015). Flexural behaviour of glulam timber beams reinforced with FRP cords, Construction and Building Materials 95: 54–64.

Ghoroubi, R., Mercimek, Ö., Anıl, Ö., (2020). Açılı CFRP Ankrajlı Şeritler ile Beton Yüzey Arasındaki Gerilme-Deformasyon Davranışı için Yeni Bir Model Önerisi. International Journal of Engineering Research and Development, 12 (2), 380-386. DOI: 10.29137/umagd.697870.

Ghoroubi, R., Mercimek, Ö., Özdemir, A., Anil, Ö., (2020). Experimental investigation of damaged square short RC columns with low slenderness retrofitted by CFRP strips under axial load. Structures, vol.28, 170-180.

Haiman, M., Pavković, K., Baljkas, B. (2010). Application of Glulam Beam Girders With External Pre-Stressing, WTCE, World Conference on Timber Engineering.

Izzi, M., Casagrande, D., Bezzi, S., Pasca, D., Follesa, M., Tomasi, R., (2018). Seismic behaviour of Cross-Laminated Timber structures: A state-of-the-art review, Engineering Structures 170:42–52.

Lu, X., Teng, J., Ye, L., & Jiang, J. (2005). Bond-slip models for FRP sheets/plates bonded to concrete. EngineeringStructures, 27, 920–937.

Mehra, S., O'Ceallaigh, C., Hamid – Lakzaeian F., Guan, Z., Sotayo, A., Harte, A.M., (2018). Evaluation of The Structural Behaviour of Beam-Beam Connection Systems Using Compressed Wood Dowels And Plates, WCTE 2018, World Conference on Timber Engineering, April, 20-23 2018, Seoul, Republic of Korea.

Mercimek, Ö., Ghoroubi, R., & Anıl, Ö., (2019). Behavior of RC Square Column Strengthening with CFRP Strips Subjected to Low Velocity Lateral Impact Loading. Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering (pp.329-342), Berlin: Springer, London/Berlin.

Mercimek, Ö., Ghoroubi, R., Özdemir, A., Anıl, Ö., (2020). Strengthening of Columns with Different Innovative Composite Materials for RC Buildings without Sufficient Earthquake Resistance . International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications; Exhibition (ICMATSE 2020), October 2-4, 2020, Gazi University, Ankara, TURKEY (pp.214-215). Ankara, Turkey.

Mertoğlu, Ç., Anıl, Ö., Durucan, C, (2016). Bond Slip Model and Strain Distribution of Anchoraged CFRP Strips, Construction and Building Materials, Vol. 123, 553-564.

Raftery, G.M., Rodd, P.D. (2015). FRP reinforcement of low-grade glulam timber bonded with wood adhesive, Construction and Building Materials 91: 116–125.

Raftery, G.M., Harte, A.M. (2013). Nonlinear numerical modelling of FRP reinforced glued laminated timber, Composites: Part B 52: 40–50.

Sakin, S., Anıl, Ö., Ghoroubi, R., Mercimek, Ö., (2019). Modelling bond between concrete and bonded and anchored carbon-fibre polymer strips. Proceedings of The Institution of Civil Engineers-Structures and Buildings , vol.172, 437-450. Sena-Cruz, J., Jorge, M., Branco, J. M., Cunha, V.M.C.F. (2013).Bond between glulam and NSM CFRP laminates. Construction and Building Materials 40: 260–269.

Schiere, M., Franke, S., Franke, B., (2018). Investigation and analysis of press glued connections for timber structures, Research Report No: K.007404.77FE-V1, Bern University of Applied Sciences, Institute for Timber Constructions, Structures and Architecture, COST Project, European Cooperation in Science and Technology.

Tran, V.D., Oudjene, M., Méausoone, P.J. (2015). Experimental and numerical analyses of the structural response of adhesively reconstituted beech timber beams, Composite Structures 119: 206–217.

Weidong, L., Ling, Z., Geng, Q., Liu, W., Yang, H., Yue, K. (2015). Study on flexural behaviour of glulam beams reinforced by Near Surface Mounted (NSM) CFRP laminates, Construction and Building Materials 91: 23–31.

Yang, H., Liu, W., Ren, X. (2016a). A component method for moment-resistant glulam beam–column connections with glued-in steel rods, Engineering Structures 115: 42–54.

Yang, H., Ju, D., Liu, W., Lu, W., (2016b). Prestressed glulam beams reinforced with CFRP bars, Construction and Building Materials 109, 73-83.