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For simplicity in notation, we use the notations , ,lim supn n
n
/  

and infn  instead of , , ,lim sup infn n
n

n
1

N N"3
3

! !
=
/ , respectively.

A linear topological space U over R  is said to be a 
paranormed space if there is a function :g U R"  satisfying 
the following conditions:

i) g  is sub-additive.

ii) g 0i =^ h , where i  is the zero vector of U.

iii) g u g u= -^ ^h h  for all u U! .

iv) 0n "p p-  and g u u 0n "-^ h  imply 
g u u 0n n "p p-^ h  for all np^ h  and p  in R  and all un^ h  
and u  in U .

Maddox (1967) defined the paranormed  sequence space 
p,^ h  (see also Simons (1965) and Nakano (1951)) as:

:p u u un n
p

n

n, 31! ~= =^ ^h h% //
which is the complete paranormed space by 

g u up n
p

n

S
1n=^ ah k/ .

Let T tmn= ^ h  be an infinite matrix of real numbers tmn  
for ,m n N!  and ,U V  be any two sequence spaces. If 

( )Tu T u Vm != ^ h  for every u u Un != ^ h , then we say 

1. Introduction

Let w be the space of all real valued sequences. If U is any 
linear subspace of w, then U is called a sequence space. By 
c0, c and ,3 , we denote the spaces of all null, convergent 
and bounded sequences, respectively. Also, by bs, cs, 1,  
and p1 < <p, 3^ h , we denote the spaces of all bounded, 
convergent, absolutely and p-absolutely convergent series, 
respectively.

Throughout this paper, we assume that (pn) is a bounded 
sequence of strictly positive real numbers with sup p Pn nN =!  
and ,maxS P1= " , . In this case, for any R!p  and all 

, , , ...n 1 2 3N! = " , , the inequality 

,max 1P Sn #p p" ,   (1)

holds, where R  is the real field (see [1]). Also, we write 
p p 1'

n n
1 1+ =- -^ h  for inf p P1 n nN1 #!  and denote the 

family of all finite subsets of N  by " .
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that T  is a matrix mapping from U  into V  and we denote 
it by writing :T U V" , where 

T u t um mn

n

n=^ h /   (2)

for every m N! . Also, Tu  is called as T - transform of 
u U! . By :U V^ h , we denote the class of all matrices T  
such that :T U V" . Thus, :T U V! ^ h  if and only if the 
series on the right-hand side of (2) converges for each 
m N!  and every u U! , and we have Tu V!  for all 
u U! . 

For the sequence spaces U  and V , the set ,S U V^ h  is 
defined by

, { ( ) : ( )S U V s s us u s Vn n n! !~= = =^ h  for all 
( ) }u u Un != .

Then, the , ,a b c- - - duals of a sequence space U , which 
are respectively denoted by ,U Ua b  and Uc  are defined by 

, , ,U S U U S U cs1,= =a b^ ^h h  and ,U S U bs=c ^ h .
Let ,U g^ h  be a paranormed space. A sequence cn^ h  in U  is 
called a Schauder basis for U  if and only if for each ,u U!  
there exists a unique sequence np^ h  of scalars such that 
g u c 0n

n

m
n

0
"p-

=
^ h/  as m " 3 . In this case, we can write 
u cn n np=/ .

Let U  be a sequence space and T  be an infinite matrix. 
Then, the matrix domain UT  of T  in the space U  is defined 
by 

:U u Tu UT ! !~= " , .

In the literature, there are many papers (Altay and Başar 
2002, 2006, Aydın and Başar 2004, 2006,  Kara et al. 2010, 
Demiriz and Çakan 2010, Karakaya and Şimşek 2012, 
Candan 2014a, 2015, Candan and Kılınç 2015, Candan 
and Güneş 2015, Ellidokuzoğlu and Demiriz 2016) about 
paranormed sequence spaces obtained by matrix domains 
of different infinite matrices. Also, for more details about 
matrix domains of infinite triangular matrices, one can 
see (Başar 2012, Et and Çolak 1995, Et and Başarır 1997, 
Candan 2014b, Kılınç and Candan 2017, Kama and Altay 
2017, Kama et al. 2018).

Throughout the paper, {  and n  denote the Euler Totient 
function and Möbius function, respectively. For every m N!  
with ,m m12 {^ h  is the number of positive integers less 
than m  which are coprime with m  and 1 1{ =^ h . There 
are some properties of function { . For example: 

i) If p p pl1 2
l1 2fa a a  is the prime factorization of a natural 

number m 12 , then

.m m p p p1 1 1 1 1 1
l1 2

f{ = - - -^ b b bh l l l
ii) For every m N! , the equality

m n
/n m

{= ^ h/
holds.

iii) If ,m m N1 2 !  are coprime, then the equality 
m m m m1 2 1 2{ { {=^ ^ ^h h h  holds (Kovac 2005).

Given any m N!  with m 12 , Möbius function n  is 
defined as 

,

,

... , ...

|
m

if m p p p where p p p are

non equivalent prime numbers
if p m for some prime numbers p

1

0

l l l1 2 1 2

2

n =
-

=

-^ ^h h*

and 1 1n =^ h . If ...p p pl1 2
l1 2a a a  is the prime factorization of a 

natural number m 12 , then

... .n n p p p1 1 1
n m

l1 2n = - - -
=

^ ^ ^ ^h h h h/

Also, the equality

n 0
n m

n =
=

^ h/   (3)

holds except for m 1=  and ,m m m m1 2 1 2n n n=^ ^ ^h h h
where ,m m N1 2 !  are coprime (Kovac 2005). One can 
consult to Niven et al. (1991) for more details related to 
these functions.

The Euler totient matrix mnzU = ^ h  is defined by 

,

|m
n

if n m

otherwise0
mnz

{
=

^ h
*

for all ,m n N! . The inverse mn
1 1zU =- -^ h  of the matrix U  

is computed (14) as 

,

|
m
n
m

n if n m

otherwise0

mn
1z

n

{=-

`
^ h
j

Z

[

\

]]

]

for all ,m n N! . Quite recently, İlkhan and Kara 
(2019) have introduced new Banach sequence spaces 

p1p, 31#U^ ^h h  and , U3 ^ h  derived by using a matrix 
operator which is comprised of Euler’s totient function as 

:u u m n u p
1

1p n n

n m

p

m

, 3 31 1! #~ {U = =
=

^ ^ ^ ^h h h h* 4//
and

: .supu u m n u
1

n n

n m
m

, 31! ~ {U = =
=

3 ^ ^ ^h h h* 4/

The paranormed spaces have more general properties than 
normed spaces. Thus, in this paper we generalize the normed 
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sequence space p1p, 31#U^ ^h h  to paranormed space 
,p, U^ h . Also, we investigate some topological structures 

such as completeness, the , ,a b c- - - duals and the basis 
of the space ,p, U^ h .

2. The Paranormed Sequence Space ,p, U^ h  

In the present section, we introduce the sequence space 
,p, U^ h  by using the Euler Totient matrix U . Also, we 

prove that this space is a complete paranormed space and 
give the Schauder basis for this space.

Unless otherwise stated, v vn= ^ h  will be the U - transform 
of a sequence u un= ^ h , that is, 

v m n u
1

m

n m

n{=
=

^ h/
for all m N! . 

Now, we introduce the sequence space ,p, U^ h  by 

, : .p u u m n u
1

n n

n m

p

m

m

, 31! ~ {U = =
=

^ ^ ^h h h* 4//

According to the definition of matrix domain, the sequence 
space ,p, U^ h  can be represented by ,p p, ,U = U

^ ^ ^h hh .

Let [ , )p 1 3! + . Then, in the case p pm =  for all m N! , 
the space ,p, U^ h  is reduced to the sequence space p, U^ h . 
Theorem 1. ,p, U^ h  is complete paranormed space with the 
paranorm given by

g u m n u
1

/

n

n m

p

m

S1
m

{=
=

U ^ f ^h h p//
for all ,u u pn ,! U= ^ ^h h . 
Proof. Let , ,u u s s pn n ,! U= =^ ^ ^h h h . According to 
Maddox (1988), we can write 

.

m n u s m n u

m n s

1 1

1

/ /

/

n n

n m

p

m

s

n

n m

p

m

s

n

n m

p

m

s

1 1

1

m m

m

#{ {

{

+

+

= =

=

f

f

^

^

^ f ^h

h p

h p h p// //

//
   

(4)

The linearity of ,p, U^ h  with respect to the co-ordinatewise 
addition and scalar multiplication follows from (1) and (4). 

It is clear that

g 0i =U ^ h  and g u g u= -U U^ ^h h
for all ,u p,! U^ h . Also, from (1) and (4), we obtain the 
subadditivity of gU  and ,maxg u g u1#p pU U^ ^h h" , for 
any R!p .

Now, let um" ,  be any sequence in ,p, U^ h  such that 
g u u 0m "-U ^ h  and mp^ h  also be any sequence of scalars 
such that m "p p . Then, it follows from the subadditivity 
of gU  that

g u g u g u um m# + -U U U^ ^ ^h h h .
Thus, g um

U ^ h" ,  is bounded and we have

g u u m n u u
1

/

m
m

m n
m

n

n m

p

m

S1
m

p p { p p- = -
=

U ^ f ^ ^h h h p//
g u g u um

m m# p p p- + -U U^ ^h h
which tends to zero as m " 3 . This shows that scalar 
multiplication is continuous. Hence, gU  is a paranorm on 
,p, U^ h .  

It remains to prove the completeness of the space , .p, U^ h
Let ui" ,  be any Cauchy sequence in ,p, U^ h , where 

, , , ...u u u ui i i i
1 2 3= ^ ^ ^h h h" ,  for each i N! . Then, for a give 

02f  there exists a positive integer n0 f^ h  such that 

g u ui
j 1 f-U ^ h   (5)

for all ,i j n0$ f^ h . Using the definition of gU , we obtain 
for each fixed k N!  that 

u u u u
/

k
i

k
j

k
i

k
j p

k

S1k 1# fU U U U- -^ ^ ^ ^h h h h9 C/
for every ,i j n0$ f^ h  which leads us to fact that 

, , , ...u u uk k k
1 2 3U U U^ ^ ^h h h" ,  is a Cauchy sequence of real 

numbers for every fixed k N! . Since R  is complete, it 
converges, say

u uk
i

k"U U^ ^h h
as i " 3  for every fixed k N! . With the help of these 
infinitely many limits , , , ...,u u u1 2 3U U U^ ^ ^h h h  we define 
the sequence , , , ...u u u1 2 3U U U^ ^ ^h h h" , . Then, from (5) we 
can write for each fixed m N!  and  ,i j n0$ f^ h  

.u u g u u
k

m

k
i

k
j p i j S S

1

k 1# fU U- -U

=

^ ^ ^h h h/   (6)

Let i n0$ f^ h . If we take j " 3  in (6) after ,m " 3
then we have that g u ui # f-U ^ h . Finally, taking 1f =  
in (6) and letting i n 10$ ^ h , it follows from Minkowski’s 
inequality for every fixed m N!  that

u g u u g u g u1
/

k

k

m
p

S
i i i

1

1
k

# #U - + +U U U

=

c ^ ^ ^ ^h m h h h/

which says that ,u p,! U^ h . Since g u ui # f-U ^ h  for all 
i n0$ f^ h , we obtain that u ui "  as i " 3 . As a result, it 
proves that ,p, U^ h  is complete.

Note that the absolute property on the space ,p, U^ h  does 
not hold, since there exists at least one sequence u  in 
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Proof. Since the isomorphism L , defined in the proof of 
Theorem 2, between the spaces ,p, U^ h  and p,^ h  is onto, 
the inverse image of the Schauder basis of the space p,^ h  
is a Schauder basis of the space ,p, U^ h . Thus, the proof is 
trivial.

3. Some Duals of the Space ,p, U^ h
In the present section, we give the theorems determining 
the , ,a b c- - -  duals of the sequence space ,p, U^ h .
The following three lemmas are essential for proving our 
theorems given in this section.

Lemma 1. [(Grosse-Erdmann 1993) Theorem 5.1.0 with 
q 1m = ] 

(i) Let p P1 n 31 1#  for all n N! . Then, 
:T t pmm 1, ,!= ^ ^ ^h h h  if and only if there exists an integer 

K 12  such that

.sup t K
N

mn

m Nn

p
1

'
n

31
"! !

-//   (7)

(ii) Let p0 1n1 G  for all n N! . Then, 
:T t pmn 1, ,!= ^ ^ ^h h h  if and only if

.supsup t
N n

mn

m N

pn

31
"! !

/   (8)

Lemma 2. [(Grosse-Erdmann 1993), Theorem 1 (i)-(ii)]

(i) Let p1 n 31 1  for all n N! . Then, 
:T t pmn , ,!= 3^ ^ ^h h h  if and only if there exists an integer 

K 12  such that

sup t K
m

mn

n

p1
'
n 31-/ .  (9)

(ii) Let p0 1n1 #  for all n N! . Then, 
:T t pmn , ,!= 3^ ^ ^h h h  if and only if

sup t
,m n

mn
p

N

n

!

   (10)

Lemma 3. [16, Corollary for Theorem 1] Let p0 n 31 #  
for all n N! . Then, :T t p cmn ,!= ^ ^ ^h h h  if and only if (9), 
(10) hold, and 

lim t c n N
m mn n != ^ h   (11)

also holds.

Theorem 4. For every N "! , we write 
: |N N m n m nN Nn k ! != ^ h" , . Let K 12  and define 

the sets D1
a  and D2

a  as follows:

,p, U^ h  such that g u g u!U U^ ^h h , where u un= ^ h . 
Thus, ,p, U^ h  is a sequence space of non-absolute type.

Theorem 2. The sequence space ,p, U^ h   is linearly 
isomorphic to the space p,^ h .
Proof. To prove the theorem, the existence of a linear 
bijection transformation L  between the spaces ,p, U^ h  and 

p,^ h  should be shown. For this purpose, by using the U
-transform, we define the transformation L  from ,p, U^ h  
to p,^ h  by u v Lu u" U= = . It is trivial that L  is linear. 
Also, L  is injective since u i=  whenever Lu i= .

Let v v pn ,!= ^ ^h h  and define the sequence u un= ^ h  by

u
n
k
n

kvn

k n

k
{

n
=

=

a
^ h
k

/

for all n N! . Then, we have from (3) that

.

g u m n u

m n
n
k
n

kv

m k
n
kv

m k n
m
v

v g v

1

1

1

1

/

/

/

n

n m

p

m

S

k n

k

n m

p

m

S

k n

k

n m

p

m

S

k n
n
m

n m

p

m

S

m
p

m

S

1

1

1

1

1

m

m

m

m

m 31

{

{
{

n

n

n

=

=

=

=

= =

=

==

==

==

U

U

J

L

K
KK

^ f

f

f

a

a

^

^

a

^

^

a
^

N

P

O
OO

h

k

h

h

k

h

h
k

p

h
k

p

p

//

///

///

///

/

This says that ,u p,! U^ h . Thus, L  is surjective and 
paranorm preserving. As a result, L  is a linear bijection and 
the spaces ,p, U^ h  and p,^ h  are linearly isomorphic.

Let p s1 n n1 #  for all n N! . Then, it is known that 
p s, ,3^ ^h h  which leads us to the immediate consequence 

that , ,p s, ,3U U^ ^h h .
Theorem 3. Define the sequence b bm

n
m

n N= !
^ ^h h" ,  of the 

elements of ,p, U^ h  by 

,

, |b m
n
m

n if n m

otherwise0

n
m

{

n
=

`
^^ h
j

h

Z

[

\

]]

]

for every fixed m N! . Then, the sequence b m
m N!

^ h" ,  is a 
Schauder basis for the space ,p, U^ h  and any ,u p,! U^ h
has a unique representation of the form 

,u bm
m

mc= ^ h/
where um mc U= ^ h  for all m N! .
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s u s
n
k
n

kv

k
n
k

ns v

D v
, |

n n n

n

m

k nn

m

k

k

k n n k

m

n

m

n

m

11

1

{

n

{

n

=

=

=

===

==

f
^

a
^

f a
^

h
h
k p

h
k p/ //

//   (13)

where the matrix D dmn= ^ h  is defined by 

,

,d
k
n
k

ns n m

otherwise0

1
, |

mn
k n n k

m

k # #
{

n
=

=

a
^ h
k

Z

[

\

]]

]]
/

for all ,n m N! . Thus, we have from Lemma 3 with (3.7) 
that su s u csn n != ^ h  whenever ,u u pn ,! U= ^ ^h h  if and 
only if Dv c!  whenever v v pn ,!= ^ ^h h  which means 
that ,s s pn ,! U= b^ ^h h" ,  if and only if :D p c,! ^ ^ h h . It 
follows from (9), (10) and (11) that 

, .p D D D1 2 3, ,, U =b b b b^ h" ,
Theorem 6. 

,
,
,

p
D
D

p for all n
p P for all n

0 1
1

N

N

n

n

2

1

,
1
1 1

# !

# !
U =c

b

b
^ h" ), .

Proof. This can be obtained in the similar way, as mentioned  
in the proof of  Theorem 5 with Lemma 2 instead of Lemma 
3. So, we omit the details. 
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:D s s
m
n
m

ns
|

n

N n

m

n m

m N

p

1

n

supsup 31! ~
{

n
= =

"!
!

a ^ a
^h h
k

Z

[

\

]]

]]

_

`

a

bb

bb
/

and 

: .D s s
m
n
m

ns K
K

n

N

m

m N

p

n

2

1

1

'

n

n

sup 31! ~
{

n
= =

"2 ! !

a -^ a
^h h
k* 4' //

(i) If p0 1n1 #  for all n N! , then , .p D1, U =a a^ h" , .

(ii) If p P1 n 31 1#  for all n N! , then , .p D2, U =a a^ h" ,  

Proof. We prove only the case (ii) since the case (i) can be 
proved by analogy. Let us take any s sn ! ~= ^ h . Bearing 
in mind the relation between the sequences u un= ^ h  and 
v vn= ^ h , we easily write that

( )

( ),

s u s
m
n
m

nv
m
n
m

ns v C v

m N

m m m

n m

n m n

n m

m

!
{

n

{

n
= = =

= =

a
^ f a^h
k

h
k p/ /    

(12)

where the matrix C cmn= ^ h  is defined by 

,

, |C m
n
m

ns n m

otherwise0

mn m
{

n
=

`
^ h
j

Z

[

\

]]

]

for all ,n m N! . Thus, we obtain from  combining 
(3.6) with the equation (7) of Lemma 1 (i) that 
su s un n 1,!= ^ h   whenever , ,u up pn ,! U= ^ ^h h  if and 
only if Cv 1,!  whenever v v pn ,!= ^ ^h h . This says that 

,s s pn ,! U= a^ ^h h" ,  if and only if :C p 1, ,! ^ ^ h h . Hence, 
this gives the result ,p D2, U =a a^ h" , .

Theorem 5. Let us define the sets ,D D1 2
b b  and D3

b  as follows:

: ,

:

D s s
k
n
k

ns K

D s s
k
n
k

ns

, |

, , |

n

K m

k

k n n k

m

p

n

m

n

m n

k

k n n k

m

p

1

1

1

1

2

N

'
n

n

sup
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Then, , .p D D D1 2 3, ,, U =b b b b^ h" ,
Proof. Take any s sn ! ~= ^ h  and let v vn= ^ h  be U -
transformation of the sequence u un= ^ h . Then, we can 
write
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