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spatial finite-difference methods. The main advantage of this 
hybrid method is that it can be used to solve both linear and 
nonlinear equations without linearization. The differential 
transform method was used first by Zhou, 1986, who solved 
linear and nonlinear initial value problems in electric circuit 
analysis. The differential transform is an iterative procedure 
for obtaining analytic Taylor series solution of ordinary or 
partial differential equations. The method is well addressed 
in Chen and Liu 1998, Jang et al. 2000, Abdel-Halim Hassan 
2004, Ayaz 2004, Kuo 2005. Further, the use of the multi-
stepping procedure used with the differential transform 
method ensures the stability of the scheme leading to a 
convergent solution with appropriate choice of time steps. 
Most importantly, when solving initial-boundary-value 
problems, the error due to truncation produced by the finite 

1. Introduction
The lid-driven cavity flow problem is a well investigated 
one using different continua (see Ottino and Chella 1983, 
Tosoka and Kakuda 1994, Demir 2005, and references 
therein). The problem serves as a benchmark for both forced 
convective, free convective and mixed convective problems 
in a cavity of the rectangular, square, shallow and slender 
slot types. The paper presents the solution of the lid-driven 
cavity problem for a Boussinesq-Stokes liquid using a 
combination of the temporal differential transform and 
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Öz

Bu çalışmada Boussinesq-Stokes tipi akışkanların kapalı bölgede zamana bağlı akışı incelenmiştir. Problem, zaman değişkenine çok 
adımlı diferansiyel dönüşüm metodu konum değişkenlerine sonlu fark metodu uygulanarak çözülmüştür. Elde edilen zamana bağlı 
seri çözümünün yakınsaklığı çok adımlı metot uygulanarak sağlanmıştır. Sonuçlar, Newtonian akışkanlar için grafiklerle literatür ile 
karşılaştırılarak metodun etkinliği gösterilmiş, şüpheli parçacıkların Newtonian akışkanlar üzerine olan yavaşlatıcı etkisi ise grafiklerle 
incelenmiştir.

Anahtar Kelimeler: Diferansiyel dönüşüm-sonlu fark metodu, Çok adımlı metot, Çukur bölgede akış, Sayısal çözüm, Boussinesq-
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Abstract

In the present investigation, a streamfunction-vorticity form for Boussinesq-Stokes liquids (with suspended particles) is suitably used 
to examine the problem of 2-D unsteady incompressible flow in a square cavity with moving top and bottom wall. A new algorithm is 
used for this form in order to compute the numerical solutions for high Reynolds numbers up to Re=2500. This algorithm is conducted 
as a combination of the multi-time-stepping temporal differential transform and the spatial finite difference methods. Convergence 
of the time-series solution is ensured by multi-time-stepping method. The classical benchmark results of the Newtonian liquid are 
recovered as a limiting case and the decelerating influence of the suspended particle on the Newtonian liquids’ flow field is clearly 
elaborated. 
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difference approximation of the time derivative may become 
unbounded but in the case of the differential transform 
method it is invariably bounded if care is taken to choose 

tT  as per the procedure prescribed by Jang et al. 2000. 
Hence, in this study we use such a hybrid method to obtain 
a numerical solution using an easy-to-implement iterative 
procedure (Chu and Chen 2008, Chu and Lo 2007, Cilingir 
Süngü and Demir 2012a, 2012b).

2. Vorticity–Streamfunction Formulation for 
Two-Dimensional Cavity Flow of Incompressible 
Boussinesq-Stokes Liquids 
Following the work (Siddheshwar and Pranesh 2004), the 
vorticity–streamfunction formulations for the considered 
two-dimensional incompressible flow can be written as: 
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In the above equations Re is the Reynolds number, C is the 
couple stress parameter W  is the stream function and X  is 
the vorticity. The velocities U and V, the stream function W  
and the vorticity X  are related by the following equations:
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The boundary conditions for the cavity problem are shown 
in Figure 1.

3. Numerical Algorithm Using the Temporal 
Differential Transform and Spatial Finite     
Difference Methods 

In this solution technique, firstly differential transformation 
method is used for discretization with respect to the 
time variable and its derivatives. After taking differential 
transform of the equations, first and second order central 
difference formulas are used to rewrite spatial variables and 
their derivatives in the governing equations. Therefore, this 
method can combine different properties of differential 
transform and finite difference methods. On using the 
temporal differential transformation, the governing equation 
(1) yields the following equation:
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where k is parameter of differential transformation and it is 
a non-negative integer. , , , , ,W x y k u x y k6 6@ @  and , ,v x y k6 @
are the differential transforms of , , , , ,x y t U x y tX^ ^h h  and 
, ,V x y t^ h , respectively. The product 7  is defined as
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The procedure adopted above has facilitated the conversion 
of the time-evolutionary equations into Poisson equations 
which are then solved using the central difference method. 
The temporal differential transform method as used in 
the paper takes care of stability and the finite difference 
method on the resulting equation results in a system of 
diagonally dominant linear algebraic equations ( Jang et al. 
2000, Cilingir Süngü and Demir 2012a, 2012b). The Gauss-
Siedel iterative procedure then used to solve the linear 
system thus has assured convergence. To have optimized 
convergence rate, numerical experiments were done by 
using a combination of factors involving multi-time-
stepping, spatial-step size and degree of the polynomial fit 
in time. As a result of the procedure used we have got rid 
of stability problems that typically arise in purely finite-
difference methods (both in time and space). Since the 
differential transform is essentially a result emanating from 
the Maclaurin series, it will pose problems of convergence as 
a time-series solution is involved. We address this issue later 
on using a procedure called multi-time-stepping. 

Figure 1. Physical configuration of the cavity problem and 
boundary conditions.
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The rectangular region ( , )/ ,R x y x H y L0 0# # # #= " ,
is now discretized using a grid size of ,h hx y^ h . This results 
in the nodes ,x yi j^ h , where x ihi x=  and y jhj y= . We then 
apply the central difference approximation to the derivatives 
in the spatial differential equation (4). This procedure gives 
us the following partial difference equation that has both 
temporal and spatial components:
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The ranges of i and j are i M1 1# # -  and .j N1 1# # -  
In equation (6), [ , , ]W i j k  represents the value of W at the 
discretized points , ,x y ti j^ h . To solve the partial difference 
equation (6) we need to know the initial and boundary 
conditions and these can be obtained from the no-slip and 
vanishing couple stress conditions depicted in Figure 1.  The 
differential transform of the boundary conditions are:
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4. Convergence and Stability Properties for New 
Algorithm
Having reformulated the cavity problem as an initial-
boundary-value-problem involving a partial difference 

equation we now propose to use the multi-stepping 
procedure of Yu and Chen (1998) that was put to use in 
practical problems by Odibat et al. 2010. Using such 
a multi-stepping procedure we obtain an approximate 
solution that converges in wider time regions. We divide the 
time interval of interest ,T06 @  into P subintervals, namely 
, , , , ,...t t p P1 2p p1 =-6 @  of equal step size t T

PT =  by 
using the nodes t p tp T=  on the time coordinate axis. The 
inverse differential transform gives us the solution for X  at 
the discretized points , ,x y ti j^ h , in each of the sub-intervals 
, , , , , ,...t t p P1 2p p1 =-6 @  in the form:
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where , ,W i j k( )p 6 @  is the differential transform of , ,x y ti jX^ h
in the time interval ,t tp p1-6 @ . At this point the time step 

tT  is to be chosen to keep the truncation error within a 
specified bound and minimize the computation time that 
arise in the power series solution (9). 

The solution procedure is repeated until convergent solution 
is achieved. The tolerance value of 10-3 is used in this study. 
Given the tolerance, the global error in a numerical method 
cannot be determined, in general, the local error is related to 
the global error. Theoretically, if a tolerance f  is given, the 
global error would not exceed f  for any grid point ( Jang 
et al. 2000). From error estimates of Maclaurin series, one 
can choose a proper grid size according to a criterion that 
the global error is constrained within a specified bound. 
Using this fact, we can choose time step to have the bound 
as follows:
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5. Results and Discussion
The lid-driven unsteady cavity flow is solved by considering 
the following three cases:  

(i) only the top wall moving with constant speed in the 
positive direction of x-axis

(ii) Both top and bottom walls moving with constant speeds 
in the positive direction of x-axis and

(iii) Top and bottom walls moving with constant speeds in 
the positive and negative directions of x-axis respectively. 

Firstly, the present model is validated by flow in a square 
cavity because there are fairly large numbers of studies 
conducted for square cavity driven flow. Figures (2)-(20)  
illustrate the streamlines of ψ for flows with Reynolds 
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number in the range 1<Re<2500. The grid resolution 
chosen is 40x40. In order to get grid-independent numerical 
results, in this study we employed several different grid 
resolutions, from 10x10 to 70x70, and found that the grid 
resolution 40x40 is good enough for the chosen Reynolds 
number range. For higher Re, one must choose a finer grid 
resolution. For low Re<1000, only one vortex appears in the 
cavity. For 1000<Re<2000, there is a primary one near the 
centre and a pair of secondary ones in the lower corners of 
the cavity. At Re>2000, a third secondary vortex is seen in 
the upper left corner. We can also see that the centre of the 
primary vortex moves toward the centre of the cavity as Re 
increases. The velocity component u along the vertical centre 
line for different Re is shown in Figure 2A and Figure 2B 
and we use the u -velocity profiles in Figure 2 to test the 

Figure 2. U velocity profiles for (A) Re=100 and (B) 
Re=1000-Present, (C) Re=100 and (D) Re=1000-(Demir 
2005), (E) Re=100 and (F) Re=1000-(Tosoka and Kakuda 
1994).

accuracy of the solution. These observations show that the 
present simulation is in agreement with the previous studies 
which can be seen in Figure 2C, D, E and F. According to 
the figures, the present simulation is in agreement with the 
previous studies (Tosoka and Kakuda 1994, Demir 2005). 
As Re becomes larger the profiles are found to become 
nearly linear in the central core of the cavity. Comparison 
of the efficiency of the different approaches is a very 
important aspect of this study. The computational time 
and iteration numbers for various Reynolds number using 
different numerical methods are documented in Table 1 
and this shows that the hybrid approach is faster than the 
corresponding highly optimized finite difference method in 
two dimensional computations (Guo et al. 2000, Pozrikidis 
2001, Erturk et al. 2005, Chen et al. 2008). Therefore the 

A B C D

E F



Çilingir Süngü, Demir / New Algorithm for the Lid-Driven Cavity Flow Problem with Boussinesq-Stokes Suspension

Karaelmas Fen Müh. Derg., 2018; 8(2):462-472466

Table 1. Comparison of the computational efficiency between different methods for the one-sided lid-driven square cavity flow. A: Guo 
et al. 2000; B: Pozrikidis 2001; C: Erturk et al. 2005; D: Chen et al. 2008; E: Present results

Re = 50 Re = 400 Re = 100
Iterations Time Iterations Time Iterations Time

A 73900 921 89200 1082 93400 1139
B 2000 743 2000 1215 2000 1746
C 3700 468 4900 608 6300 767
D 2200 291 4500 596 6100 812
E 270 2.3895 271 21.7884 275 33.825

Figure 3: Streamlines at Re=1 for a Newtonian flow with only the top wall moving, (A) Present, (B) Chien et al. 1986.

numerical results indicated that the proposed hybrid method 
constructs a simple iterative process, fast, very accurate and 
efficient method.

Finally, we simulated flow in a two-sided cavity driven 
flow. In contrast to the fairly large number of studies 
conducted for one-sided lid-driven cavities, relatively 
little investigation has been carried out for flow in a two-
sided lid-driven cavity which has been employed to study 
mixing, drying processes, fluid dynamics as well as polymer 
processing and thin film coating. The top wall moves with 
velocity UTOP and the bottom wall moves in the same 
direction with velocity being either UBOT or -UBOT. Figures 
(9)-(14) show the flow patterns of symmetrical driving for 
different Reynolds number flows. When both walls move 
in the same direction with the same velocity (UTOP = UBOT ) 
the streamlines are symmetric with respect to the mid-plane 

of y coordinate. For the two walls moving in the opposite 
direction (UTOP = -UBOT) the streamlines are symmetric with 
respect to the two main diagonals of the cavity. Comparison 
is made for graphical comparison in the literature and these 
are shown in Figure 3(B), 9(B), 15(B) and produced by 
Chien et al. 1986. Our results are agree very well with those 
qualitatively as seen in Figure 3(A), 9(A), 15(A). So far we 
have discussed the results of the lid-driven cavity problem 
involving a Newtonian liquid and gained the confidence 
that the proposed hybrid scheme yields equally good results 
as that of the purely finite-difference method adopted in 
works published in literature. 

We now move on to discuss the effect of suspended particles 
on the streamlines of the lid-driven convection problem 
discussed so far. The streamlines in couple stress liquids 
are more circular than that of the Newtonian cells but the 

A B
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Figure 6. Streamlines at Re=1000 for a Newtonian flow with only 
the top wall moving.

Figure 7. Streamlines at Re=1500 for a Newtonian flow with only 
the top wall moving.

Figure 4. Streamlines at Re=100 for a Newtonian flow with only 
the top wall moving.

Figure 5. Streamlines at Re=500 for a Newtonian flow with only 
the top wall moving.
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behaviour of the flow with increase in Re is qualitatively 
similar in both the liquids. The reason for the circular nature 
of the cells in the case of couple stress liquids is that the 
suspended particles slow down the carrier fluid (Newtonian 

Figure 8. Streamlines at Re=2500 for a Newtonian flow with only 
the top wall moving.

Figure 9. Streamlines at Re=1 for Newtonian flow when the walls 
move in the same direction (A) Present, (B) Chien et al. 1986.

fluid) and by Einstein’s law this can be attributed to the 
enhancement of viscosity due to the addition of suspended 
particles. The results shown in Figures 21 and 22 suggest the 
above results on couple stress liquids.

Figure 10. Streamlines at Re=100 for Newtonian flow when the 
walls move in the same direction.

A

B
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Figure 14: Streamlines at Re=2500 for Newtonian flow when the 
walls move in the same direction.

Figure 12. Streamlines at Re=1000 for Newtonian flow when the 
walls move in the same direction.

Figure 13. Streamlines at Re=1500 for Newtonian flow when the 
walls move in the same direction.

Figure 11. Streamlines at Re=500 for Newtonian flow when the 
walls move in the same direction.
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Figure 15. Streamlines at Re=1 for Newtonian flow for walls moving in the opposite direction, (A) Present, (B) Chien et al. 1986.

Figure 16. Streamlines at Re=100 for Newtonian flow for walls 
moving in the opposite direction.

Figure 17. Streamlines at Re=500 for Newtonian flow for walls 
moving in the opposite direction.

A B
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6. Conclusion
The study achieved the objective of examining and validating 
a new hybrid numerical method of solving the lid-driven 
cavity problem. The proposed hybrid method is shown 

Figure 18. Streamlines at Re=1000 for Newtonian flow for walls 
moving in the opposite direction.

Figure 19. Streamlines at Re=1500 for Newtonian flow for walls 
moving in the opposite direction.

Figure 20. Streamlines at Re=2500 for Newtonian flow for walls 
moving in the opposite direction.

Figure 21. Stream function values along vertical centre line at 
Re=1000 for different C.

to yield a convergent solution and does not seem to have 
limitations in handling any upper-limit of Reynolds Number 
and may be an important tool to reduce the execution time 
and memory requirements for large scale computations 
and get remarkable results in predicting the solutions of lid 
driven square cavity flow problems. The results are found 
acceptable for both quantitatively and qualitatively in case 
of Newtonian fluids without and with suspended particles. 
The works on other types of continua are in progress.
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