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investigated by many researchers (1-3). For that reason, we 
need a reliable and efficient technique for the solution of 
fractional differential equations. So far, many powerful and 
efficient methods have been suggested to obtain numerical 
solutions and exact solutions of them. For example, numerical 
analytical methods for solving fractional problems are the 
adomian decomposition method (ADM) (4), the variational 
iteration method (VIM) (5), the homotopy perturbation 
method (HPM) (6), the homotopy analysis method 
(HAM) (7) and exact solution methods are the G

Glb l
-expansion method (8,9), the first integral method (10,11), 
the fractional sub-equation method (12,13), the modified 
trial equation method (14,15), the exp-function method 
(16,17) and the functional variable method (18).

1. Introduction
Fractional calculus is used successfully in the field of 
mathematical physics, biology, engineering and the other 
field of applied sciences. Many important events are well 
described by differential equations of fractional order in 
control theory, acoustics, electromagnetics, electrochemistry, 
viscoelasticity, fluid flow, systems identification and signal 
and image processing. Fractional calculus has been used 
to described that are found to be best model by fractional 
differential equations (FDEs). Therefore, FDEs have been 
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In this paper, we are going to use the G
Glb l -expansion 

method (19-22) for solving nonlinear fractional partial 
differential equations with modified Riemann-Liouville 
derivative. In Section 2, we describe the algorithm for using 
the G

Glb l -expansion method with fractional complex 
transform to solve FDEs. In Section 3 and 4, we will apply 
it to the fractional order system of variant Boussinesq and 
two-dimensional Burgers’ equations. In the last section, 
conclusions are given.

2. The G
Glb l -Expansion Method and the Fractional 

Complex Transform
Let us consider the general nonlinear FDE as follow, 

, , , , , , , , , ... ,

, ,

H u D u D u D D u D D u D D u D u D D u 0

0 1

t x y t t x t y x x y
2 2

1 1a b }

=a b } a a b a } b b }^ h

(2.1)

where , ,u u x y t= ^ h  is an unknown function. H  is a 
polynomial of u  and its partial fractional derivatives. By 
using the traveling wave transform (23)

, , ,u x y t f i=^ ^h h   (2.2)
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where ,' '
t xv v  and '

yv  are named the sigma indexes (24). We 
can take them ' ' '

t x yv v v z= = =  where z  is a constant.

Setting (2.2) and (2.4) into (2.1), we get the following 
nonlinear ODE; 

, , , ... .U U U 0W =l m^ h   (2.5)

where the primes denote the derivations with respect to i .

Suppose that the solution of the equation (2.5) is expressed 
by a polynomial of G

Glb l  as follows:

,U a G
G

a 0i

i

z i

z

0

!i =
=

l^ ch m/   (2.6)

where , , , ...,a i z0 1 2i =^ h  are constants, while G i^ h  
satisfies the following second order LODE

,G G G 0i m i n i+ + =m l^ ^ ^h h h   (2.7)

where m  and n  are constants. The positive integer z  can 
be determined by taking the homogeneous balance in the 
Eq.(2.5). We have collected all terms with the same order 
of G

Glb l  by putting the Eq.(2.6) into the Eq.(2.5) and 
using the equation (2.7). By equalizing each coefficient of 
the polynomial to zero, we have obtained a set of algebraic 
equations system for , , , ..., , , ,a i z a b c0 1 2i =^ h  . Thus we can 
get a variety of exact solutions of equation (2.1), by solving 
the equations system.

3. G
Gl
b l -Expansion Method for Fractional Order 

System of Variant Boussinesq Equations

In this study, the fractional order system of variant Boussinesq 
equations is proposed on G

Glb l -expansion method

D v D uv D u

D u D v D u

0

0

t x x

t x x

3+ + =

+ + =

a a a

a a a

^ h
  (3.1)

where is the parameter of the order of the fractional derivative, 
and 0 11 #a . For a model of the water waves, ,u x t^ h  
is the velocity, ,v x t^ h  is the total depth and the subscripts 
denote partial derivatives (25). Gepreel and Mohamed, have 
found numerical solutions of Eqs. (3.1) by using the HAM. 
In (26), Yan studied the travelling wave solutions of these 
equations and obtained three new types of travelling wave 
solutions by using fractional sub-equation method. When 
1a = , Eqs.(3.1) is called the variant Boussinesq equations. 

Some researchers investigated exact and analytical solutions 
of these equations. Wang (27) has obtained exact solutions 
of them by homogeneous balance method. In (28), several 
types of explicit and exact solutions contain Wang’s results. 
The system of the Eqs. (3.1) has been obtained by using an 
improved Sine-cosine method and Wu elimination method. 
Yomba (29) has found travelling wave solutions of classic 
version by using the extended Fan’s sub-equation method. 
In (30), Lu has obtained abundant Jacobi elliptic function 
solutions of the variant Boussinesq equations. Soliman and 
Abdo, by using modified extended direct algebraic (MEDA) 
method obtained multiple exact complex solutions of 
system of variant Boussinesq equations (31). Wu and He 
(32) have obtained a solitary wave solutions by exp-function 
method. Recently, Zhao and his colleagues, used the G

Glb l
-expansion method and obtained soliton solutions of these 
equations (33).

If we use the following transformations
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where c 0!  and k 0!  are constants.

By using of Eq. (3.2) and (2.4), Eq. (3.1) can be turned into 
an ODEs

,cV k UV k U 02 3z+ + =l nl^ h   (3.3)

,cU kV kUU 0- + + =l l l   (3.4)

where U
d
dU' ''"

p
=  and V

d
dV" ' ''

p
= . By once integrating, we 

obtain

,cV kUV k U 02 3
0z p- + + + =m   (3.5)

,cU kV k U2 02
1p- + + + =   (3.6)

where 0p  and 1p  are integration constants.

If we consider the homogeneous balance between the terms  
UV  and U m  in (3.5), then we get

,z z z 21 2 1+ = +   (3.7)

.z 22 =   (3.8)

Analogously, if we take the terms V  and U2  in (3.6) we get,

.z z2 1 2=   (3.9) 

.z 22 =   (3.10)

According to the solutions of (3.8) and (3.10) the polynomial 
of G

Glb l  can be expressed as follows:
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l^ h   (3.11)
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2 !p = + +
l l^ h   (3.12)

where , , ,a a b b0 1 0 1  and b2  are constants. By using Eqs. 
(3.11), (3.12) and (2.7) we obtain that
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If we substitute Eqs.(3.11)-(3.14) into Eqs.(3.5) and (3.6), 
then we can get the coefficients of G

Glb l  and equalizing 
them to zero we obtain the system as follow:
:
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If we solve this system by Maple, then we get
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and
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By using Eq. (3.16), Eqs. (3.11) and (3.12) can be written as
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(a): By substituting general solutions of Eq. (2.6) into Eqs. 
(3.18) and (3.19) we have three types of exact solutions of 
the nonlinear fractional order variant Boussinesq equation 
as follows:
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where kx ct
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By writing general solutions of Eq. (2.7) into Eqs. (3.30) 
and (3.31) we have three kinds of exact solutions as follows:
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where kx ct
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and V3  becomes ,v x t1 ^ h .
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and V3  becomes ,v x t2 ^ h .
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(b): Analogously, by using Eq. (3.16) with Eqs. (3.11) and 
(3.12) can be expressed as
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Adomian decomposition method (ADM) and obtained 
numerical solutions.

If we use the following wave transformations

, ,

, , , ,
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where ,a b0 0! !  and c 0!  are constants.

With similar procedure in section 3, Eq. (4.1) can be turned 
into an ODEs
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Similarly, between VV l  and V m  in Eq.(4.4) we get,
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From (4.5) and (4.6), we can express the polynomial of 

G
Glb l  as follows:
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We can drive the equations by using Eqs. (4.7), (4.8) and 
(2.7) as follows:
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By setting Eqs.(4.7)-(4.12) into Eqs.(4.3) and (4.4), 
collecting the coefficients of G

G ilb l   , ...,i 0 3=^ h  and 
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which are the exact solutions of the nonlinear fractional 
order variant Boussinesq equations. We note that the exact 
solutions established in (3.22) - (3.23), (3.24) - (3.25), 
(3.28) - (3.29), (3.34), (3.35) and (3.38) - (3.39) are new 
exact solutions to these equations.

4. G
Gl
b l -Expansion Method for Fractional Space-

time System of 2D Burger’ Equations

In this case, we’ll deal with the fractional system of two-
dimensional Burgers’ equations (34)

D u uD u vD u K D u D u

D u uD vD K D Dv v v v
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t x y x y

t x y x y

2 2

2 2

+ + = +

+ + = +

a a a a a

a a a a a6
6

@
@

  (4.1)

Where K  is Reynolds number. a  is a parameter which 
is the order of the fractional space-time derivative and 
0 11 #a . Elhanbaly and Abdou, have found exact 
solutions of fractional order system of two dimensional 
Burgers’ equations by using the sub-equation method. 
When 1a =  Eqs. (4.1) is the classical system of  Burgers’ 
equations. Burgers’ equation has been obtained to describe 
various type of phenomena such as a mathematical model of 
turbulence (35) and the approximate theory of flow through 
a shock wave traveling in a viscous fluid (36). The numerical 
solutions of this equation system have been investigated 
by several authors. For example, the analytic solution of 
Eqs. (4.1) was given by Fletcher using the Hopf-Cole 
transformation and he has discussed the comparison of a 
number of different numerical approaches (37,38). In (39), 
a fully implicit finite-difference method is used to solve two 
dimensional Burgers’ equations. Wubs and Goede (40) have 
applied an explicit-implicit method and Goyon (41) used 
several multi-level schemes. El-Sayed and Kaya, obtained 
the numerical and analytical solutions of these system by 
using Adomian decomposition method (ADM) (42). 
Recently; Biazar and Aminikhah (43), used the variational 
iteration method (VIM) and obtained numerical solutions 
of these equations then Zhu et al. (44), used the discrete 
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,
sin cos
cos sin

U

aK
a b bb K

C C

a aK
a b bb K

C C
2

2 2

4 4

2
2 2

4

4 4

2

2 2
1

1 2
1 2

2 2
1 2

0

2 2
1

2

1 2
1 2

2 2
1 2

p

mz mz m

n m p n m p

mz mz m

n m

n m p n m p

+ +

- -+

= +
+ +

-
-

- - -

^
^ h

h
   (4.20)

sin cos
cos sin

V

C C

b b b

C C
4 4

4
2 2

4

4

2

1 2
1 2

2 2
1 2

0
1 1

2

1 2
1 2

2 2
1 2

p

n m p n m p

m n m

n m p n m p

- -+

= - +
-

- - -

^ h
  (4.21)
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equalizing them to zero we get the system as follows
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By solving the algebraic equations above given, we get
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where m  and n  are arbitrary constants.

If we put Eq. (4.14) into Eq. (4.7) and (4.8), it yields
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By writing general solutions of Eq. (2.7) into (4.15) and 
(4.16), we get three kinds of solutions as follows:
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which are the exact solutions of the system of two-
dimensional Burger’s equations. We see that the exact 
solutions established in (4.19), (4.22) and (4.23) are new 
exact solutions to these equations.

5. Conclusion
In this paper, the G

Glb l -expansion method is used for 
finding exact solutions of the fractional order system of 
Variant Boussinesq equations and fractional system of two-
dimensional Burgers’ equations with modified Riemann-
Liouville derivative. The obtained results show that the  

G
Glb l -expansion method and fractional complex transform 

are reliable, efficient and powerful method for solving 
nonlinear FDEs and systems. As we know that these new 
solutions have not been studied in literature, they can be 
important for some special physical phenomena.
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