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Abstract

In this study, the concept of completely equiprime N-ideal (ideal of near-ring modules) is introduced. Also the interconnections of
completely equiprime, equiprime and completely prime /N-ideals are considered. It is proved that if P is a completely equiprime ideal
of an N-group (near-ring module) I, then (P: I') is a completely equiprime ideal of a near-ring V. The converse relation does not
hold in general, however some additional conditions for holding the converse are provided. The connection between the concepts of
completely equiprime N-ideal and IFP N-ideal is also observed.
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Oz

Bu ¢aligmada, tam e-asal NV-ideal (yakin halka modiiliintin ideali) kavrami tanimlanmigtir. Ayn1 zamanda, tam e-asal, e-asal ve tam
asal N-idealler arasindaki iligkiler ele alinmigtir. Bir I' N-grubunun (yakin halka modiilii) Pideali tam e-asal oldugunda (P: T) nin da
N yakin halkasinin tam e-asal ideali oldugu ispatlanmigtir. Bu gerektirmenin tersi genelde saglanmazken, bazi ek sartlar ile tersinin

dogrulugu saglanmistir. Ayrica, tam e-asal N-ideal ve IFP N-ideal kavramlar: arasindaki iliski de incelenmistir.

2010 AMS-Konu Siniflandirmasi: 16Y30,16D25.
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1. Introduction

Several definition of primeness have been proposed for near-
rings, all of which generalize primeness for rings. Holcombe
(1970) defined three types of primeness which are 0-prime,
1-prime and 2-prime. The concepts of type 1 and type 2
prime ideals have been introduced by Ramakotaiah and Rao
(1979). Then, type 1 and type 2 prime ideals were called
as 3-prime ideal and completely prime (c-prime) ideal,
respectively (Groenewald 1991). Booth et al. (1990) defined
a different generalization of prime rings, called equiprime
(e-prime). Veldsman (1992) has examined equiprimeness in
depth. Juglal et al. (2010) generalized the various notions of
primeness (0-, 1-, 2-, 3-, c-primeness) that were defined in
a near-ring to the near-ring module. Tasdemir et al. (2011)

added to these five types by introducing equiprime N-ideals.
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Then they have studied 3-primeness and c-primeness in

details (Tagdemir et al. 2013).

In this study, the concept of completely equiprime N-group
is generalized to ideals of N-groups, called completely
equiprime N-ideals. Also the interconnections of completely
equiprime, equiprime and completely prime N-ideals are
considered. Furthermore, some relationships between a
completely equiprime N-ideal P and the ideal (P: T') are
obtained. The relation between the concepts of completely
equiprime /NV-ideal and IFP N-ideal is also observed.

2. Preliminaries

Throughout this study V stands for a right near-ring. In
Pilz’s book (1983), for all undefined concepts concerning
near-rings are given. For further information in near-rings
of prime ideals could be found from Atagiin (2010) and
Dheena et al. (2004).
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N is said to be a right permutable (RP) near-ring if abc =
ach for all a,b,c EN (Birkenmeier and Heatherly 1989). IV, is
defined as the set {d € N: d(a+b) = da + db, Va,6 € N} (Pilz
1983).

If 2 € N\J, ax - ay € I implies x-y € I, for all x,y € N
then I<INVis called a completely equiprime ideal (Booth and
Groenewald 1992).

I is called a completely equiprime N-group if ay, = ay,
implies v, =y, for 2&£M(0.:T), and y,,y, € T (Booth and
Groenewald 1992). If there exists YEI" such that My = T,
then I is called monogenic.

From now on, NV will denote a zero-symmetric near-ring, I'
an N-group and P an N-ideal of " such that NI' € P.

Definition 1 (Juglal et al. 2010) Lez P« I. Then P is called:

* 3-prime if aVyC P implies that aI'CP or YEP for a€N and
yer.

* c-prime if ayEP implies that aI'CP or yEP for aEN and
yer.

Definition 2 (Tagdemir et al. 2011) If any, - any,EP for all
nEN implies that al CP ory,~y,EP for aN andy,,y,ET then
P is called an equiprime N-ideal.

I is called a v-prime N-group it 0 is a v-prime N-ideal of I"
(v=3,5e).

Proposition 1 (Juglal et al. 2010) Lez P, I'. Then the
Sfollowing are equivalent:

* P is 3-prime and (P:y)<N for every yYEI'\P.
* NU' L P and (P:y) = (P:T) for every yEI'\P
* Pis c-prime.

Proposition 2 (Juglal et al. 2010, Tagdemir et al. 2011) If P«
T is c~prime(equiprime), then (P.T)<N is c-prime(equiprime).

Table 1. Addition and multiplication tables of N.

Proposition 3 (Tagdemir et al. 2011) If N is RRT is monogenic
and (P-T)<N is equiprime, then P<,Iis equiprime.

Corollary 1 (Tagdemir et al. 2011) If N is RP and P is
equiprime then P is c-prime.

3. Completely Equiprime N-ideals

Definition 3 P is called a completely equiprime N-ideal
if ay -ay,EP implies that aI'CP or y,-y,EP for #EN and
yl,yzer.

I is called a completely equiprime N-group if M'=0,_and 0
is a completely equiprime N-ideal of T".

From now on, in order to simplify, completely equiprime
and equiprime are denoted by c-e-prime and e-prime,
respectively.

Example 1 Ler N = {0,1,2,3,4,5,6,7} with addition and
multiplication defined by Tuble 1 (Pilz 1983).

Let I = NVas an N-group with the natural operation. It is
clear that P = {0,2,5,7} is an N-ideal of I'. Also, P is c-e-
prime.

Proposition 4 Ler N=I <. Then the  following are equivalent:
* I'is c-e-prime (a)
* There is a c-e-prime N-group I' with I'= (0,: T'),, (b)

Proof. (a)=(b) Suppose that I is a c-e-prime ideal of V.
Consider the N-group I' = N/I with the natural operations.
Let i&I and xEN. Then ixE1. Hence, i(x+1)=ix+I=I, whence
IC(0,:T") . Now assume that ¥(0.:T"),. Then xn+I=x(n+I)=1
for all nEN, whence xNCI. It follows that xNxCI. Since [ is
a c-e-prime ideal of IV, it is also an e-prime ideal (Booth and
Groenewald 1992) and therefore 3-prime. This implies that
xEI. Hence, I=(0:T') . It needs to be shown that I"is a c-e-
prime N-group. Suppose that 2 €N, a¢£ (0.:T'), =I and that
x,YEN, x+I=y+I. Then x-y&1. Since Iis a c-e-prime ideal, ax-
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ayl, whence a(x+I)=a(y+I). Thus, I is a c-e-prime N-group
and I=(0.T"),.

(b) = (a) Suppose that I is a c-e-prime N-group and that
I=(0,:T),..Let a,%,yEN, a1, v~y I Then there exists ¥ € I’
such that (x-y)y # Or,i.e. xy # yy. Since I is a c-e-prime
N-group, this implies axy # ayy whence (az—ay)y # Or.
It follows that (az —ay) & (0r:T")y =1 .Hence, I'is a c-e-
prime ideal of V.

Corollary 2 Let 0 = N be a near-ring. Then the following are
equivalent:

* Nis c-e-prime.
* There exists a faithful c-e-prime N-group I".

Proof. If Iis replaced by the 0 ideal, then the result follows
from Proposition 4.

Corollary 3 Let N = I« N. Then N/I is a c-e-prime near-ring
iff N/L is a c-e-prime N-group.

Proof. Let N/I be a c-e-prime near-ring. Then I is a c-e-
prime ideal of V. Hence I' =N /I isa c-e-prime NN-group
by Proposition 4. Conversely, if N/Iis a c-e-prime N-group,
then I = (0:V/]) is a c-e-prime ideal of NV by Proposition 4.
Hence I'is a c-e-prime ideal of NV and so N/ is a c-e-prime
near-ring.

'The following propositions show the interconnections of
c-e-prime, c-prime and e-prime /N-ideals.

Proposition 5 If P is c-e-prime, then P is c-prime.

Proof. Suppose that Pis c-e-prime and ay € P for a € N
and 7 € I'. This implies that ay = ay —a0r € P. Hence,
al’C P or y =7 —O0r € P since Pis c-e-prime. Therefore,
Pis c-prime.

The following example illustrates that the converse of
Proposition 5 does not hold true.

Example 2 Letr (N,+) be the Kleins four group with
multiplication table as given in Table 2.

Table 2. Multiplication table of V.

0 a b c
0 0 0 0 0
a 0 a a a
b 0 b b b
c 0 c c c

Let I'=N" as an N-group with the natural operation.
Then, P = 0 is c-prime but not c-e-prime.
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However, the following observation is obtained.

Proposition 6 Lez N be a RP near-ring, I" bea monogenic
N-group and P < xI" such that NN\(P:T)# . Then P is
c-e-prime iff P is c-prime.

Proof. Let P be a c-prime N-ideal and
a€eN,y,y.€l',ay,—ay; €P. It needs to be shown
that a'’CP or 7,—7.€P. Since I' is monogenic,
there exists o€l that Ny,=T1". 'Then,
Yi=xzy, and Y,=vyy, for some xz,y € N. Hence,
(ax—ay)yo=azxyo—ayyo=ay,—ay,€P. Since,
P is c-prime (ax—ay)T CP or y,€P.If y,€P
, then I'=Ny, E NPCP. But this is a contradiction
with  NOC € P. Then, (ar—ay)I €P which implies
that (ax—ay)E(P:F). Since (P:T") is an ideal of N,
n(ar—ay)€(P:T') for an n,€N,\(P:I"). Then,
n.(az —ay) = n.ax — n,ay = nwa—nya(zr—y)a € (P:T)
because N is RP. Furthermore, (P:I") is a c-prime

such

ideal of NV since P is a c-prime N-ideal by Proposition
2. Hence, (r—y)e(pP:T) or ac(P.T)
since nE(P:I"). If (z—y)e(P:T"), then
(z—y)ro=zvo—yyo=71—7:€P.If ac(P:T"), then
al’ € P. Thus, P is c-e-prime. On the other hand, the
converse follows from Proposition 5.

Example 3 Consider the near-ring (IN,+,.) in Example 2. P=0
is c-prime but not c-e-prime since NA\(PT)=¢.

Proposition 7 If P is c-e-prime, then P is e-prime.

Proof. Suppose p is c-e-prime and
a€N,y,y.€l',any,—any, €P forall n € N .Since I
is an N-group, then any,—any.=ay;—ay: € P, where
Ys=ny, and Ys=mny,. Hence, al' CP or y;—y.,€P,
since Pis c-e-prime. If al’ € P, then the proof is completed.
If y5—7.€P, then 75—7.=ny,—ny,€P and again
since P is c-e-prime, hence nI'CP or y,—7,€P.If
nl" C P, then this is a contradiction with NI" € P . Then
71— 72 € P .'Therefore, P is e-prime.

Proposition 8 Let N be a RP near-ring, I" bea monogenic
N-group and P < 1. Then Pis e-prime iff P is c-e-prime.

Proof. Suppose  that P is  e-prime. Let
a€eN,y,y.€l',ay,—ay, €P. It needs to be shown
that al'’CP or y,—y.€P. Suppose al' £P and
Yi—7:¥P. Since I' is monogenic, Ny,=I" for
7’0€F\P If yoeP, then TI'=Ny,CSNPCP.
Then I' =P. But this is a contradiction with NI € P
. Then, ¥.=xy, and y.=4vyy, for some z,yeN. If
71—7:EP, then yi—y.=ayi—yro=(z—y)y, EP

81
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. Hence, (z—vy) & (P:y0) 2(P:.T"). Moreover, if P is
an e-prime N-ideal, then (P.T) is an e-prime ideal
of N by Proposition 2. Hence, amz—amy & (P.T")
meN a(zx—y) & (P:T"). So,
(ax—ay)m = azm — aym = amx —amy & (P:T"), since
Nis RP.Furthermore,since ( P:I") isanideal of NV, this implies
that (az —ay) & (P:T").Under the given assumptions, if P
is an e-prime N-ideal it is also c-prime by Corollary 1. In
addition, (P:y)=(P:T") for every ¥ € r\p by Proposition
1. Hence, (ax —ay) & (P:y,), whence (ax—ay)y € P.
Then, ay.—ay.=axy,—ayy.=(ar—ay)y,EP. But
this is a contradiction with the assumption. Hence, al’ € P
or 71— 72 € P and therefore it follows that P is c-e-prime.
'The converse follows from Proposition 7.

for some since

Corollary 4 Ler P <\ yI'. Then P is c-e-prime = P is e-prime
= P is 3-prime = P is 2-prime = P is O-prime.

Corollary 5 Let I' be an N-group. Then T" is c-e-prime = I’

is e-prime = " is 3—prime = 1" is 2-prime = I is O-prime.

If P<yI', then (P:-I")<N. With the following two

propositions the relationships between the c-e-primeness of
P and that of (P:T") are investigated.

Proposition 9 If P < yI" is c-e-prime, then (P-T)<N is
c-e-prime.

Proof. Let a € N\(P:T") and z,y €N

such that az —ay € (P:T") .'Then,

ay,—ay,=axy —ayy =(ar—ay)y € P,where
y1=xy and 7, =yy,since I' is an N-group. Then,
Y1~ 72 € P because Pis c-e-prime. If 7, — 7, € P, then
(x—y)y =y —yy=7.—7,€P forall y €' . Hence,
(z—y)e(P:T").So, (P.T") is c-e-prime.

Corollary 6 If I' is a c-e-prime N-group, then (0:T") isac-e-
prime ideal of N.

Proof. If Pis replaced by the 0 ideal, then the result follows
from Proposition 9.

The following proposition shows that the converse holds
when Nis RP and I' is monogenic.

Proposition 10 Lez N be a RP near-ring, 1" be a monogenic
N-group and P be an N-ideal of I . Then P < yI" is c-e-prime
iff (P-T)<IN is c-e-prime.

Proof. Let (P:I") is c-e-prime. Then, (P:T) is also
e-prime (Booth and Groenewald 1992). Furthermore,
under the given assumptions, P is an e-prime N-ideal of I’
by Proposition 3. Then, Pis also c-e-prime by Proposition 8.
On the other hand, if P is c-e-prime, then (P:T") is c-e-
prime by Proposition 9.

82

Proposition 11 If I' is a c-e-prime N-group and P be an
N-ideal of I', then Pisa c-e-prime N-group.

Proof. Let a € N\(0:P) and z,y € P such that ax = ay. It
is obvious that (0:I") C(0:P). Then a € N\(0:T"). Since
z,y €' and I' is c-e-prime, then x = y. Hence, Pis a c-e-
prime /N-group.

4. Completely Equiprime NV-ideals and IFP N-ideals

In this section, some relations between the concepts of
c-e-prime N-ideal and IFP N-ideal are provided. For this
purpose, firstly the following definition should be given.

Definition 4 (Tagdemir et al. 2013) For a €N and y €T,
if ay € P implies any € P forall n € N, then P is called an
IFP N-ideal. I is called an IFP N-group if NI" # Or and 0
is an IFP N-ideal of T".

The Main Theorem

Theorem 1 If P is a c-e-prime N-ideal, then P is an IFP
N-ideal.

'The following propositions are necessary to prove the Main
Theorem.

Proposition 12 Let P be an N-ideal of T". Then P is a c-e-
prime N-ideal iff I'/P isa c-e-prime N-group.

Proof. Since P is an N-ideal of I',['/P is an N-group
with the natural operation. Then, it needs to be shown that
['/P is c-e-prime. Since NT" € P, there exists a € N and
y el such that ay €P ie. a(y+P)=ay+P+P
. Thus N(I'/P)# Orjp. Let a €N,y,+P,y,+PT/P
and a(y,+P)=a(y,+P). Then, ay,—ay,EP which
implies that a' € P or 7,—7.€P since P is c-e-
prime. If al’ € P, then ay € P for all y €I'. Hence
a(y+P)=P for all yel. Therefore a(I'/P)=P
If yo—y,€P , then y,+P=7,+P.So I'/P is a c-e-
prime N-group. Conversely, suppose that I'/P is a c-e-
prime N-group. Then Or,=P 1is a c-e-prime N-ideal
of T/P. Let a€N, y,7. €' and ay,—ay.€P
. Hence a(y,+P)=a(y,+P). Thus, a(I'/P)=P or
y1+P=1y,+P since I'/P isac-e-prime N-group. Finally,
al’ € P or y,— 7, € P which implies that Pis a c-e-prime
N-ideal of T".

Proposition 13 If I is a c-e-prime N-group, then I is an
IFP N-group.

Proof. Let ay = Or for a € N,y € I" .'Then ay = aOr = Or
because N is zero-symmetric. Since I' is c-e-prime,

al'=0r or y =0r.If aI' =0r then a € (0r:I"). Hence,
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any =ay =0r forall n €N ,since I' is an N-group. If
7 =0r, then any = anOr = 0r for all n € N . Therefore,
I' is an IFP N-group.

Proposition 14 Let P be an N-ideal of . Then P is an IFP
N-ideal iff /P isan IFP N-group.

Proof. Suppose P is an IFP N-ideal of I'. 'Then
['/P is an N-group with the natural operation. Let
a€N,y+PecT/P and a(y +P)=0rp». It needs to be
shown that an(y +P)=0r, forall n € N .Then ay € P
, since a(y+P)=P. Then any €P for all nEN
because P is IFP. Hence an(y +P)=P forall neN
whence ['/P is an IFP N-group. For the converse, let
I'/P is an IFP N-group. Then Orp =P is an IFP N-ideal
of I'/P.Let ay €P for a €N and y € T".This implies
that a(y +P)=P. Since I'/P is an IFP N-group, then
an(y +P)=P forall n € N which implies that any € P
.Thus, Pis an IFP N-ideal of I".

Now, the Main Theorem of this section could be proven.
Proof of the Main Theorem. Assume P is c-e-prime. Then,
['/P is a c-e-prime N-group by Proposition 12. Hence
['/P is also an IFP N-group by Proposition 13. Finally, Pis
an IFP N-ideal of I" by Proposition 14.

5. References

Atagiin, AO. 2010. IFP ideals in near-rings. Hacet. J. Math. Stat.,
39:17-21.

Birkenmeier, G., Heatherly, H.1989. Medial near-rings. Monatsh
Math., 107: 89-110.

Karaelmas Fen Miih. Derg., 2018; 8(1):79-83

Booth, GL., Groenewald, NJ., Veldsman, S. 1990. A Kurosh-
Amitsur prime radical for near-rings. Comm. Algebra, 18:
3111-3122.

Booth, GL., Groenewald, NJ. 1992. Equiprime left ideals and
equiprime N-groups of a near-ring. Contributions to General
Algebra, 8: 25-38.

Dheena, P., Sivakumar, D. 2004. On strongly 0-prime ideals in
near-rings. Bull. Malays. Math. Sci. Soc. (Second Series), 27: 77-
85.

Groenewald, NJ. 1991. Different prime ideals in near-rings.
Comm. Algebra, 19: 2667-2675.

Holcombe, WML. 1970.
University of Leeds, England, 153 pp.

Juglal, S., Groenewald, NJ., Lee, KSE. 2010. Different prime
R-ideals. Algebr. Collog., 17: 887-904.

Pilz, G. 1983. Near-rings (revised edition), North-Holland
Publishing Company, Amsterdam, Newyork, Oxford, 470 pp.

Ramakotaiah, D., Rao, GK. 1979. IFP near-rings. J. Austral.
Math. Soc. (Series A), 27: 365-370.

Tasdemir, F., Atagiin, AO., Altundis, H. 2011. Equiprime
N-Ideals of monogenic N-groups. Hacet. J. Math. Stat., 40:
37-382.

Tagdemir, F., Atagiin, AO., Altindis, H. 2013. Different prime
N-ideals and IFP N-ideals. Indian J. Pure Appl. Math., 44:
527-542.

Veldsman, S. 1992. On equiprime near-rings. Comm. Algebra, 20:
2569-2587.

Primitive near-rings, PhD Thesis,

83



