Research Article Received / Geliş tarihi : 29.12.2016 Accepted / Kabul tarihi : 27.11.2017

Completely Equiprime Ideals of Near-Ring Modules

Yakın Halka Modüllerinin Tam e-asal İdealleri

Funda Taşdemir^{*} 🛛

Bozok University, Department of Mathematics, Yozgat, Turkey

Abstract

In this study, the concept of completely equiprime *N*-ideal (ideal of near-ring modules) is introduced. Also the interconnections of completely equiprime, equiprime and completely prime *N*-ideals are considered. It is proved that if *P* is a completely equiprime ideal of an *N*-group (near-ring module) Γ , then (*P*: Γ) is a completely equiprime ideal of a near-ring *N*. The converse relation does not hold in general, however some additional conditions for holding the converse are provided. The connection between the concepts of completely equiprime *N*-ideal and IFP *N*-ideal is also observed.

2010 AMS-Mathematical Subject Classification Number: 16Y30,16D25.

Keywords: Completely equiprime N-ideal, Completely prime N-ideal, Equiprime N-ideal, IFP N-ideal

Öz

Bu çalışmada, tam e-asal N-ideal (yakın halka modülünün ideali) kavramı tanımlanmıştır. Aynı zamanda, tam e-asal, e-asal ve tam asal N-idealler arasındaki ilişkiler ele alınmıştır. Bir Γ N-grubunun (yakın halka modülü) P ideali tam e-asal olduğunda (P: Γ) nın da N yakın halkasının tam e-asal ideali olduğu ispatlanmıştır. Bu gerektirmenin tersi genelde sağlanmazken, bazı ek şartlar ile tersinin doğruluğu sağlanmıştır. Ayrıca, tam e-asal N-ideal ve IFP N-ideal kavramları arasındaki ilişki de incelenmiştir.

2010 AMS-Konu Sınıflandırması: 16Y30,16D25.

Anahtar Kelimeler: Tam e-asal N-ideal, Tam asal N-ideal, E-asal N-ideal, IFP N-ideal

1. Introduction

Several definition of primeness have been proposed for nearrings, all of which generalize primeness for rings. Holcombe (1970) defined three types of primeness which are 0-prime, 1-prime and 2-prime. The concepts of type 1 and type 2 prime ideals have been introduced by Ramakotaiah and Rao (1979). Then, type 1 and type 2 prime ideals were called as 3-prime ideal and completely prime (c-prime) ideal, respectively (Groenewald 1991). Booth et al. (1990) defined a different generalization of prime rings, called equiprime (e-prime). Veldsman (1992) has examined equiprimeness in depth. Juglal et al. (2010) generalized the various notions of primeness (0-, 1-, 2-, 3-, c-primeness) that were defined in a near-ring to the near-ring module. Tasdemir et al. (2011) added to these five types by introducing equiprime *N*-ideals.

Funda Taşdemir 🕲 orcid.org/0000-0002-0349-3686

Then they have studied 3-primeness and *c*-primeness in details (Taşdemir et al. 2013).

In this study, the concept of completely equiprime N-group is generalized to ideals of N-groups, called completely equiprime N-ideals. Also the interconnections of completely equiprime, equiprime and completely prime N-ideals are considered. Furthermore, some relationships between a completely equiprime N-ideal P and the ideal (P: Γ) are obtained. The relation between the concepts of completely equiprime N-ideal and IFP N-ideal is also observed.

2. Preliminaries

Throughout this study N stands for a right near-ring. In Pilz's book (1983), for all undefined concepts concerning near-rings are given. For further information in near-rings of prime ideals could be found from Atagün (2010) and Dheena et al. (2004).

^{*}Corresponding author: funda.tasdemir@bozok.edu.tr

N is said to be a right permutable (RP) near-ring if abc = acb for all $a, b, c \in N$ (Birkenmeier and Heatherly 1989). N_d is defined as the set $\{d \in N: d(a+b) = da + db, \forall a, b \in N\}$ (Pilz 1983).

If $a \in \mathbb{N}\setminus I$, $ax - ay \in I$ implies $x-y \in I$, for all $x, y \in N$ then $I \triangleleft N$ is called a completely equiprime ideal (Booth and Groenewald 1992).

 Γ is called a completely equiprime *N*-group if $a\gamma_1 = a\gamma_2$ implies $\gamma_1 = \gamma_2$ for $a \in \mathcal{M}(0_{\Gamma}; \Gamma)_N$ and $\gamma_1, \gamma_2 \in \Gamma$ (Booth and Groenewald 1992). If there exists $\gamma \in \Gamma$ such that $N\gamma = \Gamma$, then Γ is called monogenic.

From now on, N will denote a zero-symmetric near-ring, Γ an N-group and P an N-ideal of Γ such that $N\Gamma \nsubseteq P$.

Definition 1 (Juglal et al. 2010) Let $P \triangleleft_N \Gamma$. Then P is called:

• 3-prime if $aN\gamma \subseteq P$ implies that $a\Gamma \subseteq P$ or $\gamma \in P$ for $a \in N$ and $\gamma \in \Gamma$.

• c-prime if $a \gamma \in P$ implies that $a \Gamma \subseteq P$ or $\gamma \in P$ for $a \in N$ and $\gamma \in \Gamma$.

Definition 2 (Taşdemir et al. 2011) If $an\gamma_1 - an\gamma_2 \in P$ for all $n \in N$ implies that $a\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$ for $a \in N$ and $\gamma_1, \gamma_2 \in \Gamma$ then P is called an equiprime N-ideal.

 Γ is called a *v*-*prime N*-*group* if 0 is a *v*-prime *N*-ideal of Γ (*v*=3,*c*,*e*).

Proposition 1 (Juglal et al. 2010) Let $P \triangleleft_N \Gamma$. Then the following are equivalent:

- *P* is 3-prime and $(P:\gamma) \triangleleft N$ for every $\gamma \in \Gamma \backslash P$.
- $N\Gamma \nsubseteq P$ and $(P; \gamma) = (P; \Gamma)$ for every $\gamma \in \Gamma \setminus P$.
- P is c-prime.

Proposition 2 (Juglal et al. 2010, Taşdemir et al. 2011) $If P \triangleleft_N \Gamma$ is *c*-prime(equiprime), then $(P:\Gamma) \triangleleft N$ is *c*-prime(equiprime).

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	0	5	6	7	4
2	2	3	0	1	6	7	4	5
3	3	0	1	2	7	4	5	6
4	4	7	6	5	0	3	2	1
5	5	4	7	6	1	0	3	2
6	6	5	4	7	2	1	0	3
7	7	6	5	4	3	2	1	0

Table 1. Addition and multiplication tables of *N*.

Proposition 3 (Taşdemir et al. 2011) *If N is RP*, Γ *is monogenic and* $(P:\Gamma) \triangleleft N$ *is equiprime, then* $P \triangleleft_N \Gamma$ *is equiprime.*

Corollary 1 (Taşdemir et al. 2011) If N is RP and P is equiprime then P is c-prime.

3. Completely Equiprime N-ideals

Definition 3 *P* is called a completely equiprime *N*-ideal if $a\gamma_1 - a\gamma_2 \in P$ implies that $a\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$ for $a \in N$ and $\gamma_1, \gamma_2 \in \Gamma$.

Γ is called a completely equiprime *N*-group if $NΓ≠0_Γ$ and 0 is a completely equiprime *N*-ideal of Γ.

From now on, in order to simplify, completely equiprime and equiprime are denoted by c-e-prime and e-prime, respectively.

Example 1 Let $N = \{0,1,2,3,4,5,6,7\}$ with addition and multiplication defined by Table 1 (Pilz 1983).

Let $\Gamma = N^{\mathbb{N}}$ as an *N*-group with the natural operation. It is clear that $P = \{0, 2, 5, 7\}$ is an *N*-ideal of Γ . Also, *P* is c-e-prime.

Proposition 4 Let $N \neq I \triangleleft N$. Then the following are equivalent:

• <i>I</i> is c-e-prime	(a)
1 lo e e prime	(4

• There is a c-e-prime *N*-group Γ with $I = (0_{\Gamma}: \Gamma)_{N}$ (b)

Proof. (a) \Rightarrow (b) Suppose that *I* is a c-e-prime ideal of *N*. Consider the *N*-group $\Gamma = N/I$ with the natural operations. Let $i \in I$ and $x \in N$. Then $ix \in I$. Hence, i(x+I)=ix+I=I, whence $I \subseteq (0_{\Gamma}:\Gamma)_N$ Now assume that $x \in (0_{\Gamma}:\Gamma)_N$ Then xn+I=x(n+I)=I for all $n \in N$, whence $xN \subseteq I$. It follows that $xNx \subseteq I$. Since *I* is a c-e-prime ideal of *N*, it is also an e-prime ideal (Booth and Groenewald 1992) and therefore 3-prime. This implies that $x \in I$. Hence, $I=(0_{\Gamma}:\Gamma)_N$ It needs to be shown that Γ is a c-e-prime *N*-group. Suppose that $a \in N$, $a \notin (0_{\Gamma}:\Gamma)_N = I$ and that $x, y \in N, x+I \neq y+I$. Then $x-y \notin I$. Since *I* is a c-e-prime ideal, ax-

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	0	2	0	0	0	0
3	0	3	2	1	4	5	6	7
4	0	4	2	6	4	0	6	2
5	0	5	0	5	0	5	0	5
6	0	6	2	4	4	0	6	2
7	0	7	0	7	0	5	0	5

ay∉*I*, whence $a(x+I) \neq a(y+I)$. Thus, Γ is a c-e-prime *N*-group and *I*=(0_{*r*}: Γ)_{*N*}.

(b) \Rightarrow (a) Suppose that Γ is a c-e-prime *N*-group and that $I=(0_{\Gamma}:\Gamma)_{N}$. Let $a, x, y \in N, a \notin I$. Then there exists $\gamma \in \Gamma$ such that $(x-y)\gamma \neq 0_{\Gamma}$, i.e. $x\gamma \neq y\gamma$. Since Γ is a c-e-prime *N*-group, this implies $ax\gamma \neq ay\gamma$ whence $(ax - ay)\gamma \neq 0_{\Gamma}$. It follows that $(ax - ay) \notin (0_{\Gamma}:\Gamma)_{N} = I$. Hence, *I* is a c-e-prime ideal of *N*.

Corollary 2 Let $0 \neq N$ be a near-ring. Then the following are equivalent:

- N is c-e-prime.
- There exists a faithful c-e-prime *N*-group Γ .

Proof. If *I* is replaced by the 0 ideal, then the result follows from Proposition 4.

Corollary 3 Let $N \neq I \triangleleft N$. Then N/I is a c-e-prime near-ring iff N/I is a c-e-prime N-group.

Proof. Let N/I be a c-e-prime near-ring. Then I is a c-eprime ideal of N. Hence $\Gamma = N/I$ is a c-e-prime N-group by Proposition 4. Conversely, if N/I is a c-e-prime N-group, then I = (0:N/I) is a c-e-prime ideal of N by Proposition 4. Hence I is a c-e-prime ideal of N and so N/I is a c-e-prime near-ring.

The following propositions show the interconnections of c-e-prime, c-prime and e-prime *N*-ideals.

Proposition 5 If P is c-e-prime, then P is c-prime.

Proof. Suppose that *P* is c-e-prime and $a\gamma \in P$ for $a \in N$ and $\gamma \in \Gamma$. This implies that $a\gamma = a\gamma - a0_{\Gamma} \in P$. Hence, $a\Gamma \subseteq P$ or $\gamma = \gamma - 0_{\Gamma} \in P$ since *P* is c-e-prime. Therefore, *P* is c-prime.

The following example illustrates that the converse of Proposition 5 does not hold true.

Example 2 Let (N,+) be the Klein's four group with multiplication table as given in Table 2.

Table 2. Multiplication table of *N*.

	0	а	b	с
0	0	0	0	0
а	0	а	а	а
b	0	b	b	b
с	0	с	с	с

Let $\Gamma = N^N$ as an *N*-group with the natural operation. Then, P = 0 is c-prime but not c-e-prime. However, the following observation is obtained.

Proposition 6 Let N be a RP near-ring, Γ be a monogenic N-group and $P \triangleleft_N \Gamma$ such that $N_d \setminus (P:\Gamma) \neq \phi$. Then P is c-e-prime iff P is c-prime.

Proof. Let P be a c-prime *N*-ideal and $a \in N, \gamma_1, \gamma_2 \in \Gamma, a\gamma_1 - a\gamma_2 \in P$. It needs to be shown that $a\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$. Since Γ is monogenic, there exists $\gamma_0 \in \Gamma$ such that $N\gamma_0 = \Gamma$. Then, $\gamma_1 = x \gamma_0$ and $\gamma_2 = y \gamma_0$ for some $x, y \in N$. Hence, $(ax-ay)\gamma_0 = ax\gamma_0 - ay\gamma_0 = a\gamma_1 - a\gamma_2 \in P$. Since, *P* is c-prime $(ax - ay)\Gamma \subseteq P$ or $\gamma_0 \in P$. If $\gamma_0 \in P$, then $\Gamma = N\gamma_0 \subseteq NP \subseteq P$. But this is a contradiction with $N\Gamma \not\subseteq P$. Then, $(ax - ay)\Gamma \subseteq P$ which implies that $(ax - ay) \in (P:\Gamma)$. Since $(P:\Gamma)$ is an ideal of N, $n_d(ax-ay) \in (P:\Gamma)$ for an $n_d \in N_d \setminus (P:\Gamma)$. Then, $n_d(ax-ay) = n_dax - n_day = n_dxa - n_dya(x-y)a \in (P:\Gamma)$ because N is RP. Furthermore, $(P:\Gamma)$ is a c-prime ideal of N since P is a c-prime N-ideal by Proposition $(x-y) \in (P:\Gamma)$ 2. Hence, $a \in (P:\Gamma)$ or $n_d \notin (P:\Gamma)$. If $(x-y) \in (P:\Gamma),$ since then $(x-y)\gamma_0 = x\gamma_0 - y\gamma_0 = \gamma_1 - \gamma_2 \in P$. If $a \in (P:\Gamma)$, then $a\Gamma \subseteq P$. Thus, P is c-e-prime. On the other hand, the converse follows from Proposition 5.

Example 3 Consider the near-ring (N,+,.) in Example 2. P = 0 is c-prime but not c-e-prime since $N_d \setminus (P:\Gamma) = \phi$.

Proposition 7 If P is c-e-prime, then P is e-prime.

Proof. Suppose *P* is c-e-prime and $a \in N, \gamma_1, \gamma_2 \in \Gamma, an\gamma_1 - an\gamma_2 \in P$ for all $n \in N$. Since Γ is an *N*-group, then $an\gamma_1 - an\gamma_2 = a\gamma_3 - a\gamma_4 \in P$, where $\gamma_3 = n\gamma_1$ and $\gamma_4 = n\gamma_2$. Hence, $a\Gamma \subseteq P$ or $\gamma_3 - \gamma_4 \in P$, since *P* is c-e-prime. If $a\Gamma \subseteq P$, then the proof is completed. If $\gamma_3 - \gamma_4 \in P$, then $\gamma_3 - \gamma_4 = n\gamma_1 - n\gamma_2 \in P$ and again since *P* is c-e-prime, hence $n\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$. If $n\Gamma \subseteq P$, then this is a contradiction with $N\Gamma \nsubseteq P$. Then $\gamma_1 - \gamma_2 \in P$. Therefore, *P* is e-prime.

Proposition 8 Let N be a RP near-ring, Γ be a monogenic N-group and $P \triangleleft_N \Gamma$. Then P is e-prime iff P is c-e-prime.

Proof. Suppose that *P* is e-prime. Let $a \in N, \gamma_1, \gamma_2 \in \Gamma, a\gamma_1 - a\gamma_2 \in P$. It needs to be shown that $a\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$. Suppose $a\Gamma \not\subseteq P$ and $\gamma_1 - \gamma_2 \notin P$. Since Γ is monogenic, $N\gamma_0 = \Gamma$ for $\gamma_0 \in \Gamma \setminus P$ (If $\gamma_0 \in P$, then $\Gamma = N\gamma_0 \subseteq NP \subseteq P$. Then $\Gamma = P$. But this is a contradiction with $N\Gamma \not\subseteq P$. Then, $\gamma_1 = x\gamma_0$ and $\gamma_2 = y\gamma_0$ for some $x, y \in N$. If $\gamma_1 - \gamma_2 \notin P$, then $\gamma_1 - \gamma_2 = x\gamma_0 - y\gamma_0 = (x - y)\gamma_0 \notin P$

. Hence, $(x-y) \notin (P:\gamma_0) \supseteq (P:\Gamma)$. Moreover, if *P* is an e-prime N-ideal, then $(P:\Gamma)$ is an e-prime ideal of N by Proposition 2. Hence, $amx - amy \notin (P:\Gamma)$ for some $m \in N$ since $a, (x-y) \notin (P:\Gamma)$. So, $(ax-ay)m = axm - aym = amx - amy \notin (P:\Gamma)$, since N is RP.Furthermore, since $(P:\Gamma)$ is an ideal of *N*, this implies that $(ax - ay) \notin (P:\Gamma)$. Under the given assumptions, if P is an e-prime N-ideal it is also c-prime by Corollary 1. In addition, $(P:\gamma) = (P:\Gamma)$ for every $\gamma \in \Gamma \setminus P$ by Proposition 1. Hence, $(ax - ay) \notin (P:\gamma_0)$, whence $(ax - ay)\gamma_0 \notin P$. Then, $a\gamma_1 - a\gamma_2 = ax\gamma_0 - ay\gamma_0 = (ax - ay)\gamma_0 \notin P$. But this is a contradiction with the assumption. Hence, $a\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$ and therefore it follows that *P* is c-e-prime. The converse follows from Proposition 7.

Corollary 4 Let $P \triangleleft_N \Gamma$. Then P is c-e-prime $\Rightarrow P$ is e-prime $\Rightarrow P$ is 3-prime $\Rightarrow P$ is 2-prime $\Rightarrow P$ is 0-prime.

Corollary 5 Let Γ be an N-group. Then Γ is c-e-prime $\Rightarrow \Gamma$ is e-prime $\Rightarrow \Gamma$ is 3-prime $\Rightarrow \Gamma$ is 2-prime $\Rightarrow \Gamma$ is 0-prime.

If $P \triangleleft_N \Gamma$, then $(P:\Gamma) \triangleleft N$. With the following two propositions the relationships between the c-e-primeness of P and that of $(P:\Gamma)$ are investigated.

Proposition 9 If $P \triangleleft_N \Gamma$ is c-e-prime, then $(P:\Gamma) \triangleleft N$ is c-e-prime.

Proof. Let $a \in N \setminus (P:\Gamma)$ and $x, y \in N$ such that $ax - ay \in (P:\Gamma)$. Then, $a\gamma_1 - a\gamma_2 = ax\gamma - ay\gamma = (ax - ay)\gamma \in P$, where $\gamma_1 = x\gamma$ and $\gamma_2 = y\gamma$, since Γ is an *N*-group. Then, $\gamma_1 - \gamma_2 \in P$ because *P* is c-e-prime. If $\gamma_1 - \gamma_2 \in P$, then $(x - y)\gamma = x\gamma - y\gamma = \gamma_1 - \gamma_2 \in P$ for all $\gamma \in \Gamma$. Hence, $(x - y) \in (P:\Gamma)$. So, $(P:\Gamma)$ is c-e-prime.

Corollary 6 If Γ is a c-e-prime N-group, then $(0:\Gamma)$ is a c-e-prime ideal of N.

Proof. If *P* is replaced by the 0 ideal, then the result follows from Proposition 9.

The following proposition shows that the converse holds when N is RP and Γ is monogenic.

Proposition 10 Let N be a RP near-ring, Γ be a monogenic N-group and P be an N-ideal of Γ . Then $P \triangleleft_N \Gamma$ is c-e-prime iff $(P:\Gamma) \triangleleft N$ is c-e-prime.

Proof. Let $(P:\Gamma)$ is c-e-prime. Then, $(P:\Gamma)$ is also e-prime (Booth and Groenewald 1992). Furthermore, under the given assumptions, P is an e-prime N-ideal of Γ by Proposition 3. Then, P is also c-e-prime by Proposition 8. On the other hand, if P is c-e-prime, then $(P:\Gamma)$ is c-eprime by Proposition 9. **Proposition 11** If Γ is a c-e-prime N-group and P be an N-ideal of Γ , then P is a c-e-prime N-group.

Proof. Let $a \in N \setminus (0:P)$ and $x, y \in P$ such that ax = ay. It is obvious that $(0:\Gamma) \subseteq (0:P)$. Then $a \in N \setminus (0:\Gamma)$. Since $x, y \in \Gamma$ and Γ is c-e-prime, then x = y. Hence, *P* is a c-e-prime *N*-group.

4. Completely Equiprime N-ideals and IFP N-ideals

In this section, some relations between the concepts of c-e-prime *N*-ideal and IFP *N*-ideal are provided. For this purpose, firstly the following definition should be given.

Definition 4 (Taşdemir et al. 2013) For $a \in N$ and $\gamma \in \Gamma$, if $a\gamma \in P$ implies $an\gamma \in P$ for all $n \in N$, then P is called an IFP N-ideal. Γ is called an IFP N-group if $N\Gamma \neq 0_{\Gamma}$ and 0 is an IFP N-ideal of Γ .

The Main Theorem

Theorem 1 If P is a c-e-prime N-ideal, then P is an IFP N-ideal.

The following propositions are necessary to prove the Main Theorem.

Proposition 12 Let P be an N-ideal of Γ . Then P is a c-eprime N-ideal iff Γ/P is a c-e-prime N-group.

Proof. Since P is an N-ideal of $\Gamma, \Gamma/P$ is an N-group with the natural operation. Then, it needs to be shown that Γ/P is c-e-prime. Since $N\Gamma \not\subseteq P$, there exists $a \in N$ and $\gamma \in \Gamma$ such that $a\gamma \notin P$ i.e. $a(\gamma + P) = a\gamma + P \neq P$. Thus $N(\Gamma/P) \neq 0_{\Gamma/P}$. Let $a \in N, \gamma_1 + P, \gamma_2 + P \in \Gamma/P$ and $a(\gamma_1 + P) = a(\gamma_2 + P)$. Then, $a\gamma_1 - a\gamma_2 \in P$ which implies that $a\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$ since P is c-eprime. If $a\Gamma \subseteq P$, then $a\gamma \in P$ for all $\gamma \in \Gamma$. Hence $a(\gamma + P) = P$ for all $\gamma \in \Gamma$. Therefore $a(\Gamma/P) = P$. If $\gamma_1 - \gamma_2 \in P$, then $\gamma_1 + P = \gamma_2 + P$. So Γ/P is a c-eprime N-group. Conversely, suppose that Γ/P is a c-eprime N-group. Then $0_{\Gamma/P} = P$ is a c-e-prime N-ideal of Γ/P . Let $a \in N, \gamma_1, \gamma_2 \in \Gamma$ and $a\gamma_1 - a\gamma_2 \in P$. Hence $a(\gamma_1 + P) = a(\gamma_2 + P)$. Thus, $a(\Gamma/P) = P$ or $\gamma_1 + P = \gamma_2 + P$ since Γ/P is a c-e-prime *N*-group. Finally, $a\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$ which implies that *P* is a c-e-prime *N*-ideal of Γ .

Proposition 13 If Γ is a c-e-prime N-group, then Γ is an IFP N-group.

Proof. Let $a\gamma = 0_{\Gamma}$ for $a \in N, \gamma \in \Gamma$. Then $a\gamma = a0_{\Gamma} = 0_{\Gamma}$ because N is zero-symmetric. Since Γ is c-e-prime, $a\Gamma = 0_{\Gamma}$ or $\gamma = 0_{\Gamma}$. If $a\Gamma = 0_{\Gamma}$ then $a \in (0_{\Gamma}:\Gamma)$. Hence, $an\gamma = a\gamma' = 0_{\Gamma}$ for all $n \in N$, since Γ is an *N*-group. If $\gamma = 0_{\Gamma}$, then $an\gamma = an0_{\Gamma} = 0_{\Gamma}$ for all $n \in N$. Therefore, Γ is an IFP *N*-group.

Proposition 14 Let P be an N-ideal of Γ . Then P is an IFP N-ideal iff Γ/P is an IFP N-group.

Proof. Suppose *P* is an IFP *N*-ideal of Γ . Then Γ/P is an *N*-group with the natural operation. Let $a \in N, \gamma + P \in \Gamma/P$ and $a(\gamma + P) = 0_{\Gamma/P}$. It needs to be shown that $an(\gamma + P) = 0_{\Gamma/P}$ for all $n \in N$. Then $a\gamma \in P$, since $a(\gamma + P) = P$. Then $an\gamma \in P$ for all $n \in N$ because *P* is IFP. Hence $an(\gamma + P) = P$ for all $n \in N$ whence Γ/P is an IFP *N*-group. For the converse, let Γ/P is an IFP *N*-group. Then $0_{\Gamma/P} = P$ is an IFP *N*-ideal of Γ/P . Let $a\gamma \in P$ for $a \in N$ and $\gamma \in \Gamma$. This implies that $a(\gamma + P) = P$. Since Γ/P is an IFP *N*-group, then $an(\gamma + P) = P$ for all $n \in N$ which implies that $an\gamma \in P$. Thus, *P* is an IFP *N*-ideal of Γ .

Now, the Main Theorem of this section could be proven.

Proof of the Main Theorem. Assume *P* is c-e-prime. Then, Γ/P is a c-e-prime *N*-group by Proposition 12. Hence Γ/P is also an IFP *N*-group by Proposition 13. Finally, *P* is an IFP *N*-ideal of Γ by Proposition 14.

5. References

Atagün, AO. 2010. IFP ideals in near-rings. Hacet. J. Math. Stat., 39: 17-21.

Birkenmeier, G., Heatherly, H. 1989. Medial near-rings. *Monatsh* Math., 107: 89–110.

- Booth, GL., Groenewald, NJ., Veldsman, S. 1990. A Kurosh-Amitsur prime radical for near-rings. *Comm. Algebra*, 18: 3111-3122.
- Booth, GL., Groenewald, NJ. 1992. Equiprime left ideals and equiprime N-groups of a near-ring. *Contributions to General Algebra*, 8: 25–38.
- Dheena, P., Sivakumar, D. 2004. On strongly 0-prime ideals in near-rings. Bull. Malays. Math. Sci. Soc. (Second Series), 27: 77-85.
- Groenewald, NJ. 1991. Different prime ideals in near-rings. *Comm. Algebra*, 19: 2667–2675.
- Holcombe, WML. 1970. Primitive near-rings, PhD Thesis, University of Leeds, England, 153 pp.
- Juglal, S., Groenewald, NJ., Lee, KSE. 2010. Different prime R-ideals. *Algebr. Collog.*, 17: 887-904.
- Pilz, G. 1983. Near-rings (revised edition), North-Holland Publishing Company, Amsterdam, Newyork, Oxford, 470 pp.
- Ramakotaiah, D., Rao, GK. 1979. IFP near-rings. J. Austral. Math. Soc. (Series A), 27: 365-370.
- Taşdemir, F., Atagün, AO., Altındiş, H. 2011. Equiprime N-Ideals of monogenic N-groups. *Hacet. J. Math. Stat.*, 40: 37-382.
- Taşdemir, F., Atagün, AO., Altındiş, H. 2013. Different prime N-ideals and IFP N-ideals. *Indian J. Pure Appl. Math.*, 44: 527-542.
- Veldsman, S. 1992. On equiprime near-rings. *Comm. Algebra*, 20: 2569-2587.