Research Article Received / Geliş tarihi : 29.12.2016 Accepted / Kabul tarihi : 27.11.2017

Completely Equiprime Ideals of Near-Ring Modules

Yakın Halka Modüllerinin Tam e-asal İdealleri

Funda Taşdemir^{*}

Bozok University, Department of Mathematics, Yozgat, Turkey

Abstract

In this study, the concept of completely equiprime *N*-ideal (ideal of near-ring modules) is introduced. Also the interconnections of completely equiprime, equiprime and completely prime *N*-ideals are considered. It is proved that if *P* is a completely equiprime ideal of an *N*-group (near-ring module) Γ, then (*P:* Γ) is a completely equiprime ideal of a near-ring *N*. The converse relation does not hold in general, however some additional conditions for holding the converse are provided. The connection between the concepts of completely equiprime *N*-ideal and IFP *N*-ideal is also observed.

2010 AMS-Mathematical Subject Classification Number: 16Y30,16D25.

Keywords: Completely equiprime *N*-ideal, Completely prime *N*-ideal, Equiprime *N*-ideal, IFP *N*-ideal

Öz

Bu çalışmada, tam e-asal *N*-ideal (yakın halka modülünün ideali) kavramı tanımlanmıştır. Aynı zamanda, tam e-asal, e-asal ve tam asal *N*-idealler arasındaki ilişkiler ele alınmıştır. Bir Γ *N*-grubunun (yakın halka modülü) *P* ideali tam e-asal olduğunda (*P:* Γ) nın da *N* yakın halkasının tam e-asal ideali olduğu ispatlanmıştır. Bu gerektirmenin tersi genelde sağlanmazken, bazı ek şartlar ile tersinin doğruluğu sağlanmıştır. Ayrıca, tam e-asal *N*-ideal ve IFP *N*-ideal kavramları arasındaki ilişki de incelenmiştir.

2010 AMS-Konu Sınıflandırması: 16Y30,16D25.

Anahtar Kelimeler: Tam e-asal *N*-ideal, Tam asal *N*-ideal, E-asal *N*-ideal, IFP *N*-ideal

1. Introduction

Several definition of primeness have been proposed for nearrings, all of which generalize primeness for rings. Holcombe (1970) defined three types of primeness which are 0-prime, 1-prime and 2-prime. The concepts of type 1 and type 2 prime ideals have been introduced by Ramakotaiah and Rao (1979). Then, type 1 and type 2 prime ideals were called as 3-prime ideal and completely prime (c-prime) ideal, respectively (Groenewald 1991). Booth et al. (1990) defined a different generalization of prime rings, called equiprime (e-prime). Veldsman (1992) has examined equiprimeness in depth. Juglal et al. (2010) generalized the various notions of primeness (0-, 1-, 2-, 3-, c-primeness) that were defined in a near-ring to the near-ring module. Tasdemir et al. (2011) added to these five types by introducing equiprime *N*-ideals.

Funda Taşdemir @ orcid.org/0000-0002-0349-3686

Then they have studied 3-primeness and *c*-primeness in details (Taşdemir et al. 2013).

In this study, the concept of completely equiprime *N*-group is generalized to ideals of *N*-groups, called completely equiprime *N*-ideals. Also the interconnections of completely equiprime, equiprime and completely prime *N*-ideals are considered. Furthermore, some relationships between a completely equiprime *N*-ideal *P* and the ideal (*P:* Γ) are obtained. The relation between the concepts of completely equiprime *N*-ideal and IFP *N*-ideal is also observed.

2. Preliminaries

Throughout this study *N* stands for a right near-ring. In Pilz's book (1983), for all undefined concepts concerning near-rings are given. For further information in near-rings of prime ideals could be found from Atagün (2010) and Dheena et al. (2004).

^{*}Corresponding author: funda.tasdemir@bozok.edu.tr

N is said to be a right permutable (RP) near-ring if *abc = acb* for all $a, b, c \in \mathbb{N}$ (Birkenmeier and Heatherly 1989). *N*, is defined as the set $\{d \in N: d(a+b) = da + db, \forall a, b \in N\}$ (Pilz 1983).

If $a \in \mathbb{N}\setminus I$, $ax - ay \in I$ implies $x-y \in I$, for all $x,y \in N$ then $I \triangleleft N$ is called a completely equiprime ideal (Booth and Groenewald 1992).

 $Γ$ is called a completely equiprime *N*-group if $aγ_1 = aγ_2$ implies $\gamma_1 = \gamma_2$ for $a \in N \setminus (0_r : \Gamma)_N$ and $\gamma_1, \gamma_2 \in \Gamma$ (Booth and Groenewald 1992). If there exists γ∈Γ such that *N*γ = Γ, then Γ is called monogenic.

From now on, *N* will denote a zero-symmetric near-ring, Γ an *N*-group and *P* an *N*-ideal of Γ such that $N\Gamma \nsubseteq P$.

Definition 1 (Juglal et al. 2010) *Let* P⊲_{*N*}Γ. *Then P is called:*

• 3-prime if *aN*γ⊆ *P* implies that *a*Γ⊆*P* or γ∈*P* for *a*∈*N* and γ∈Γ.

• c-prime if *a*γ∈*P* implies that *a*Γ⊆*P* or γ∈*P* for *a*∈*N* and γ∈Γ.

Definition 2 (Taşdemir et al. 2011) *If an*γ₁-anγ₂∈P for all *n*∈*N* implies that aΓ⊆P or $γ_1$ -γ₂∈P for a∈N and $γ_1$, $γ_2$ ∈Γ then *P is called an equiprime N-ideal.*

Γ is called a *v-prime N-group* if 0 is a *v*-prime *N*-ideal of Γ (*v*=3,*c,e*).

Proposition 1 (Juglal et al. 2010) *Let* $P \triangleleft_{N} \Gamma$. *Then the following are equivalent:*

- *P* is 3-prime and $(P: \gamma) \triangleleft N$ for every $\gamma \in \Gamma \backslash P$.
- *N*Γ \nsubseteq *P* and $(P:\gamma) = (P:\Gamma)$ for every $\gamma \in \Gamma \backslash P$.
- *P is c-prime.*

Proposition 2 (Juglal et al. 2010, Taşdemir et al. 2011) *If* $P \triangleleft_{N}$ *Γ is c-prime(equiprime), then* $(P:Γ)$ *< N is c-prime(equiprime).*

+			2				6	
Ω	$\boldsymbol{0}$	1	$\overline{2}$	3	4	5	6	
1		\overline{c}	3	0	5	6	7	
$\overline{2}$	$\overline{2}$	3	0		6		4	
3	3	0		\overline{c}			5	
	4		6	5	0	3	2	
5				6		0	3	2
6	6	5		7	2		0	3
7	7	6			3	\mathfrak{D}		

Table 1. Addition and multiplication tables of *N*.

Proposition 3 (Taşdemir et al. 2011) *If N is RP,* Γ *is monogenic* and $(P:\Gamma) \triangleleft N$ *is equiprime, then* $P \triangleleft N$ *N*^T *is equiprime.*

Corollary 1 (Taşdemir et al. 2011) *If N is RP and P is equiprime then P is c-prime.*

3. Completely Equiprime *N***-ideals**

Definition 3 *P* is called a completely equiprime *N*-ideal if $a\gamma_1$ - $a\gamma_2 \in P$ implies that $a\Gamma \subseteq P$ or γ_1 - $\gamma_2 \in P$ for $a \in N$ and $\gamma_1, \gamma_2 \in \Gamma$.

Γ is called a completely equiprime *N*-group if *N*Γ≠0Γ and 0 is a completely equiprime *N*-ideal of Γ.

From now on, in order to simplify, completely equiprime and equiprime are denoted by c-e-prime and e-prime, respectively.

Example 1 *Let N =* {0,1,2,3,4,5,6,7} *with addition and multiplication defined by Table 1* (Pilz 1983).

Let $\Gamma = N^N$ as an *N*-group with the natural operation. It is clear that *P* = {0,2,5,7} is an *N*-ideal of Γ. Also, *P* is c-eprime.

Proposition 4 *Let N≠I* \triangleleft *N. Then the following are equivalent:*

•
$$
I
$$
 is c-e-prime (a)

• There is a c-e-prime *N*-group Γ with $I = (0_r: \Gamma)_{N}$ (b)

Proof. (a)⇒(b) Suppose that *I* is a c-e-prime ideal of *N*. Consider the *N*-group $\Gamma = N/I$ with the natural operations. Let *i*∈*I* and *x*∈*N*. Then i*x*∈*I*. Hence, *i*(*x*+*I*)=*ix*+*I*=*I*, whence *I*⊆(0_Γ:Γ)_{*N*}. Now assume that $x \in (0_1:\Gamma)_N$. Then $xn+I=x(n+I)=I$ for all *n*∈*N*, whence *xN*⊆*I*. It follows that *xNx*⊆*I*. Since *I* is a c-e-prime ideal of *N*, it is also an e-prime ideal (Booth and Groenewald 1992) and therefore 3-prime. This implies that *x*∈*I*. Hence, *I*=(0_Γ:Γ)_{*N*}. It needs to be shown that Γ is a c-eprime *N*-group. Suppose that $a \in N$, $a \notin (0_r : \Gamma)_N = I$ and that *x,y*∈*N*, *x*+*I*≠*y*+*I*. Then *x-y*∉*I*. Since *I* is a c-e-prime ideal, *ax*-

 $a\psi \notin I$, whence $a(x+I) \neq a(\psi+I)$. Thus, Γ is a c-e-prime *N*-group and $I=(0_\Gamma:\Gamma)_N$.

(b) ⇒ (a) Suppose that Γ is a c-e-prime *N*-group and that *I*=(0_Γ:Γ)_{*N*}.. Let *a*,*x*,*y*∈*N*, *a*∉*I*, *x*-*y*∉*I*. Then there exists $\gamma \in \Gamma$ such that $(x-y)\gamma \neq 0$ _r, i.e. $x\gamma \neq \gamma\gamma$. Since Γ is a c-e-prime *N*-group, this implies $ax\gamma \neq a\gamma$ whence $(ax - ay)\gamma \neq 0$. It follows that $(ax - ay) \notin (0_{\Gamma}: \Gamma)_N = I$. Hence, *I* is a c-eprime ideal of *N*.

Corollary 2 *Let 0* ≠ *N be a near-ring. Then the following are equivalent:*

- *N* is c-e-prime.
- There exists a faithful c-e-prime N -group Γ .

Proof. If *I* is replaced by the 0 ideal, then the result follows from Proposition 4.

Corollary 3 Let $N \neq I \triangleleft N$. Then N/I is a c-e-prime near-ring *iff N/I is a c-e-prime N-group.*

Proof. Let *N/I* be a c-e-prime near-ring. Then *I* is a c-eprime ideal of *N*. Hence $\Gamma = N/I$ is a c-e-prime *N*-group by Proposition 4. Conversely, if *N/I* is a c-e-prime *N*-group, then $I = (0:N/I)$ is a c-e-prime ideal of N by Proposition 4. Hence *I* is a c-e-prime ideal of *N* and so *N/I* is a c-e-prime near-ring.

The following propositions show the interconnections of c-e-prime, c-prime and e-prime *N*-ideals.

Proposition 5 *If P is c-e-prime, then P is c-prime.*

Proof. Suppose that *P* is c-e-prime and $a\gamma \in P$ for $a \in N$ and $\gamma \in \Gamma$. This implies that $a\gamma = a\gamma - a_0C_F \in P$. Hence, $a\Gamma \subseteq P$ or $\gamma = \gamma - 0_{\Gamma} \in P$ since *P* is c-e-prime. Therefore, *P* is c-prime.

The following example illustrates that the converse of Proposition 5 does not hold true.

Example 2 *Let* (*N,+*) *be the Klein's four group with multiplication table as given in Table 2.*

Table 2. Multiplication table of *N*.

Let $\Gamma = N^N$ as an *N*-group with the natural operation. Then, $P = 0$ is c-prime but not c-e-prime.

However, the following observation is obtained.

Proposition 6 Let N be a RP near-ring, Γ be a monogenic *N*-group and $P \triangleleft_{N} \Gamma$ such that $N_d \setminus (P:\Gamma) \neq \phi$. Then P is *c-e-prime iff P is c-prime.*

Proof. Let *P* be a c-prime *N*-ideal and $a \in N$, $\gamma_1, \gamma_2 \in \Gamma$, $a\gamma_1 - a\gamma_2 \in P$. It needs to be shown that $a\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$. Since Γ is monogenic, there exists $\gamma_0 \in \Gamma$ such that $N\gamma_0 = \Gamma$. Then, $\gamma_1 = x\gamma_0$ and $\gamma_2 = y\gamma_0$ for some $x, y \in N$. Hence, $(ax - ay)\gamma_0 = ax\gamma_0 - ay\gamma_0 = a\gamma_1 - a\gamma_2 \in P$. Since, *P* is c-prime $(ax - ay) \Gamma \subseteq P$ or $\gamma_0 \in P$. If $\gamma_0 \in P$, then $\Gamma = N\gamma_0 \subseteq NP \subseteq P$. But this is a contradiction with $N\Gamma \nsubseteq P$. Then, $(ax - ay)\Gamma \subseteq P$ which implies that $(ax - ay) \in (P:\Gamma)$. Since $(P:\Gamma)$ is an ideal of *N*, $n_d(ax - ay) \in (P:\Gamma)$ for an $n_d \in N_d \setminus (P:\Gamma)$. Then, $n_d(ax - ay) = n_dax - n_day = n_dxa - n_dya(x - y)a \in (P:\Gamma)$ because *N* is RP. Furthermore, $(P:\Gamma)$ is a c-prime ideal of *N* since P is a c-prime N-ideal by Proposition 2. Hence, $(x - y) \in (P:\Gamma)$ or $a \in (P:\Gamma)$ since $n_d \notin (P:\Gamma)$. If $(x-y) \in (P:\Gamma)$, then $(x - y)\gamma_0 = x\gamma_0 - y\gamma_0 = \gamma_1 - \gamma_2 \in P$. If $a \in (P:\Gamma)$, then $a\Gamma \subseteq P$. Thus, *P* is c-e-prime. On the other hand, the converse follows from Proposition 5.

Example 3 *Consider the near-ring* $(N, +, .)$ *in Example 2. P = 0 is c-prime but not c-e-prime since* $N_d \setminus (P:\Gamma) = \phi$.

Proposition 7 *If P is c-e-prime, then P is e-prime.*

Proof. Suppose *P* is c-e-prime and $a \in N$, $\gamma_1, \gamma_2 \in \Gamma$, $an\gamma_1 - an\gamma_2 \in P$ for all $n \in N$. Since Γ is an *N*-group, then $an\gamma_1 - an\gamma_2 = a\gamma_3 - a\gamma_4 \in P$, where $\gamma_3 = n\gamma_1$ and $\gamma_4 = n\gamma_2$. Hence, $a\Gamma \subseteq P$ or $\gamma_3 - \gamma_4 \in P$, since *P* is c-e-prime. If $a\Gamma \subseteq P$, then the proof is completed. If $\gamma_3 - \gamma_4 \in P$, then $\gamma_3 - \gamma_4 = n\gamma_1 - n\gamma_2 \in P$ and again since *P* is c-e-prime, hence $n\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$. If $n\Gamma \subseteq P$, then this is a contradiction with *N* $\Gamma \nsubseteq P$. Then $\gamma_1 - \gamma_2 \in P$. Therefore, *P* is e-prime.

Proposition 8 Let N be a RP near-ring, Γ be a monogenic *N*-group and $P \triangleleft_{N} \Gamma$. Then P is e-prime iff P is c-e-prime.

Proof. Suppose that *P* is e-prime. Let $a \in N$, $\gamma_1, \gamma_2 \in \Gamma$, $a\gamma_1 - a\gamma_2 \in P$. It needs to be shown that $a\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$. Suppose $a\Gamma \nsubseteq P$ and $\gamma_1 - \gamma_2 \notin P$. Since Γ is monogenic, $N\gamma_0 = \Gamma$ for $\gamma_0 \in \Gamma \backslash P$ (If $\gamma_0 \in P$, then $\Gamma = N \gamma_0 \subseteq NP \subseteq P$. Then $\Gamma = P$. But this is a contradiction with $N \Gamma \nsubseteq P$. Then, $\gamma_1 = x\gamma_0$ and $\gamma_2 = y\gamma_0$ for some $x, y \in N$. If $\gamma_1 - \gamma_2 \notin P$, then $\gamma_1 - \gamma_2 = x\gamma_0 - y\gamma_0 = (x - y)\gamma_0 \notin P$

. Hence, $(x - y) \notin (P: \gamma_0) \supseteq (P: \Gamma)$. Moreover, if *P* is an e-prime N-ideal, then $(P:\Gamma)$ is an e-prime ideal of N by Proposition 2. Hence, $amx - amy \notin (P:\Gamma)$ for some $m \in N$ since $a, (x - y) \notin (P:\Gamma)$. So, $(ax - ay)m = axm - aym = amx - amy \notin (P:\Gamma)$, since *N* is RP. Furthermore, since $(P:\Gamma)$ is an ideal of *N*, this implies that $(ax - ay) \notin (P:\Gamma)$. Under the given assumptions, if P is an e-prime N-ideal it is also c-prime by Corollary 1. In addition, $(P:\gamma) = (P:\Gamma)$ for every $\gamma \in \Gamma \backslash P$ by Proposition 1. Hence, $(ax - ay) \notin (P: \gamma_0)$, whence $(ax - ay)\gamma_0 \notin P$. Then, $a\gamma_1 - a\gamma_2 = ax\gamma_0 - ay\gamma_0 = (ax - ay)\gamma_0 \notin P$. But this is a contradiction with the assumption. Hence, $a\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$ and therefore it follows that *P* is c-e-prime. The converse follows from Proposition 7.

Corollary 4 Let $P \triangleleft_{N} \Gamma$. Then P is c-e-prime $\Rightarrow P$ is e-prime \Rightarrow *P* is 3-prime \Rightarrow *P* is 2-prime \Rightarrow *P* is 0-prime.

Corollary 5 Let Γ be an N-group. Then Γ is c-e-prime $\Rightarrow \Gamma$ *is e-prime* $\Rightarrow \Gamma$ *is 3-prime* $\Rightarrow \Gamma$ *is 2-prime* $\Rightarrow \Gamma$ *is 0-prime.*

If $P \triangleleft_{N} \Gamma$, then $(P:\Gamma) \triangleleft N$. With the following two propositions the relationships between the c-e-primeness of P and that of $(P:\Gamma)$ are investigated.

Proposition 9 If $P \triangleleft_{N} \Gamma$ is c-e-prime, then $(P:\Gamma) \triangleleft N$ is *c-e-prime.*

Proof. Let $a \in N \setminus (P:\Gamma)$ and $x, y \in N$ such that $ax - ay \in (P:\Gamma)$. Then, $a\gamma_1 - a\gamma_2 = ax\gamma - ay\gamma = (ax - ay)\gamma \in P$, where $\gamma_1 = x\gamma$ and $\gamma_2 = y\gamma$, since Γ is an *N*-group. Then, $\gamma_1 - \gamma_2 \in P$ because *P* is c-e-prime. If $\gamma_1 - \gamma_2 \in P$, then $(x - y)\gamma = x\gamma - y\gamma = \gamma_1 - \gamma_2 \in P$ for all $\gamma \in \Gamma$. Hence, $(x - y) \in (P:\Gamma)$. So, $(P:\Gamma)$ is c-e-prime.

Corollary 6 *If* Γ *is a c-e-prime N-group, then* $(0:\Gamma)$ *is a c-eprime ideal of N.*

Proof. If *P* is replaced by the 0 ideal, then the result follows from Proposition 9.

The following proposition shows that the converse holds when N is RP and Γ is monogenic.

Proposition 10 Let N be a RP near-ring, Γ be a monogenic *N*–group and P be an N–ideal of Γ . Then $P \lhd_{\scriptscriptstyle N} \Gamma$ is c–e–prime *iff* $(P:\Gamma) \triangleleft N$ is c-e-prime.

Proof. Let $(P:\Gamma)$ is c-e-prime. Then, $(P:\Gamma)$ is also e-prime (Booth and Groenewald 1992). Furthermore, under the given assumptions, P is an e-prime *N*-ideal of Γ by Proposition 3. Then, *P* is also c-e-prime by Proposition 8. On the other hand, if *P* is c-e-prime, then $(P:\Gamma)$ is c-eprime by Proposition 9.

Proposition 11 If Γ is a c-e-prime N-group and P be an *N*-ideal of Γ , then P is a c-e-prime N-group.

Proof. Let $a \in N \setminus (0:P)$ and $x, y \in P$ such that $ax = ay$. It is obvious that $(0:\Gamma) \subseteq (0:P)$. Then $a \in N \setminus (0:\Gamma)$. Since $x, y \in \Gamma$ and Γ is c-e-prime, then $x = y$. Hence, *P* is a c-eprime *N*-group.

4. Completely Equiprime *N***-ideals and IFP** *N***-ideals**

In this section, some relations between the concepts of c-e-prime *N*-ideal and IFP *N*-ideal are provided. For this purpose, firstly the following definition should be given.

Definition 4 (Taşdemir et al. 2013) *For* $a \in N$ *and* $\gamma \in \Gamma$, *if* $a\gamma \in P$ *implies* $a n \gamma \in P$ *for all* $n \in N$ *, then P is called an IFP N-ideal.* Γ *is called an IFP N-group if* $N\Gamma \neq 0$ _{*r} and* 0</sub> *is an IFP N-ideal of* Γ *.*

The Main Theorem

Theorem 1 *If P is a c-e-prime N-ideal, then P is an IFP N-ideal.*

The following propositions are necessary to prove the Main Theorem.

Proposition 12 Let P be an N-ideal of Γ . Then P is a c-e*prime N-ideal iff* Γ/P *is a c-e-prime N-group.*

Proof. Since *P* is an *N*-ideal of Γ , Γ /*P* is an *N*-group with the natural operation. Then, it needs to be shown that Γ/P is c-e-prime. Since $N\Gamma \nsubseteq P$, there exists $a \in N$ and $\gamma \in \Gamma$ such that $a\gamma \notin P$ i.e. $a(\gamma + P) = a\gamma + P \neq P$. Thus $N(\Gamma / P) \neq 0_{\Gamma / P}$. Let $a \in N, \gamma_1 + P, \gamma_2 + P \in \Gamma / P$ and $a(\gamma_1 + P) = a(\gamma_2 + P)$. Then, $a\gamma_1 - a\gamma_2 \in P$ which implies that $a\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$ since *P* is c-eprime. If $a\Gamma \subseteq P$, then $a\gamma \in P$ for all $\gamma \in \Gamma$. Hence $a(\gamma + P) = P$ for all $\gamma \in \Gamma$. Therefore $a(\Gamma/P) = P$. If $\gamma_1 - \gamma_2 \in P$, then $\gamma_1 + P = \gamma_2 + P$. So Γ/P is a c-eprime *N*-group. Conversely, suppose that Γ/P is a c-eprime N-group. Then $0_{\Gamma/P} = P$ is a c-e-prime *N*-ideal of Γ/P . Let $a \in N$, $\gamma_1, \gamma_2 \in \Gamma$ and $a\gamma_1 - a\gamma_2 \in P$. Hence $a(\gamma_1 + P) = a(\gamma_2 + P)$. Thus, $a(\Gamma/P) = P$ or $\gamma_1 + P = \gamma_2 + P$ since Γ/P is a c-e-prime *N*-group. Finally, $a\Gamma \subseteq P$ or $\gamma_1 - \gamma_2 \in P$ which implies that *P* is a c-e-prime N -ideal of Γ .

Proposition 13 If Γ *is a c-e-prime N-group, then* Γ *is an IFP N-group.*

Proof. Let $a\gamma = 0_r$ for $a \in N$, $\gamma \in \Gamma$. Then $a\gamma = a0_r = 0_r$ because *N* is zero-symmetric. Since Γ is c-e-prime, $a\Gamma = 0_r$ or $\gamma = 0_r$. If $a\Gamma = 0_r$ then $a \in (0_r:\Gamma)$. Hence, $an\gamma = a\gamma' = 0$ for all $n \in N$, since Γ is an *N*-group. If $\gamma = 0_r$, then $an\gamma = an0_r = 0_r$ for all $n \in N$. Therefore, Γ is an IFP *N*-group.

Proposition 14 Let P be an N-ideal of Γ *. Then P is an IFP N*-ideal iff Γ/P is an IFP N-group.

Proof. Suppose *P* is an IFP *N*-ideal of Γ . Then Γ/P is an *N*-group with the natural operation. Let $a \in N$, $\gamma + P \in \Gamma / P$ and $a(\gamma + P) = 0$ _{Γ / P}. It needs to be shown that $an(\gamma + P) = 0_{\Gamma/P}$ for all $n \in N$. Then $a\gamma \in P$, since $a(\gamma + P) = P$. Then $an\gamma \in P$ for all $n \in N$ because *P* is IFP. Hence $an(\gamma + P) = P$ for all $n \in N$ whence Γ/P is an IFP *N*-group. For the converse, let Γ/P is an IFP *N*-group. Then $0_{\Gamma/P} = P$ is an IFP *N*-ideal of Γ/P . Let $a\gamma \in P$ for $a \in N$ and $\gamma \in \Gamma$. This implies that $a(\gamma + P) = P$. Since Γ/P is an IFP *N*-group, then $an(\gamma + P) = P$ for all $n \in N$ which implies that $an\gamma \in P$. Thus, P is an IFP *N*-ideal of Γ .

Now, the Main Theorem of this section could be proven.

*Proof of the Main Theorem***.** Assume *P* is c-e-prime. Then, Γ/P is a c-e-prime *N*-group by Proposition 12. Hence Γ/P is also an IFP *N*-group by Proposition 13. Finally, *P* is an IFP *N*-ideal of Γ by Proposition 14.

5. References

Atagün, AO. 2010. IFP ideals in near-rings. *Hacet. J. Math. Stat.,* 39: 17-21.

Birkenmeier, G., Heatherly, H. 1989. Medial near-rings. *Monatsh Math.,* 107: 89–110.

- **Booth, GL., Groenewald, NJ., Veldsman, S. 1990**. A Kurosh-Amitsur prime radical for near-rings. *Comm. Algebra,* 18: 3111–3122.
- **Booth, GL., Groenewald, NJ. 1992.** Equiprime left ideals and equiprime N-groups of a near-ring. *Contributions to General Algebra,* 8: 25–38.
- **Dheena, P., Sivakumar, D. 2004.** On strongly 0-prime ideals in near-rings. *Bull. Malays. Math. Sci. Soc. (Second Series),* 27: 77- 85.
- **Groenewald, NJ. 1991.** Different prime ideals in near-rings. *Comm. Algebra,* 19: 2667–2675.
- **Holcombe, WML. 1970.** Primitive near-rings, PhD Thesis, University of Leeds, England, 153 pp.
- **Juglal, S., Groenewald, NJ., Lee, KSE. 2010.** Different prime R-ideals. *Algebr. Colloq.,* 17: 887-904.
- **Pilz, G. 1983.** Near-rings (revised edition), North-Holland Publishing Company, Amsterdam, Newyork, Oxford, 470 pp.
- **Ramakotaiah, D., Rao, GK. 1979.** IFP near-rings. *J. Austral. Math. Soc. (Series A),* 27: 365-370.
- **Taşdemir, F., Atagün, AO., Altındiş, H. 2011.** Equiprime N-Ideals of monogenic N-groups. *Hacet. J. Math. Stat.,* 40: 37-382.
- **Taşdemir, F., Atagün, AO., Altındiş, H. 2013.** Different prime N-ideals and IFP N-ideals. *Indian J. Pure Appl. Math.,* 44: 527-542.
- **Veldsman, S. 1992.** On equiprime near-rings. *Comm. Algebra,* 20: 2569-2587.