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Similarly, a non-empty set F 2N3  is called a filter on N if;

i B F!  whenever B A4  for some A F! . (closed unders 
supersets)

ii A B F+ !  whenever ,A B F! . (closed under 
intersections)

Proposition 1.1. If I is a non-trivial ideal in N, then the 
family of sets ( ) \ :F F I M N A A I!= = =" ,
is a filter in N and it is called the filter associated with the 
ideal.

Definition 1.1. Let x xk= ^ h  be a real sequence. This 
sequence is said to be I- convergent to L R!  if for each 
0>f  the set

: | |A k N x Lk! $ f= -f " ,
belongs to I. In this definition the number L is I-limit of 
the x.

I-convergence generalizes ordinary convergence and 
statistical convergence. This means that if we choose two 

1. Introduction
By an ideal on a set X we mean a nonempty family of 
subsets of X closed under taking finite unions and subsets 
of its elements. In other words, a non-empty set I 2N3  is 
called an ideal on N if;

i B I!  whenever B A3  for some A I! . (closed unders 
subsets)

ii A B I, !  whenever ,A B I! . (closed under unions)

If N Ig  then we say that this ideal is a proper ideal. 
Similarly an ideal is proper and also contains all finite 
subsets then we say that this ideal is admissible. Filter is a 
dual notion of ideal and generally we will use ideals in our 
proofs but if the notion is more familiar for filters, we will 
use the notion of filter.
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special ideals, we have ordinary convergence and statistical 
convergence such that;

Example 1.1. If is an admissible ideal and If-convergence 
coincides with the usual convergence.

In recent years, important concepts such as statistical 
I-convergence, convergence etc. began to be defined for 
double sequences like:

(i) Mursaleen and Edely (2003) studied statistical 
convergence for double sequences.

(ii) Tripathy (2005) has a paper which introduced 
I-convergent double sequences.

(iii) Kumar (2007) defined the notions I- and I*- convergence 
of double sequence and studied some properties of these 
notions.

(iV) In a metric space, Das et all. (2008) introduced the 
concepts of I- and I*-convergence of double sequence.

(V) Dündar and Altay (2011 and 2014) have two papers 
about I₂-convergence of double sequences and I₂-Cauchy 
sequences.

In 2005, Lahiri and his friends introduced I-convergence 
in topological groups and also Savas (2014) gave new 
definitions in topological groups by using ideal. Gezer 
and Karakuş (2005) investigated I-pointwise and uniform 
convergence and I*-pointwise and uniform convergence of 
function sequences and then they examined the relation 
between them.

Now lets remind the convergence of a double sequence. 
Convergence of a double sequence means the convergence in 
Pringsheim’s sense. Let x xkl= ^ h  be a double sequence and 
L be a number of real sequences. x xkl= ^ h  has a Pringsheim 
limit provided that given an 0>f , there exists an n N!
such that x L <kl f-  whenever ,k l n>  and we denote by 
P-lim x=L. Generally we say that x xkl= ^ h  is P-convergent  
fort his situation.

Before giving Mursaleen and Edely’s definition about 
statistical convergence for double sequences, lets recall two-
deimensional analogue of natural density can be defined as 
follows:

,K m n^ h  is the number of (i, j) in K N N#1  such that  
i mG  and j n# . In case the sequence ( , )

mn
K m n  has 

a limit in Pringsheim’s sense then K has double natural 
density and is defined by 

,
( )limP mn

K m n
K

,m n 2d- =
"3

^ h
.

Example 1.2. Let , : ,K i j i j N2 2 != ^ h" , . Then 
( , )

lim limK
K

mn
m n

mn
m n

0
, ,m n m n

2 #d = =
" "3 3

^ h
i.e. the set l  has double natural density zero. 

Definition 1.2 : (Mursaleen and Edely, 2003) Let x xkl= ^ h  
be a real double sequence. This sequence is statistically 
convergent to the number L if for each 02f  the set

, , , :k l k m l n x L,k l# # $ f-^ h" ,
has double natural density zero.

Now we will talk about I-convergence for double sequences 
according to Kumar’s paper. 

Throughout the paper X N N#=  and I will denote the 
ideal of subsets of N N# . The following proposition gives 
us the relation between an ideal and a fitler for double 
sequences.

Proposition 1.2. Let I 2N N1 #  be a non-trivial ideal. Then 
( ) \ :F I N N A A I# != ^ h" ,  is a filter on N N# . 

Definition 1.3. (Kumar, 2007) Let I 2N N1 #  be a non-
trivial ideal and x xkl= ^ h  be a double sequence. x xkl= ^ h  
is I-convergent to the number L if for each 0>f  the set

, : .A k l N N x L Ikl#! $ !f f= -^ ^h h" ,
It is denoted by .limI x L

,k l
kl- =

"3

Example 1.3. Lets take the ideal,

: ( )I E N N E is the form N A A N# # , #1= " ,  where A 
is a finite subset of N. Then I-convergence is equivalent to 
the usual Pringsheim’s convergence.

Throughout the paper we take I2 as a nontrivial admissible 
ideal in N N#  and X be a Hausdorff topological abelian 
group written additively. A nontrivial ideal I2 on N N#  is 
called strongly admissible if i N#" ,  and N i# " ,belongs 
to I2 for each i N! . It is evident that a strongly admissible 
ideal is admissible also.

2. Main Results
We will start with the definitions of I2-convergence and I*

2 
-convergence of double sequences in a topological group.

Definition 2.1. Let x xkl= ^ h  be a real double sequence.   
x xkl= ^ h  is said to be I2-convergent to the number L if for 
each neighborhood U of 0,

, : .k l N N x L U Ikl 2# dg! -^ h" ,



Kişi / I₂-Convergence of  Double Sequences in Topological Groups

Karaelmas Fen Müh. Derg., 2018; 8(1):391-395 393

That is,

, : ( )k l N N x L U F Ikl 2#! ! !-^ h" , .

It is denoted by .limI x L
,k l

kl2 - =
"3

Definition 2.2. Let x xkl= ^ hbe a real double sequence. 
( )x xkl=  is said to be I*

2-convergent to the number L 
provided that for each neighborhood U of 0, there is a set 

, : , , , ...M k l N N k l F I1 22 2#! != =^ ^h h" ,
(i.e., \ )N N M I2 2# !^ h  such that .limx L

,k l
kl =

"3
 It is denoted 

by limI x L*

,k l
kl2 - =

"3
.

Definition 2.3. A real double sequences x = (xkl) is said to be 
I2-Cauchy in X if for each neighborhood U of 0, there exists 
,q r N!  such that for all ,k m q$  and , ,l n r$

, : .k l N N x x U Ikl mn 2# g! !-^ h" ,
Definition 2.4. A real double sequences ( )x xkl=  is said to 
be I*2 -Cauchy in X if for each neighborhood U of 0, there 
is set 

, : , , , ... ( )M k l N N k l F I1 22 2#! != =^ h" ,
(i.e., \N N M I2 2# !^ h  such that for every 
, , ,k l p q N N#!^ ^h h , we have 

, , , : ( )k l p q N N x x U F Ikl pq 2#! ! !-^ ^h h" , .

Theorem 2.1. Let I2 be an arbitrary strongly admissible 
ideal and X be a Hausdorff topological abelian group. 
Then  limI x L

,k l
kl2 - =

"3
 implies that (xkl) is I2-Cauchy double 

sequence.

Proof: Let I2 be an arbitrary strongly admissible ideal and  
U be an arbitrary neighborhood of 0. Choose V, W such that  
W W V U1 1+ . Since limI x L

,
,

k l
k l2 - =

"3
, we have

( ) , :A W k l N N x L W Ikl 2# g! != -^ h" ,
for each neighborhood W of 0. Then for any 
, , , \ ( )k l m n X A W!^ ^h h ,

x x x L L x W W V Ukl mn kl mn ! 1 1- = - + - + . Hence it 
follows that , : ( )k l N N x x U A Wkl mn# g! 1-^ h" ,
where , \ ( )m n X A W!^ h  is fixed. This shows the existence of 
,m n X!^ h  for which , :k l N N x x U Ikl mn 2# g! !-^ h" , .

As this holds for each neighbourd U of 0, (xkl) is I2-Cauchy 
double sequence.

Theorem 2.2. Let I2 be an arbitrary strongly admissible 
ideal, and X be a Hausdorff topological abelian group. If (xkl) 
is I*2 -Cauchy double sequence then it is I2-Cauchy double 
sequence.

Proof: Let (xkl) is I2-Cauchy sequence then by the definition, 
there exits a set 

, : , , , ...M k l N N k l F I1 22 2#! != =^ ^h h" ,
(i.e., \ )N N M I2 2# !^ h  such that

, , , : ( ),k l p q N N x x U F Ikl pq 2#! ! !-^ ^h h" ,
for every , , ( , ) , , , , ( )k l p q M k l p q r r U>2! =^ h  and r N!
. Then, we have
( ) , :

( , , ..., ( )

, , ..., ( ) ]) .

A U k l N N x x U

H M r N

N r

1 2 1

1 2 1

kl pq

2

#

, k #

, #

g!

1

= -

-

-^

^
^

h

h
h6

"

"
"
,

,
,

Since
( [( , , ..., ( ) )

, , ..., ])

H M r N

N r I

1 2 1

1 2 1

2

2

, + #

, # !

-

-^ ^ h h"
"

,
,

then we have ( )A U I2! . Thus (xkl) is I2-Cauchy double 
sequence.

Theorem 2.3. Take an arbitrary strongly admissible ideal I2. 
If x xkl= ^ h  is I*2 -convergent then it is I2-Cauchy.

Proof: Let limI x L*

,k l
kl2 - =

"3
. Then by definition there exists 

a set

, : , , , ...M k l N N k l F I1 22 2#! != =^ ^h h" ,
(i.e., \N N M I2 2# !^ h  such that limx L

,k l
kl =

"3
 for each 

, \k l M2^ h . Then for each neighbourd U of 0, we have

, :

, :

, :

k l N N x x U

k l N N x L U

m n N N x L U

kl mm

kl

mm

#

#

, #

! !

1 ! !

! !

-

-

-

^

^
^
h
h
h

"

"
"

,
,
,

Therefore, for each , , ( , )k l m n M2!^ h  we have

, , , :k l m n N N x x F Ikl mn 2# ,! ! !-^ ^ ^h h h" ,
Hence (xkl) is a I2-Cauchy double sequence.

Definition 2.5. Let I 2N N
2 1

#  be an admissible ideal. I2  
satisfies (AP2) if for every sequence An n N!^ h  of pairwise 
disjoint sets from I2 there exist sets ,B N n Nn 1 !  such 
that the symetric difference A Bn nT  is a finite set for every 
n and U B I

n N
n 2!

!
.

Theorem 2.4. If the ideal I2 has the property (AP2) then I2-
convergence for double sequence implies I*2 -convergence .

Proof: Suppose that I2 satisfies property (AP2). Let 
limI x L
,k l

kl2 - =
"3

. Then

( ) , :T U k l N N x L U Ikl 2# g! != -^ h" ,   (1)

for each neighborhood U of 0. Put
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It is clear that P F Ij 2! ^ h  for , , ...j 1 2=  Since I2 has (AP2) 
property, then from Lemma 2.1 there exists a set P N1
such that ( )P F I2!  and \P Pj  is finite for all j. Now we 
will show that

, , , : ( )k l p q N N x x U F Ikl pq 2#! ! !-^ ^h h" ,
for every , , ,k l p q P!^ ^h h . Let j N!  such that 
,m n N Nj j #!^ h . If , , ,k l p q P!^ ^h h  then \P Pj  is finite 

set, there exists k = kj such that

, :k l N N x x U F Ikl m n 2j j#! ! !-^ ^h h" ,
and

, :p q N N x x U F Ipq m n 2j j#! ! !-^ ^h h" ,
for all k,l,m,n > kj. Hence it follows that

, , , :

, :

, :

k l p q N N x x U

k l N N x x U

p q N N x x U

kl pq

kl m n

pq m n

j j

j j

#

#

, #

! !

3 ! !

! !

-

-

-

^

^
^
^h
h
h

h"

"
" ,

,

,

For k,l,m,n > k(U). Therefore there exists 
, , ,k l p q P F I2! !^ ^ ^h h h  such that 
, , , : ( )k l p q N N x x U F Ikl pq 2#! ! !-^ ^h h" ,  and this 

proves the theorem.

3. Functions Preserving I2-Convergence in 
Topological Groups
Definition 3.1. Let X be a Hausdorff topological abelian 
group and I2 be an arbitrary strongly admissible ideal. For 
a sequence (xkl) in x, we say that the function :f X X"  
preserves I2-convergence in x if limI x L

,k l
kl2 - =

"3
 then 

( )limI f x f L
,k l

kl2 - =
"3
^ h .

As is not difficult to the predict we have the following.

Theorem 3.1. If a function :f X X"  is continous on X, then 
it preserves I2-convergence in X. (for an arbitrary strongly 
ideal I2)

Proof: Let limI x L
,k l

kl2 - =
"3

. If f is continous, then for each 
neighborhood ,U Uh d  of 0 such that , .x B L U! d = d^ h
Then ( ) ( ),f x B f L U! h = h^ h . But we have
, :

, :

k l N N x L U

k l N N f x f L U

kl

kl

#

#

! !

1 ! !

-

-

d

h

^
^ ^ ^
h
h h h

"
"

,
,

and

, : ( )k l N N f x f x f L U F Ikl kl 2#! ! !- - h^ ^ ^ ^h h h h" ,
since

, :k l N N x L U F Ikl 2#! ! !- d^ ^h h" ,
Hence limI f x f L

,k l
kl2 - =

"3
^ ^h h  and f preserves I2-convergence.

( ) , :T U k l N N x L Ukl1 # g!= -^ h" ,
and

( ) , :T U k l N N U x L Uk k kl k
1

1
1# g! != -
-

^ h
for k ≥ 2 and k N! . Obviously T Ti j+ z=  for i j!  
and  ( )T U Ii 2!  for each i N! . By property (AP2) there 
exits a sequence of sets Vk k N!" ,  such that T Vj jT  is 
included in finite union of rows and columbs in N N#  
for j N!  and V V I

j
j

1
2, !=

3

=
. We shall prove that for 

\ ,M N N V M F I2 2 2# != ^ ^h h  we have limx L
,k l

kl =
"3

.

Let 02c . Choose k N!  such that k
1 1 c . Then

, : .k l N N x L U Tkl
j

k

j
1

# ,g! 1- c
=

^ h" ,
Since , , , ...T V j 1 2j jT = , are included in finite union of 
rows and columbs, there exists n N0 !  such that 

, :

, :

T k l N N k n l n

V k l N N k n l n

and

and≥
j

k

j

j

k

j

1
0 0

1
0 0

, + #

, + #

! $ $

! $=

=

=

^
^
h
h

"
"

,
,   (2)

If ,k l n> 0  and ,k l Vg^ h , so ,k l V
j

k

j
1
,g
=

^ h  
and from (2), ,k l T

j

k

j
1
,g
=

^ h . This implies that 
, : ( )k l N N x L U F Ikl 2#! ! !- c^ h" , ; so we have the 

proof.

Lemma 2.1. Let Pi i 1
3

=" ,  be a countable collection subsets 
of N N#  such that P F Ii i 1 2!3

= ^ h" ,  is a filter associate 
with a strongly admissible ideal I2 with property (AP2). Then 
there exists a set P N N#1  such that ( )P F I2!  and the 
set \P Pi  is finite for all i. 

Now we will prove that, a I2-Cauchy double sequence 
coincides with a I*2 -Cauchy double sequence for strongly 
admissible ideals with property (AP2).

Theorem 2.5. Let I2 be strongly admissible ideal and it 
satisfies (AP2). Then the concepts I2-Cauchy double sequence 
and I*2 -Cauchy double sequence coincide.

Proof: Even if a double sequence has not the property 
(AP2), if is I*2 -Cauchy then it is I2-Cauchy by theorem 2.2. 
Now it is sufficient to prove that xkl^ h , I*2 -Cauchy double 
sequence under assumption that xkl^ h  is a I2-Cauchy double 
sequence. Let xkl^ h i s a I2-Cauchy double sequence. Then 
by definition, there exits ,q r N!  such that, for all ,k m q$
and ,nl r$ ,

, :k l N N x x U Ikl mn 2# g! !-^ h" ,
for each neighborhood U of 0. Let

, : , , , ...P k l N N x x U j 1 2j kl mn#! != - =^ h" ,



Kişi / I₂-Convergence of  Double Sequences in Topological Groups

Karaelmas Fen Müh. Derg., 2018; 8(1):391-395 395

Kumar V., 2007. On I and I*-convergence of double sequences. 
Math. Commun., 12(2): 171-181.

Lahiri, BK., Das, P. 2005. I and I*-convergence in topological 
spaces. Math. Bohemica, 130(2): 153-160.

Mursaleen, M., Edely, OHH., 2003. Statistical convergence of 
double sequences. J. Math. Anal. Appl., 223-231.

Savaş, E. 2014. I_{λ}-statistically convergent sequences. Acta et 
Commentationes Universitatis Tartuensis de Mathematica,in 
topological groups, Acta et Commentationes Universitatis 
Tartuensis de Mathematica, 18(1). 

Tripathy B., Tripathy, BC. 2005. On I-convergent double 
sequences. Soochow J. Math., 31: 549-560.

4. References 
Das, P., Kostyrko, P., Wilczynski W., Malik, P. 2008. I and I*-

convergence of double sequences. Math. Slovaca, 58(5): 605-
620. 

Dündar E., Altay B., 2014. I₂-convergence and I₂-Cauchy of 
doublesequences. Acta Math. Scientia, 34B(2): 343-353.

Dündar E., Altay, B., 2011. On Some Properties I₂-convergence 
and I₂-Cauchy of double sequences. Gen. Math. Notes, 7(1): 
1-12. 

Gezer F., Karakuş, S. 2005. I and I*-convergent function 
sequences. Math. Commun., 10: 71-80.

Kostyrko, P., Šalát, T., Wilezyński, W. 2000. I-Convergence. 
Real Anal. Exchange, 26: 669-680. 


