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transformation [6], Painleve method [7], homogeneous 
balance method [8], similarity reduction method [9] and 
sine cosine method [10]. 

Besides these methods, there are a lot of methods based 
on the use of an auxiliary equation. Firstly, the nonlinear 
partial differential equations are transformed into nonlinear 
ordinary differential equations by using these methods. 
Second, the obtained nonlinear ordinary differential 
equations are solved with the help of the auxiliary equation. 
These methods can be listed as: tanh function method [11], 
extended tanh function method [12], modified extended 
tanh method [13], improved tanh function method [14], 
Jacobi elliptic function method [15], extended Jacobi elliptic 
function method [16], generalized Jacobi elliptic function 
method [17], Jacobi elliptic rational expansion method 
[18], Weierstrass Jacobi elliptic function expansion method 
[19], G

Gl -expansion method [20], extended G
Gl -expansion 

method [21], generalized G
Gl -expansion method [22], 

,G
G

G
1la k-expansion method [23].  

1. Introduction 
Nonlinear partial differential equations (NPDEs) have an 
important place in applied mathematics and physics. These 
equations are mathematical models of physical phenomenon 
that arise in engineering, chemistry, biology, mechanics 
and physics. It is very important to have information 
about the solutions of mathematical models. To better 
understand the mechanisms of the mathematical models, 
it is necessary to solve these equations. Thus, it has an 
important place to obtain the analytic solutions of nonlinear 
differential equations in applied sciences. Recently, it has 
become attractive solving these equations. Therefore, some 
methods have been developed by sciences. Some of them 
are: Hirota method [1], Bäcklund transformation [2], 
Cole-hopf transformation method [3], Generalized Miura 
Transformation [4], inverse scattering method [5], Darboux 
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Öz

Bu makalede farklı Bussinesq denklemlerinin hareket eden dalga çözümleri için tan (F(ξ)/2) açılım metodu sunulmuştur. Bu denklem 
için hiperbolik fonksiyon çözümü, trigonometric fonksiyon çözümü, üstel fonksiyon çözümü ve rasyonel çözüm elde edilmiştir. Son 
zamanlarda, bu metot lineer olmayan kısmi diferensiyel denklemlerin hareket eden dalga çözümlerinin elde edilmesi için bilim adamları 
tarafından çalışılmaktadır.
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In this study, we implemented tan-expansion method 
[24] for finding the analytic solutions of variant Bussinesq 
equations [25].

2. An Analysis of the Method 
In this section, we present a simple description of tan 
(F(ξ)/2)-expansion method. For doing this, one can consider 
in a two variables general form of nonlinear PDE

Q(u,ut,ux,uxx,...) = 0,  (1)

and transform Eq. (1) with

u(x,t) = u(ξ),    ξ = x-kt,

where k is arbitrary constants. After the transformation, we 
get a nonlinear ODE for u(ξ)

Q'(u',u'',u''',...) = 0   (2)

Then, the solution of the equation (2) we are looking for is 
expressed in the form as a 
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where m is a positive integer that can be determined by 
balancing the highest order derivative and with the highest 
nonlinear terms in equation, the coefficients Ai (0≤i≤m), Bi 
(1≤i≤m) are constant to be determined and F = F(ξ) satisfies 
the first order nonlinear ODE:

F'(ξ) = a sin(F(ξ)) + b cosF(ξ)) + c.  (4)

Substituting solution (3) into Eq. (2) yields a set of 

algebraic equations for tan ( )F
2

ipc m , ( )
cot

F
2

ipc m ,then, all 

coefficients of tan ( )F
2

ipc m , ( )
cot

F
2

ipc m  have to vanish. 

After this separated algebraic equation, we can found k, p, 
A0, A1, B1...,Am,Bm constants. 

In this work, we aim to obtain solution of variant Bussinesq 
and the (2+1)-dimensional Burgers equations by using tan 
(F(ξ)/2)-expansion method. The solutions of Eq.(4) are 
given in [24].

3. Applications
In this section, we consider the variant Bussinesq equations,

ut + uxv + vxu + vxxx = 0.   
(5)vt + ux + vvx = 0.

As a model for water waves, v is the velocity and u is the 
total depth, and the subscripts denote partial derivatives. 
Many scientists have also considered the variant Bussinesq 
equations. Yuan [26] presented meromorphic solutions of 
Eq. (5). Guo [27] obtained multiple soliton solutions and 
multiple singular soliton solutions of Eq. (5). Khan [28] 
obtained the soliton solutions of Eq. (5). Let us consider the 
traveling wave solutions u(x,t) = u(ξ), u(ξ) = x+y-kt then Eq. 
(5) becomes

-ku'+u'v+v'u+v''' = 0,  (6)
-kv'+u'+vv' = 0,

when balancing v''' with vu' and u' with vv' then m1 = 2 and 
m2 = 1 gives. Therefore, we may choose
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Substituting (7) into Eq. (6) yields a set of algebraic 
equations for k, p, A0, A1, A2, B1, B2, C0, C1, D1. These algebraic 
equations system are obtained as

,
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from the solutions of the system, we obtain 
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with the aid of Mathematica. Substituting (9) into (7) we 
have the following solutions of Eq. (5),

Solution 1.1 For a2+b2-c2<0 and b-c ≠ 0, we have trigonometric 
solution of Eq. (5) as 
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Solution 1.2 For a2+b2-c2>0 and b-c ≠ 0, we have hyperbolic 
solution of Eq. (5) as
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Solution 1.3 For a2+b2-c2>0, b ≠ 0 and c = 0,
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Solution 1.4 For a2+b2-c2<0, c ≠ 0 and b = 0, we have 
trigonometric solution of Eq. (5) as
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Solution 1.5 For a = c = ba, b = -ba, we obtain exponential 
solution of Eq. (5) as
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Solution 1.6 For c = a,
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Solution 1.7 For a = c,
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Solution 1.8 For c = -a,
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Solution 1.9 For b = -c,
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Solution 1.10 For b = 0 and a = c, we obtain rational solution 
of Eq. (5) as 
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4. Explanations and Graphical Representations of 
the Obtained Solutions
The graphical demonstrations of some obtained solutions 
are shown in Figures 1–4. These figures have the following 
physical explanations: The variant Bussinesq equations: The 
shapes of Eqs. (10), (11), (14), and (19) are represented in 
Figures 1–4, respectively, with wave speed C0 = 1 within the 
interval -3 ≤ x ≤ 3, 0 ≤ t ≤ 5. Figure 1 represents periodic 
wave for u(x,t) and singular periodic antikink wave for 
v(x,t). Figures 2-4 represent singular solutions for u(x,t). 
Figures 2-4 represents singular antikink wave for v(x,t).

5. Conclusion 
In this paper, we present tan (F(ξ)/2)-expansion method by 
using Eq. (4) and with aid of Mathematica 7.0, implement 
it in a computer algebraic system. An implementation of 
the method is given by variant Bussinesq equations. The 
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Figure 1. Profiles of u and 
v solutions (10) for Eq. (5) 
with a = 1, b = 2, c = 3, p = 
1, C0 = 1, x = 0.

Figure 2. Profiles of u and 
v solutions (11) for Eq. (5) 
with a = 3, b = 2, c = 1, p = 
1, C0 = 1, x = 1.
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Figure 3. Profiles of u and 
v solutions (14) for Eq. (5) 
with a = 1, b = 1, C0 = 1, 
x = 1.

Figure 4. Profiles of u and 
v solutions (19) for Eq. (5) 
with a = 4, C0 = 1, x = 1.
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method can be used to many other nonlinear evolution 
equations or coupled ones. In addition, this method is also 
computerizable, which allows us to perform complicated 
and tedious algebraic calculation on a computer by the help 
of symbolic programs such as Mathematica 7.0, Maple, 
Matlab, and so on.
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