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1. Introduction
Although the notion of Gröbner basis firstly handled 
with the current name by Buchberger in his PhD thesis 
(Buchberger 1965), in 1927, Macaulay had been used this 
idea in his famous paper (Macaulay 1927).

When Buchberger was studying Gröbner basis for 
polynomial rings in his thesis at the same time Hironoka 
suggested the standart basis idea which is a remarkable 
method for solving the important problem of algebraic 
geometry “resolution of singularities of algebraic varieties” 
(Hironaka 1964). Though the statements Gröbner basis and 
standart basis are actually express the same things, Gröbner 
basis is come into prominence for the contribution to the 
computer algebra.

After the efforts of Buchberger and Hironoka in the 1960s, 
Gröbner basis did not see sufficiently interest about twenty 
years. But, in the middle of 1980s, the software Macaulay 
designed by David Bayer and Michael Stilman became a 
groundbreaking development for the Gröbner basis studies 
(Grayson and Stilman 2016). This computer algebra system 

is still in progress and used in several works about the 
Gröbner basis.

The concept of Gröbner basis has been had many 
applications in different areas of mathematics. Solution of 
integer programming problem (Conti and Traverso 1991), 
graph theory (de Loera 1995), toric ideal theory serving as 
a bridge between the monomial ideal theory and the theory 
of triangulations of convex polytopes (Sturmfels 1996) and 
finding Markov basis in a statistical model (Aoki et al. 2010) 
are some examples of these applications.

In general, the interests of Gröbner basis are centered upon 
the field as a coefficient ring. The main reason for this is 
applications of Gröbner basis for arbitrary rings are very 
constraint. But, in recent years, several works with different 
coefficient rings have accelerated. For example, when 
proving correctness of data paths in system on chip design, 
usage of Gröbner basis in polynomial rings over  has led to 
emergence of many works in this direction (Greuel et al. 
2011), (Greuel et al. 2008), (Shekhar et al. 2005), (Wienand 
et al. 2008).

Let R be an arbitrary coefficient ring with finite elements. 
The polynomial , , ...,p R x x xn1 2! 6 @ is called vanishing if the 
image of all elements of Rn is zero under this polynomial. 
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All vanishing polynomials form an ideal I which is called 
vanishing ideal. In this paper, our aim is to present an explicit 
Gröbner basis for the vanishing ideal I xZ Z2 2#1 6 @.

This paper is organized as follows: Section 2 is devoted to 
some necessary notions about the polynomial rings and 
Gröbner basis. In the last section, we give some vanishing 
polynomials of the polynomial ring , , ...x x xZ Zm l n1 2# 6 @ 
where ,m l 1!^ h  and the Gröbner basis of vanishing ideal  I 
of polynomial ring with univariate over Z Z2 2# .

2. Materials and Methods
Let R be a commutative Noetherian ring with 
unity and , , ...,R x x xn1 26 @ a polynomial ring over R 
where n ≥ 1. Let ...x x x xi

n1 2
i i in1 2=a a a a  be a monomial, 

...f a x a x a xt0 1
t0 1= + + +a a a  a polynomial in , , ...,R x x xn1 26 @ 

where > being a monomial ordering, ...x x x t0 12 2 2a a a . 
We use the following notation:

Lt f a x0 0= a^ h                        leading term of f

L f xp 0= a^ h                           leading power product of f

L f ac 0=^ h                            leading coefficient of f

:L X Lt f f X< >!=^ ^h h       leading term ideal of X

Definition 2.1. Let R be a ring and I an ideal of polynomial 
ring , , ...,R x x xn1 26 @. G = {g1,g2,...gt} consisting of nonzero 
polynomials is a Gröbner basis of I if G I1  and L(G) = L(I). 

Definition 2.2. Let G = {g1,g2,...gt} be a Gröbner basis of an 
ideal I. If Lc(gi) = 1 for all , , ...,i t1 2! " , and Lp(gi) does not 
divide Lp(gj) for i j!  then G is said to be a minimal Gröbner 
basis. 

Example 2.3. Let , ,f y x f x x yQ1 2 != + = 6 @,  and let us use 
the lex term order with y > x. Then {f1, f2} is a minimal Gröbner 
basis for the ideal , ,I y yx x y x y< >2 2= + + + . 

Definition 2.4. Let G = {g1,g2,...gt} be a set consisting of nonzero 
polynomials in , , ...,R x x xn1 26 @. If there is an  , , ...,i t1 2! " , in 
which Lt(gi) divides Lt(f ) for all , , ...,f I g g g< >t1 2! = , then 
G is said to be a strong Gröbner basis for I. Additionally, if Lt(gi) 
does not divide Lt(gj) for i j! , then G is said to be a minimal 
strong Gröbner basis. 

3. Results
Definition 3.1. For , , ...,f R x x xn1 2! 6 @, let we define a new 
function :f R R* n "  in which ( , , ..., ) ( , , ..., )f a a a f a a a*

n n1 2 1 2=
. If f* is identically zero then f is called a vanishing polynomial. 
The set , , ..., :I f R x x x fn1 2!= 6 @"  is an ideal of , , ...,R x x xn1 26 @
which is called vanishing ideal.

An explicit minimal strong Gröbner basis has been obtained 
for vanishing ideal of R[x1,x2,...,xn] where R Zm=  (m 
≥ 2) in (Greuel et al. 2011). In this paper, we determine 
some vanishing polynomials in R[x1,x2,...,xn] where 

(( , ) )R Z m l 1Zm l# !=  and give a minimal strong Gröbner 
basis for the vanishing ideal of xZ Z2 2# 6 @.

Lemma 3.2. Consider the polynomial ring R[x1,x2,...,xn] where 
R ZZm l#= . The polynomials,

( , ) / , / ...p k t m l x x x x2 2 1 1k t
n
k

n
t

1 1
n n1 1= + +^ ^ ^h h h for m and l 

even

( , ) , / ...p k t x x x xl0 2 1 1k t
n
k

n
t

1 1
n n1 1= + +^ ^ ^h h h for m odd and l 

even

( , ) / , ...p k t x x x xm 2 0 1 1k t
n
k

n
t

1 1
n n1 1= + +^ ^ ^h h h for m even and 

l odd

are vanishing polynomials.  

Proof. Let we consider the case m and l are both 
even. We make our proof by induction on n. 
, / , / ( )p k t m l x x2 2 1k t

1 1
1 1= +^ ^ ^h h h for n =1. If we write any 

element of Z Zm l# , say (a, b), in the statement x x 1k t
1 1
1 1 +^ h 

then we come across the element ,a a b b1 1k t k t1 1 1 1+ +^ ^^ h hh

. If a is even then all of its powers are also even and so 
a a 1k t1 1 +^ h is even, otherwise its powers are odd but 
a a 1k t1 1 +^ h is still even. Likewise, due to the fact that 
b b 1k t1 1 +^ h is even for all case, these statements are simplify 
with 2. Therefore, the value of / , /m l x x2 2 1k t

1 1
1 1 +^ ^^h hh for 

the element (a, b) of Z Zm l#  is being zero. So, this indicates 
that p(k,t) is a vanishing polynomial.

Assume that the statement is true for n = d. That is, 
, / , / ...p k t m l x x x x x x2 2 1 1 1k t k t

d
k

d
t

1 1 2 2
d d1 1 2 2= + + +^ ^ ^ ^ ^h h h h h 

are vanishing polynomials. For n = d+1, 
, / , / ...p k t m l x x x x2 2 1 1k t

d
k

d
t

1 1 1 1
d d1 1 1 1= + ++ +
+ +^ ^ ^ ^h h h h and because 

of the value of / , /m l x x2 2 1d
k

d
t

1 1
d d1 1 ++ +
+ +^ ^h h is zero for all 

, , ( , )a b p k tZm l#!^ h  is a vanishing polynomial for n = 
d+1. Thus, p(k,t) is a vanishing polynomial for the case m 
and l are both even.

The proof can be done in a similar way for the other cases.

Theorem 3.3. Let p(k,t) be a polynomial like in the Lemma 3.2 
for polynomial ring xZ Z2 2# 6 @. That is, , )p k t x x 1k t1 1= +^ ^h h

. Then, G = {x(x+1)} is a minimal strong Gröbner basis for the 
vanishing ideal I of xZ Z2 2# 6 @.

Proof. First of all, it is easily seen that there is no vanishing 
polynomial type ax+b in xZ Z2 2# 6 @. Now we show that 
L(I) = L(G). From the Lemma 3.2, one can see that G I1  
and so GL L I1^ ^h h. For the inverse inclusion let f L I! ^ h 
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be arbitrary. Then, there exist some n ≥ 1, t xZ Zi 2 2#! 6 @ 
and f I i n1i ! # #^ h such that

f t Lt fi ii

n

1
=

=
^ h/ .

If we assume that Lt f a xi i
ki=^ h  then

( ) .

f t Lt f t a x t a x x

t a x Lt x x 1

i ii

n
i i

k

i

n
i i

k

i

n

i i
k

i

n

1 1

2 2

1

2

1

i i

i

= = = =

+
= =

-

=

-

=

^

^

h

h

/ / /
/
Thus, f L G! ^ h and so L I L G1^ ^h h (note that ki - 2 is not 
negative since there is no vanishing polynomial degree one). 
This shows that L(I) = L(G).

It is clear that G is a minimal strong Gröbner basis.

4. Discussion
Since the division is troubled in rings except for fields, 
Gröbner basis works are progressing slowly in polynomial 
rings over any ring. In this paper, we give the Gröbner basis 
for the vanishing ideal over the coefficient ring Z Z2 2# . The 
latter case is giving the Gröbner basis for the vanishing ideal 
of , , ...,x x xZ Zm l n1 2# 6 @ where ,m l 1!^ h .
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