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2005, Papadrakakis et al. 2005, Yeung and Smith 2005, 
Lee et al. 2005, Ashour and Alqedra 2005, Alacali et al. 
2006). The results of NN models, if constructed properly, 
generally yield a more realistic and accurate predictions. NN 
models are constructed based on simulating the structure 
and learning activities of the human brain. Garrett et al. 
(1997) defines a NN model as “a computational mechanism 
able to acquire, represent, and compute mapping from one 
multivariate space of information to another, given a set of 
data representing that mapping”.  

This study is intended to estimate the stiffness modification 
factor for the coupling beam of coupled shear walls using a 
neural network model.  In mid and high rise R/C buildings, 
shear wall and coupled shear wall (CSW) systems are usually 

1. Introduction
Neural Network (NN) is a powerful black-box modeling 
technique which produces output values from a given input 
set.  NNs have been widely used in modeling engineering 
problems having nonlinear relationships such as concrete 
strength, cost estimation, structural damage detection, etc., 
for the last two decades as a result of the developments in 
computer and software technology (Flood 1989, Cladera 
and Mari 2004, Saadata et al. 2004, Tehranizadeh and 
Safi 2004, Williams and Hoit 2004, Amini and Tavassoli 
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Abstract

Neural Network (NN) have been widely used in modeling engineering problems, for the last two decades as a result of the developments 
in computer and software technology. The results of NN models, if constructed properly, generally yield a more realistic and accurate 
predictions. This study is intended to estimate the stiffness modification factor for the coupling beam of coupled shear walls using a 
neural network model. A multi-layered feed-forward NN model trained with the back-propagation algorithm is developed to model 
the non-linear relationship between the geometrical and mechanical properties of a coupled shear walls and its stiffness modification 
factor. The approach adapted in this study was shown to be capable of providing the best accurate estimates of the stiffness modification 
factor by using the three design parameters.  

Keywords: Back propagation algorithm, Coupled shear wall, Equivalent frame, Neural networks

Öz

Son 20 yılda bilgisayar teknolojisi ve bilgisayar yazılımlarındaki gelişmeler nedeniyle, Yapay Sinir Ağları (YSA) mühendislik 
problemlerinin modellenmesinde sıkça kullanılmaktadır.  Doğru bir şekilde kurulması durumunda YSA model sonuçları genellikle 
daha gerçekçi ve doğruya yakın tahminler vermektedir. Bu çalışma ile boşluklu perdelerin bağ kirişleri için tarif edilmiş olan rijitlik 
düzeltme çarpanlarının YSA ile tahmini hedeflenmiştir. Boşluklu perdeli sistemlerde geometrik ve mekanik özellikler arasındaki 
doğrusal olmayan ilişki ile rijitlik düzeltme çarpanlarını modellemek üzere, geri yayılım algoritması ile eğitilen çok katmanlı, ileri 
beslemeli bir YSA modeli geliştirilmiştir. Çalışmada önerilen yaklaşım ile rijitlik düzeltme çarpanlarının üç tasarım parametresi 
kullanılarak en iyi şekilde tahmin edilebileceği görülmüştür. 

Anahtar Kelimeler: Geri yayılım algoritması, Boşluklu perde, Eşdeğer çerçeve, Yapay sinir ağları
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used effectively to provide the required stiffness, strength 
and ductility (Figure 1). Since lateral loads cause bending 
with high shear stresses in coupling beams, the structural 
behavior of a CSW is greatly affected by the behavior of 
the coupling beams which depends on its geometrical and 
mechanical properties (Kinh and Tan 1999, Doran 2004).

In modeling of CSW systems, shell or membrane elements 
can be used. Determining the membrane resultant forces 
by employing 2D shell elements is somewhat cumbersome. 
Instead, a simple equivalent 1D frame model can be used for 
the modeling purposes.

Several modelling techniques are suggested for the evaluation 
of the elastic behavior of the lateral load resisting structures 
with CSWs (Syngellakis and Chan 1992, Pala and Ozmen 
1995, Kinh and Tan 1999, Doran 2004).  In an equivalent 
1D frame model, the stiffness of a coupling beam can be 
defined as the product of the equivalent stiffness (combined 
bending and shear) of an equivalent frame and the stiffness 
modification factor.  Using a NN model, the engineer can 
predict the stiffness modification factor of coupling beams, 
even when the data is insufficient.  An optimal solution 
during the design may also be obtained through the NN 
model. 

A multi-layered feed-forward NN model trained with the 
back-propagation algorithm is developed to model the non-
linear relationship between the geometrical and mechanical 
properties of a CSW and its stiffness modification factor. 
For this purpose, first, finite element analyses (FEAs) of 
CSW systems using 2D shell element and equivalent 1D 

frame concepts are carried out to evaluate the stiffness 
modification factor of CSW systems.  Second, a NN model 
is trained and tested to predict the stiffness modification 
factor and the results are compared with the finite element 
analyses results. 

2. Estimating the Stiffness Modification Factor of a 
CSW System
The actual stiffness of the coupling beams is defined as 
(Figure 2):

m M
i

i

i
i = ii   (1)

where Mi and qi are the bending moment and the rotation 
for section (i), respectively (Figure 2). On the other hand, 
equivalent stiffness (combined bending and shear) of an 
equivalent frame (Figure 2b) can be written as (Pala and 
Ozmen 1995):                           

m L
6EI
(L 3.9d )
L

i 2 2

2

i = +ir   (2)

where EI is the bending stiffness. The actual stiffness of the 
coupling beams (ij member) in Equation (1) can also be 
defined using the equivalent stiffness of an equivalent frame 
as (Figure 2b):

m mi ii i= hi ir   (3) 

where h is called as stiffness modification factor. 

The stiffness of the coupling beams of a CSW is greatly 
influenced by the openings.  A simple function for h can be 
used as (Doran 2004):

a0 lh l
b

l
da a a1 2 3=h a a ak k k   (4)

where h is the storey height, b is the length of the wall, d 
is the gross height of the beam, l is the length of coupling 
beam. Besides, the ratios of h/l, b/l, d/l  describe the openings 
between the two shear walls and a0, a1, a2, a3 are constants. 
The actual stiffness of coupling beams in Equation (1) 
can be obtained through detailed FEAs using 2D shell 
elements.  Table 1 presents the results of the analysis of 54 
CSW systems having geometrical parameters of h = 3m, L 
= 6m, b = 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6 m and d = 
0.20, 0.40, 0.60, 0.80, 1.00, 1.20m (Figure 2a) by SAP-2000 
(Doran 2004). 

The results are designated as FEAh  in Table 1.  Through 
a nonlinear regression analysis (Wadsworth, H.M, 
1997), Equation (4) takes the form of  (correlation 
coefficient=0.949):Figure 1. A typical CSW.
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Figure 2A, B.  CSW and equivalent frame.

     2D Shell element concept                                       Equivalent 1D Frame element concept

1.9210 l
h

l
b

l
d0.0282 1.6824 0.5860

=h
-

a a ak k k                                          (5)

3. Neural Network Design 
Neural networks (NNs) are models for generalization and 
used in establishing a reliable relationship among the various 
parameters in engineering problems. They can handle highly 
non-linear problems easily. NN models do not require 
complex mathematical formulations and gather knowledge 
by learning from examples. A NN model consists of three 
simple components: transfer function, network architecture 
and learning law. Some of the major advantages of a NN 
are (Rafiq et al. 2001): (1) NNs learn and generalize from 
examples and experience to produce meaningful solutions 
to the problems even in cases where the input data contains 
error or is incomplete; (2) NNs are able to adapt solutions 
over time and to compensate for changing circumstances; 
(3) NNs can evaluate theoretical, experimental, or empirical 
data based on good and reliable past experience or a 
combination of these. 

A typical three-layer feed-forward NN with n input nodes, 
m hidden nodes and one output node is shown in Figure 3. 

The input nodes represent the data presented to the NN, 
whereas the output nodes produce the NN output. The 
main function of the hidden layer (Figure 3) is to serve as 
the interface to extract and to remember the useful features 
and the sub features from the input patterns to predict the 

outcome of the network (Rafiq et al. 2001, Gunaydin and 
Dogan 2004).

In a typical NN, a group of processing elements (PEs) 
(called neurons) is linked together in an attempt to 
construct a relation in an input/output set of learning 
patterns. A PE is an information-processing unit with three 
basic components: (1) a set of synapses; (2) an adder; (3) an 
activation function (Haykin 1994).

Figure 3. A typical neural network model.

A B
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input signal, qi represents the threshold value of the PE, 
and φ (.) presents the transformation function which can be 
linear of non-linear. The transformation function is used for 
limiting the amplitude of the output of a PE. Any change 
in the synaptic weights changes the input-output behavior 
of the NN (Haykin 1994). The PEs work independent of 
each other through weighted connections that form the 
power of the influence between the PEs. All PEs operate 

A PE may be described by computing the sum of their 
weighted inputs, subtracting its threshold from the sum, and 
transferring these results by a function as follows (Haykin 
1994):

u w xi ij j i
j 1

n

= -z i
=

c m/   (6)

where ui represents the output of a PE, wij represents the 
synaptic weights associated with PE i, xj represents the 

Table 1. The stiffness modification factors. 

 (1) (2) (3) (4) (5) (6)  (1) (2) (3) (4) (5) (6)

d (m) b (m) h
l

b
l

d
l

FEAh d (m) b (m) h
l

b
l

d
l

FEAh

3.00 1 1 0.0667 7.1773 3.00 1 1 0.2667 4.6417
3.20 1.0714 1.1429 0.0714 8.7477 3.20 1.0714 1.1429 0.2857 5.415
3.40 1.1538 1.3077 0.0769 10.81 3.40 1.1538 1.3077 0.3077 6.3633
3.60 1.25 1.5 0.0833 13.57 3.60 1.25 1.5 0.3333 7.5333

0.20 3.80 1.3636 1.7273 0.0909 17.35 0.80 3.80 1.3636 1.7273 0.3636 8.9733
4.00 1.5 2 0.1 22.6633 4.00 1.5 2 0.4 10.79
4.20 1.1667 2.3333 0.1111 30.3667 4.20 1.1667 2.3333 0.4444 13.0513
4.40 1.875 2.75 0.125 41.9767 4.40 1.875 2.75 0.5 15.89
4.60 2.1429 3.2857 0.1429 60.1833 4.60 2.1429 3.2857 0.5714 19.4433
3.00 1 1 0.1333 6.0683 3.00 1 1 0.3333 4.2067
3.20 1.0714 1.1429 0.1429 7.29 3.20 1.0714 1.1429 0.3571 4.8317
3.40 1.1538 1.3077 0.1538 8.861 3.40 1.1538 1.3077 0.3846 5.581
3.60 1.25 1.5 0.1667 10.907 3.60 1.25 1.5 0.4167 6.48

0.40 3.80 1.3636 1.7273 0.1818 13.6217 1.00 3.80 1.3636 1.7273 0.4545 7.559
4.00 1.5 2 0.2 17.29 4.00 1.5 2 0.5 8.855
4.20 1.1667 2.3333 0.2222 22.3567 4.20 1.1667 2.3333 0.5555 10.4083
4.40 1.875 2.75 0.25 29.51 4.40 1.875 2.75 0.625 12.2567
4.60 2.1429 3.2857 0.2857 39.8833 4.60 2.1429 3.2857 0.7143 14.4367
3.00 1 1 0.2 5.2483 3.00 1 1 0.4 3.9
3.20 1.0714 1.1429 0.2143 6.2117 3.20 1.0714 1.1429 0.4286 4.41
3.40 1.1538 1.3077 0.2308 7.4233 3.40 1.1538 1.3077 0.4615 5.0053
3.60 1.25 1.5 0.25 8.9567 3.60 1.25 1.5 0.5 5.7

0.60 3.80 1.3636 1.7273 0.2727 10.9267 1.20 3.80 1.3636 1.7273 0.5455 6.5117
4.00 1.5 2 0.3 13.4793 4.00 1.5 2 0.6 7.45
4.20 1.1667 2.3333 0.3333 16.8417 4.20 1.1667 2.3333 0.6667 8.528
4.40 1.875 2.75 0.375 21.3167 4.40 1.875 2.75 0.75 9.7567
4.60 2.1429 3.2857 0.4286 27.2667 4.60 2.1429 3.2857 0.8571 11.13
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process slows down if there are too many input and output 
parameters, while too few training sets provides insufficient 
information. In this study, the three design parameters for 
the input layer; X1 = h/l, X2 = b/l, X3 = d/l; were selected 
to evaluate the stiffness modification factor (Y1 = hFEA) as 
shown in Table 1 and Table 2. The parameters are h/l, b/l, 
d/l indicate the effect of openings between the two shear 
walls. The ranges of data for the selected variables which are 
practically used in design process can also be seen in Table 
1, Columns 3, 4, and 5.  All the design variables were input 
to the NN as given in Table 2.

A total of 54 cases were used for constructing the NN 
model. Table 2 shows the organized form of input and 
output parameters in Table 1. The stiffness modification 
factor (Y1 = hFEA) and the input variables from the 54 cases 
were divided into two sets. The first 44 cases in Table 2 was 
put aside for the training of the NN, and the last 10 cases 
(20% of the data) was used for testing the performance of 
the trained network (cases below the dotted line in Table 
2). The testing data was selected at random order between 
the maximums and minimums. Before the modeling of 
the NN, the whole data set (training and testing) was first 
normalized. Normalization of the data set was carried out 
through normalization coefficients: amplitude (a) and offset 
(p).

The a and p were computed based on the minimum and 
maximum values found among all of the data set. The 
normalization coefficients for each input PE i (three in this 
study) were obtained using the following formula (Neuro 
Solutions 2003):

a(i) = [υ - λ] / [max(i) - min(i)]  (8)

p(i) = υ - a(i)xmax(i)                                                       (9)

where max(i) and min(i) represent the maximum and 
minimum values found within the input PE  i, and υ and 
λ were taken as (1) and (-1), respectively. Then, the data set 
was normalized as follows (Neuro Solutions 2003):

ρ(i) = a(i)xData(i) + p(i)                                                (10)

At the end of the training, the NN data were denormalized 
using Equation (10) as follows:

Data(i) = [ρ(i) - p(i)] / a(i)                                            (11)

3.2. The Training Phase

Standard BPNN algorithm for the training of the network 
was employed in this study. A commercial NN software 
(Neuro Solutions 2003) was also used to implement 

in parallel and are connected to the other PEs in the next 
layer. A transformation function defines the output of 
a PE in terms of the activity level at its input.  A linear 
transformation function’s output will be equal to its input. 
The most common form of transformation function used in 
the construction of NN is (Neuro Solutions 2003):

f(xi) = tanh(bxi)  (7)

where b is used for controlling the slope of the function. 
Equation (7) is a hyperbolic tangent function and generates 
output values between -1 and 1.  There is no simple rule 
to determine the number of PEs required and is generally 
determined by trial-and-error. It highly depends on the 
problem and the number and the characteristics of training 
pattern. It is recommended to carry out a parametric study 
by changing the number of PE in the hidden layer in order 
to test the stability of the network (Neuro Solutions 2003).  
For most of the practical engineering problems, a single 
hidden layer with an optimum number of PEs is generally 
sufficient (Rafiq et al. 2001).  

There are basically two classes of NN algorithm: (a) 
supervised learning, (b) unsupervised learning. Supervised 
learning NN algorithm, i.e. back propagation NNs, requires 
the training data to have been previously specified in different 
classes so that a subsequent test sample may be assigned 
to the most appropriate class. The major disadvantages of 
the back-propagation neural network (BPNN) are that 
they train slowly and require many training data. However, 
BPNN is the most commonly used NN for the analysis of 
structural and civil engineering problems due to its versatile 
and robust technique and are capable of solving predictive 
problems (Neuro Solutions 2003). Unsupervised learning, 
on the other hand, requires no a priori information, because 
it mainly organizes the data into clusters that effectively 
define the various classes or similarities that exist within the 
data set (Yeung and Smith 2005). In this study, supervised 
learning algorithms with static back-propagation neural 
network are selected.

The NN model in this study was constructed in three phases: 
the modeling, the training, and the testing phases. The data 
preparation and the adaptation of the learning law for the 
training were performed during the training phase.  

3.1. Modeling Neural Network

The accuracy of the NN model is highly affected by the 
selection of the input variables significantly. Different results 
can be obtained for different parameters. The learning 
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3.3. The Testing Phase

In a NN model, testing set is used for testing the 
performance of the network. The testing is performed 
with the best weights obtained during the training, which 
remain unchanged during the testing. The trained weighting 
factors of the NN are verified by the testing data to test 
the accuracy of the predictions of the trained NN model. 
The NNs performance in this study was measured by using 
the stiffness modification factor percentage error (PESR) 
formula as follows:

PE
X(i)

x(i) X(i)
x100%SR =

-   (13)

To evaluate the entire NNs overall performance, weighted 
error (WE) was defined as follows (Hegazy and Ayed 1998):

WE(%) = 0.5 (Average PESR for Training Set) + 
0.5 (Average PESR  for Testing Set)                               (14) 

PESR for the testing set in the NN model is given in Figure 
5.

Average PESR for the 10 testing cases was calculated as 
1.98%, while it was 1.06% for the training set (44 cases). 

this training method. The NN model in this study was 
created using an input layer of three-interconnected PEs 
corresponding to the three-input parameters, and one PE 
corresponding to an output layer selected as the target. 
Several trials during the testing phase led to the selection of 
one hidden layer. The hyperbolic tangent function was used 
as the transformation function in this study.

In BPNN algorithm, training or learning data are introduced 
into the NN with a series of examples of associated input 
and target output values. First, the input data is processed 
through the input layer to hidden layer until it reaches the 
output in a forward direction; then, the output is compared 
to the given output. The error between the NN output and 
target output is processed back through the network (also 
called backward pass) adjusting the individual weights 
(Ashour and Alqedra 2005). During this learning process, 
a gradual reduction of error between the model output and 
the target output occurs and the error is minimized so as 
to minimize the sum of squared errors (Haykin 1994). The 
mean square error (MSE) is defined as (Gunaydin and 
Dogan 2004):

MSE n

(x X(i))i
2

i 1

n

=
-

=

/
  (12)

where n is the number of samples to be evaluated in the 
training phase, (n=44 for this study), xi is the model output 
related to the sample i (i=1, 2, ....,44), and X(i) is the target 
output, i.e. the estimated stiffness modification factor. MSE 
is considered to be a good indicator of how successful the 
training run was. The error was measured for each run of the 
epoch number selected and the results are shown in Figure 
4. 

Epoch number defines the training of all cases in a training 
set. Figure 4 is a typical learning curve and indicates a 
reduction in the MSE from 0.01 to 0.0002. Training 
should be stopped when the MSE remains unchanged 
for a given number of epochs. If it is not stopped, the NN 
starts memorizing the training values and will not be able to 
make predictions when an unknown example is introduced 
to the NN. For supervised learning control, the maximum 
number of epochs should be specified showing the number 
of iterations over the training set. In this study, an epoch 
number of 5000 was found to be adequate for the final 
training process in a series of more than 100 runs for each 
NN model.  

Figure 4. Learning curve.

Figure 5. Error on the estimated stiffness modification factor of 
the coupling beam of CSW vs. theoretical stiffness modification 
factor of the coupling beam of CSW for the ten testing samples.
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study out of a total 54 cases. The results showed 98.48% 
of average accuracy with a MSE of 0.0002. These figures 
were considered to be quite good. Even though, h /   had 
no significant effect on estimating the stiffness modification 
factor, the small attributes provided by this design parameter 
may have enhanced the NNs prediction capability, i.e. 
the more the number of design parameters, the higher 
the accuracy. The results were also tested through another 
NN application and similar results were obtained (Hegazy 
and Ayed 1998). The WE was found to be 1.24% with an 
average PESR of 1.56% and 0.93% for training and testing 
cases, respectively, using Hegazy and Ayed’s method (1998).

The discrepancies between the finite element and analytical 
values obtained from equivalent frame method and NN 
algorithm are further investigated by means of statistical 
analysis. Table 2 lists the complete set of the values of the 
stiffness modification factor for finite element solutions by 
using 2D shell element concept (hFEA), NN solution (hNN), 
and analytical values of the stiffness modification factors 
obtained from Equation (5) (h). 

Mean values, standard deviations and coefficients of 
variation of the ratio of the finite element to analytical 
values, are given in Table 2. The standard deviation is 
accepted as a convenient measure of any dispersion in the 
statistical approach. However, exclusively on the basis of 
the standard deviation, any decision about whether the 
dispersion is large or small cannot be reached. Therefore, 
coefficient of variation is often a preferred and convenient 

Thus, the WE was found to be 1.52%.  Sensitivity analysis 
provides valuable information about how each network 
input affects the network output. This analysis allows the 
option of removing the insignificant channels from the 
network by reducing the size of the network.

This reduces the complexity and the training time of the NN. 
Since the network training is disabled during the sensitivity 
analysis, the network weights are not affected. The inputs 
to the network are shifted slightly and the corresponding 
change in the output is shown as a percentage summing 
to 100% in total (Neuro Solutions 2003). In this study, the 
most effective parameter was found to be b /    and d /    
while h /   was observed to be the least significant design 
parameter (Figure 6).  

3.4. Comments on Results

Data from 10 cases were used for testing purposes in this 

Figure 6. Sensitivity analysis.

Figure 7.  Scatter diagrams.
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Amini, F., Tavassoli, MR. 2005. Optimal Active Structural 
Control Force, Number and Placement of Controllers. Eng. 
Struct., 27: 1306-1316.

Ashour, A.F., Alqedra, MA. 2005. Concrete breakout strength 
of single anchors in tension using neural networks. Adv Eng 
Softw., 36: 87–97.

Cladera, A., Mari, AB. 2004. Shear design procedure for 
reinforced normal and high-strength concrete beams using 
artificial neural networks. Part I: beams without stirrups. Eng. 
Struct., 26: 917–926.

Doran, B. 2004. Elastic-Plastic analysis of R/C coupled shear 
walls: the equivalent stiffness ratio of the tie elements. Ind. 
Inst. of Sci.,IISC, 83: 87-94.

Flood, I. 1989. A Neural Network Approach to the Sequencing 
of Construction Tasks. IAARC, Proceedings of the Sixth 
International Symposium on Automation and Robotics in 
Construction, Construction Industry Institute, Austin, Texas, 
204-11.

Garret, JH., Gunaratham, DJ., Ivezic, N. 1997. In: Kartam, N., 
Flood, I., editors. Artificial neural networks for civil engineers: 
fundamentals and applications. In: Kartam N., I.Flood (Ed.), 
ASCE, 1-17.

Gunaydin, HM., Dogan, SZ. 2004. A neural network approach 
for early cost estimation of structural systems of buildings. Int 
J Proj Manag., 22: 595-602.

Haykin, S. 1994. Neural Networks: A comprehensive Foundation, 
Macmillan College Publishing Company, Inc. NJ.

Hegazy, T., Ayed, A. 1998. Neural network model for parametric 
cost estimation of highway projects. J Civ Eng Manag, ASCE, 
124(3): 210-218.

Kinh, HH., Tan, TMH. 1999. An efficient analysis of continuum 
shear wall models. Can. J. Civ. Eng., 26(4): 425-433.

Lee, JJ., Lee, WL., Yi, JH., Yun, CB., Jung, HY. 2005. Neural 
networks-based damage detection for bridges considering 
errors in baseline finite element models. J. Sound Vib, 280: 
555–578.

Neuro Solutions. 2003.  Neurodimension, Inc., Version 4.24.
Pala, S., Özmen, G. 1995. Effective Stiffness of Coupling Beams 

in Structural Walls. Comput Struct., 54(5): 925-931. 
Papadrakakis, M., Lagaros, ND., Plevris, V. 2005. Design 

optimization of steel structures considering uncertainties. Eng. 
Struct., 27: 1408–1418.

Rafiq, MY., Bugmann, G., Easterbrook, DJ. 2001. Neural 
network design for engineering applications. Comput Struct., 
79: 1541-52.

non-dimensional measure of dispersion or variability. For 
ratio hFEA / h, the mean, standard deviation and coefficient 
of variation are 1.011, 0.135 and 0.133, respectively, as 
shown in Table 2. Also for ratio hFEA / hNN, the mean, 
standard deviation and coefficient of variation are 1.004, 
0.016 and 0.016, respectively.  These results imply that the 
NN model constructed in this study provides better results 
than obtained from Equation (5).  

Besides, the scatter diagrams for statistical evaluation are 
shown in Figure 7. The correlation between random variables 
h and hFEA  is measured by the correlation coefficient ρ.

Based on the values of h and hFEA in Table 2, the value of the 
correlation coefficient is estimated to be 0.974. Similarly, the 
value of the correlation coefficient is estimated to be 0.999 
based on the values of hNN and hFEA in Table 2. Two values of 
ρ indicate that there are very high correlations between the 
random variables. It shows that this relationships are likely 
linear. After this assumption, the least-squares regression 
line for (X = h, Y = hFEA) is given by E(Y/x) = 1.217x - 
2.3344 (Figure 7a). On the other hand, the least-squares 
regression line for (X = hNN, Y = hFEA) is given by E(Y/x) 
= x - 0.0104 (Figure 7b).  As can be seen in Figure 7b, the 
scatter diagram of the stiffness modification factors, hNN and 
hFEA, yields closer results. 

4. Conclusions
In this study, the NN model was employed to develop 
and test the stiffness modification factor predictions for 
coupling beams of CSW systems. The data of 44 cases were 
used to train the NN. The testing of the NN was done by the 
data of 10 testing cases. The approach adapted in this study 
was shown to be capable of providing the best accurate 
estimates of the stiffness modification factor by using the 
three design parameters. The results are quite promising 
for further research of expanded data sets. The stiffness 
modification factor for coupling beams of CSW systems 
can be predicted by setting up some random variations in 
the design parameters.  
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