# Karaelmas Science and Engineering Journal

Journal home page: http://fbd.beun.edu.tr

# Lacunary A - Convergence

Nazmiye Gönül

Bülent Ecevit University, Department of Mathematics, Faculty of Arts and Science, Zonguldak

### Abstract

In this paper we introduce the concept of Lacunary A – Summability. We also give the relations between these summability and Lacunary A – statistical Summability. Following the concept of statistical A – limit superior and inferior, we give a definition of Lacunary A – limit superior and inferior which yields natural relationships among these ideas: x is Lacunary A-convergent if and only if  $L_{\theta}(A) - \lim_{(n \to \infty)} supx = L_{\theta}(A) - \lim_{(n \to \infty)} infx$ . Lacunary A – core of x is also introduced and it is proved that a bounded sequence that A – summable to its Lacunary A – limit superior is Lacunary A-convergent.

Keywords: Lacunary convergence, Lacunary A – summability, Lacunary A – convergence, Lacunary A – core

# 1. Introduction

We now introduce some notation and basic definitions used in this paper. Let  $A=(a_{nk})$  be a summable infinite matrix. For a given sequence  $x:=\{x_k\}$ , the A- transform of x, denoted by  $Ax:=((Ax)_n)$ , is given by  $(Ax)_n = \sum_{k=1}^{\infty} a_{nk} x_k$  provided that the series converges for each  $n \in \mathbb{N}$ , the set of all natural numbers.

We say that A is regular if  $\lim_{n\to\infty} (Ax)_n = L$  whenever  $\lim_{n\to\infty} x_n = L$  (Freedman and Sember 1981). If  $A = (a_{nk})$  be an infinite matrix, then Ax is the sequence whose *nth* term is given by  $A_n(x) = \sum_{k=1}^{\infty} a_{nk} x_k$ . Thus we say that *x* is A summable to *L* if  $\lim A_n(x) = L$ . (Fridy and Miller 1991). The statistical convergence is depend on the density of subsets of  $\mathbb{N}$ . A subset K of  $\mathbb{N}$  is said to have density  $\delta(K) := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_{K}(k)$  where  $\chi_{K}$  is the characteristic function of  $\tilde{K}$  (Fridy 1953). The A-density of K is defined by  $\delta_A(K) := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{\infty} a_{nk} \chi_K(k)$  provided the limit exists, where  $\chi_{\kappa}$  is the characteristic function of *K*. Then the sequence  $x:=\{x_{i}\}$  is said to be A-statistically convergent to the number L if, for every  $\varepsilon > 0$ ,  $\delta_{A}\{k \in \mathbb{N} : |x_{\nu}-L| \geq \varepsilon\} = 0$ or equivalently  $\lim_{n\to\infty}\sum_{k:|x_k-L|\geq\varepsilon}a_{nk} = 0$ . We denote this limit by  $st_A$ -lim<sub> $n\to\infty$ </sub> x=L (Duman et al. 2003). Let  $\theta = \{k_r\}$  be a sequence of positive integers such that  $k_0 = 0$ ,  $0 < k_{r_1} < k^r$  and  $h_{r}:=k_{r}-k_{r} \rightarrow \infty$  ( $r \rightarrow \infty$ ). Then  $\theta$  is called a *lacunary sequence*. The intervals determined by  $[k_{r-1'}, k_r]$  will be denoted by  $I_r:=[k_{r,1'}, k_r]$  and ratio  $\frac{k_r}{k_{r-1}}$  will be denoted by  $\eta_r$ . Lacunary sequences have been studied in (Fridy and Orhan 1996, Aktuglu and Gezer 2009). A sequence  $x := \{x_{i}\}$  is called lacunary statistical convergent to L, if

$$\lim_{r\to\infty}\frac{1}{h_r}|\{k\in I_r: |x_k-L|\geq\varepsilon\}|=0,$$

Corresponding author: nazmiyegonul81@hotmail.com.tr

where |K| denotes the cardinality of the set K. For a real number sequnce *x*, let *N*, *M* denote the sets:

 $N:=\{a \in \mathbb{R}: \delta \{k: x_k > a\} \neq 0\}$  $M:=\{b \in \mathbb{R}: \delta \{k: x_k < b\} \neq 0\}.$ 

If *x* is a real number sequence, then the *statistical limit superior* of *x* and the *statistical limit inferior* of *x* is respectively given by

$$st - \limsup_{n \to \infty} := \begin{cases} supN, \text{ if } N \neq \phi \\ +\infty, \text{ if } N = \phi \end{cases},$$
$$st - \liminf_{n \to \infty} fx := \begin{cases} infM, \text{ if } M \neq \phi \\ +\infty, \text{ if } M = \phi \end{cases}$$

In (Mursaleen, et al. 2009) defined statistical *A*-summability as following. Let  $x = \{x_k\}$  be a sequence of real numbers and  $A = (a_{nk})$  be a nonnegative regular matrix. We say that *x* is statistical *A*-summability to *L* if for every  $\varepsilon > 0$ ,

$$\lim_{n\to\infty}\frac{1}{n}\Big|\{i\le n: |y_i-L|\ge\varepsilon\}\big|=0,$$

where  $y_i = A_i(x)$ .

#### 2. Lacunary A-Summability

In this section we define Lacunary *A*-sum-mability for a nonnegative regular matrix *A* and find its relationship with *A*-lacunary convergence.

**Definition 2.1** Let  $\theta = \{k_r\}$  be a lacunary sequence,  $x = \{x_k\}$  be a sequence of real numbers and  $A = (a_{nk})$  be a nonnegative regular matrix. We say that x is Lacunary A-summability to L if for every  $\varepsilon > 0$ ,

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |y_k - L| \ge \varepsilon\}| = 0,$$
  
where  $y_k = A_k(x)$ . In this case, we write  $L_{\theta} - \lim_{n \to \infty} Ax = L$ .



**Research Article** 

*Remark 2.1* If *A* is the identity matrix, then lacunary *A*-convergence coincides with the ordinary convergence. It is not hard to see that every convergent lacunary sequence is lacunary *A*-convergent.

*Remark* **2.2** Every *A*-summable sequence may not be lacunary *A*-convergent.

*Remark* 2.3 Note that every statistical convergent sequences is lacunary *A*-convergent.

The concepts of the statistical *A-limit superior* and *inferior* have been introduced in (Fridy and Orhan 1996).

**Definition 2.2** Let  $\theta = \{k_i\}$  be a lacunary sequence,  $x = \{x_k\}$  be a sequence of real numbers and  $y_i = A_i(x)$  be a nonnegative regular matrix. If x is a real number sequence, then the *lacunary A-limit superior* of x and the *lacunary A-limit inferior* of x are respectively given by

$$L_{\theta}(A) - \limsup_{n \to \infty} x := \begin{cases} \sup Y, & \text{if } Y \neq \phi \\ -\infty, & \text{if } Y = \phi \end{cases},$$
$$L_{\theta}(A) - \liminf_{n \to \infty} fx := \begin{cases} \inf Z, & \text{if } Z \neq \phi \\ +\infty, & \text{if } Z = \phi \end{cases}$$

where  $Y:=\{a \in \mathbb{R}: \delta \{i \in I_i: y_i > a\} \neq 0\}$  and

$$Z := \{ b \in \mathbb{R} : \delta \{ i \in I_i : y_i < b \} \neq 0 \}.$$

Now we give another lacunary analogue of a very basic property of convergent sequences (Mursaleen et al. 2009).

**Definition 2.3** Let  $y_i = A_i(x)$  and  $\theta = \{k_r\}$  be a lacunary sequence, then the real numbers sequence x is said to be lacunary A-bounded if there is a number K such that

$$\delta\{i \in I_r: |\mathbf{y}_i| > K\} = 0$$

**Theorem 2.1** If  $\varphi = L_{\theta}(A) - \lim_{n \to \infty} supx$  is finite, then for every positive number  $\varepsilon > 0$ ,

$$\begin{split} &\delta\{i\in I_r; |y_i| > \varphi \text{-}\varepsilon\} \neq 0 \text{ and} \\ &\delta\{i\in I_r; |y_i| > \varphi \text{+}\varepsilon\} = 0. \end{split}$$

*Proof* This is clear from the definition of *Lacunary A-limit inferior* and *Lacunary A-limit superior*.

**Theorem 2.2** Let  $\theta = \{k_r\}$  be lacunary sequence then for any real numbers sequence *x*, we have

$$L_{\theta}(A) - \lim_{n \to \infty} \inf x \le L_{\theta}(A) - \lim_{n \to \infty} \sup x$$

**Proof** First consider the case in which  $L_{\theta}(A) - \limsup_{n \to \infty} \sup_{n \to \infty} x = -\infty$ . This implies that  $Y = \emptyset$ , so for every  $a \in \mathbb{R}$ :  $\delta\{i \in I_r; y_i > a\} = 0$  and  $\delta\{i \in I_r; y_i \le a\} = 1$ , so for every  $b \in \mathbb{R}$ :  $\delta\{i \in I_r; y_i \le b\} \neq 0$ . Hence,  $L_{\theta}(A) - \lim_{n \to \infty} \sup x = -\infty$ . The case in which  $L_{\theta}(A) - \lim_{n \to \infty} \sup x = \infty$ , can be proved similarly. Now,  $\gamma := L_{\theta}(A) - \lim_{n \to \infty} \sup x$  is finite and let  $\varphi := L_{\theta}(A) - \lim_{n \to \infty} \inf x$ . Given  $\varepsilon > 0$  we show that  $\gamma + \varphi \in \mathbb{Z}$ , so that  $\varphi \le \gamma + \varepsilon$ . By Theorem 2.2,  $\delta\{i \in I_i: y_i > \gamma + \varepsilon/2\} = 0$ , because  $\gamma = L_{\theta}(A) - \lim_{n \to \infty} supx$ . Similarly  $\delta\{i \in I_i: y_i \le \varphi + \varepsilon\} = 1$  Hence  $\varepsilon + \gamma \in \mathbb{Z}$ . By definition  $\varphi := L_{\theta}(A) - \lim_{n \to \infty} infx$ , we conclude that  $\varphi \le \gamma + \varepsilon/2$ ; and since  $\varepsilon$  is arbitrary this gives us  $\varphi \le \gamma$ .

From Theorem 2.1 and definition, it is clear that

$$\lim_{n \to \infty} \inf x \le L_{\theta}(A) - \lim_{n \to \infty} \inf x$$
$$\le L_{\theta}(A) - \lim_{n \to \infty} \sup x \le \lim_{n \to \infty} \sup x$$

for any sequnce *x*.

**Theorem 2.3** A lacunary *A*-bounded sequence *x* is lacunary *A*-convergent if and only if  $L_{\theta}(A) - \lim \inf x = L_{\theta}(A) - \lim \sup x$ 

**Proof** Let  $\gamma := L_{\theta}(A) - \lim_{n \to \infty} \sup x$  and  $\varphi := L_{\theta}(A) - \lim_{n \to \infty} \inf x$ . First assume that  $\gamma = \varphi$  and define  $\varphi = L$ . If  $\varepsilon > 0$  then

 $\begin{array}{l} \delta\{i \in I_r : y_i > L + \ell/2\} = 0 \text{ and } \delta\{i \in I_r : y_i < L - \ell/2\} = 0. \text{ Hence } L_{\theta}\\ (A) - \lim_{n \to \infty} x = L. \text{ Next assume } L_{\theta}(A) - \lim_{n \to \infty} x = L \text{ and } \epsilon > 0. \text{ Then } \delta\{i \in I_r : |y_i - L| \ge \epsilon\} = 0, \text{ so} \end{array}$ 

$$\delta\{i \in I_{r}: y_{i} > L + \varepsilon\} = 0$$

which implies that  $L \le \varphi$ . On the other hand  $\delta\{i \in I_r: y_i \le L - \frac{\varphi}{2}\} = 0$ , by using the Theorem 2.2, we have  $\gamma = \varphi$ .

(Osama and Edely 2009) proved  $\beta$ - statistical convergent relationship with  $\beta$ -summable. Similarly, we can give following theorem.

**Theorem 2.4** If the number sequence x is bounded above and lacunary A-summability to the number  $L_{\theta}(A) - \lim_{n \to \infty} \sup x = L$ , then x is lacunary A-convergent to L.

**Proof** Suppose that *x* is not lacunary *A*-convergent to *L*. Then by Theorem 2.3,  $L_{\theta}(A) - \lim_{n \to \infty} infx < L$ , so there is a number K < L such that  $\delta\{k \in I_r; y_k < K\} \neq 0$ . Let  $K_1 = \{k \in I_r; y_k < K\}$ . Then for every  $\varepsilon > 0$ ,  $\delta\{k \in I_r; y_k > L + \varepsilon\} = 0$ . We can write  $K_2 = \{k \in I_r; K \le y_k \le L + \varepsilon\}$  and  $K_3 = \{k \in I_r; y_k > L + \varepsilon\}$ , and let  $P = supy_k < \infty$ . Since  $\delta(K_1) \neq 0$ , there are some *n* such that

$$\limsup_{n} \sum_{k \in K_1} a_{nk} \ge m > 0,$$

and for each  $n, j \in \mathbb{N}$ ,  $\sum_{k=1}^{\infty} |a_{nk}(j)x_k| < \infty$ . Now

$$\sum_{k=1}^{\infty} a_{nk}(j)x_k = \sum_{k \in K_1} a_{nk}x_k + \sum_{k \in K_2} a_{nk}x_k$$
$$+ \sum_{k \in K_2} a_{nk}x_k$$
$$\leq K \sum_{k \in K_1} a_{nk}(j) + (L + \varepsilon) \sum_{k=1}^{\infty} a_{nk}(j)$$
$$- (L + \varepsilon) \sum_{k \in K_1} a_{nk} + o(1)$$
$$\leq L \sum_{k=1}^{\infty} a_{nk}(j) - m(L - K) + \varepsilon \left(\sum_{k=1}^{\infty} a_{nk}(j) - d\right)$$
$$+ o(1)$$

Since  $\varepsilon$  is arbitrary, it follows that

$$L_{\theta}(A) - \lim_{n \to \infty} \inf x \le L - m(L - K) < L$$

Hence *x* is not lacunary *A*-summable to *L*.

**Theorem 2.5** Let  $\theta = \{k_r\}$  be a lacunary sequence. Then statistical *A*-convergence implies lacunary *A*-convergence if and only if  $\lim_{r\to\infty} sup\eta_r < \infty$ .

**Proof** First, assume that  $\theta$  be a statistical A-convergent sequence and  $\lim_{r\to\infty} sup\eta_r < \infty$  then there exists a positive

number *M* such that  $\eta_r < M$  for all  $r \ge 1$ . Letting

$$\lim_{r\to\infty}\frac{1}{h_r}\Big|\big\{k\in I_r: |y_k-L|\geq\varepsilon\big\}\big|=0,$$

and  $\varepsilon > 0$  we can then find an  $r_0 \in \mathbb{N}$  such that  $\frac{1}{h} |\{k \in I_r : |y_k - L| \ge \varepsilon\}| = 0$  for all  $r > r_0$ .

Now let  $\sup_{r} \frac{1}{h_r} |\{k \in I_r : |y_k - L| \ge \varepsilon\}|$  and let *n* be any integer satisfying  $k_{r,1} < n < k_r$  then

$$\begin{split} &\frac{1}{n} \Big| k \le n : \Big| y_k - L \Big| \ge \varepsilon \le \frac{1}{n} \Big| \Big\{ k \in I_r : \Big| y_k - L \Big| \ge \varepsilon \Big\} \Big| \\ &\le \frac{1}{k_{r-1}} \Big| \Big\{ k \in I_r : \Big| y_k - L \Big| \ge \varepsilon \Big\} \Big| \\ &\le \frac{Kr_0}{k_{r-1}} + \frac{\varepsilon k_r - kr_0}{k_{r-1}} \\ &\le \frac{Kr_0}{k_{r-1}} + \varepsilon \eta_r \\ &\le \frac{Kr_0}{k_{r-1}} + \varepsilon M \end{split}$$

and the sufficiency follows immediately. Conversely, assume that  $\lim_{r\to\infty} sup\eta_r < \infty$ . Since  $\theta = \{k_r\}$  is a lacunary sequence, we can choose a subsequence  $\{k_{r(j)}\}$  of  $\theta$  so that  $k_{r(j)} > j$ , and then, define

$$x_i = \left\{ \begin{array}{ll} 1, & \text{ if } k_{r(j) - 1} < i \le 2k_{r(j) - 1}, & for \ some \ j = 01, 2, \dots \\ 0, & otherwise \end{array} \right\}$$

and if  $r \neq r(j)$ , then  $\frac{1}{h} |\{k \in I_r : |y_k - L| \ge \varepsilon\}| = 0$ . Thus

$$\frac{1}{h_r} \sum_{k \in I_r; |x_k - L| \ge \varepsilon} a_{nk} = \frac{k_{r(j)-1}}{k_{r(j)} - k_{r(j)-1}} < \frac{1}{j-1}$$

if  $r \neq r(j)$ ,  $\frac{1}{h} | \{k \le n : |y_k - L| \ge \varepsilon\} | = 0$  for every

$$\frac{1}{k_{r(j)}} \sum_{k \in I_r; |x_k - L| \ge \varepsilon} a_{nk} \ge \frac{1}{k_{r(j)}} \left( k_{r(j)} - 2k_{r(j)-1} \right)$$
$$= \left( 1 - \frac{2k_{r(j)-1}}{k_{r(j)}} \right)$$
$$> 1 - \frac{2}{i}$$

which converges to 1, and for  $i = 1, 2, \dots 2k_{r(i)-1}$ 

$$\frac{1}{2k_{r(j)-1}} \frac{1}{h_r} \sum_{k \in I_r; |x_k - L| \ge \varepsilon} a_{nk} = \frac{k_{r(j)-1}}{2k_{r(j)-1}} = \frac{1}{2}$$

Then, it follows that  $x_k$  is not lacunary *A*-convergent.

**Definition 2.4** If *x* is a lacunary *A*-bounded sequence, then the lacunary *A*-core of *x* is the closed interval

$$L_{\theta}(A) - \lim_{n \to \infty} \inf x, L_{\theta}(A) - \lim_{n \to \infty} \sup x$$

In this case *x* is not lacunary *A*- bounded,  $L_{\theta}(A) - core\{x\}$  is defined accordingly as either  $[L_{\theta}(A) - \lim_{n \to \infty} infx, \infty)$  or  $(-\infty, L_{\theta}(A) - \lim_{n \to \infty} supx]$  and  $(-\infty, \infty)$ .

It is clear from (Theorem 2.3) that for any sequence x;  $L_{\theta}$ (A) – core {x}  $\subseteq$  core {x} where core {x} is usual core.

*Lemma* 2.1 Let *A* satisfy  $\sup_{k \in I_r} \sum_{k \in I_r} a_{nk} < \infty$ , then  $\lim_{n \to \infty} \sup Ax \le \lim_{n \to \infty} \sup x$  for every  $x \in I_{\infty}$  if and only if *A* is regular,  $\lim_{n \to \infty} \sum_{k \in I_r} a_{nk} = 0$  such that  $\delta_A \{I_r\} = 0$  and  $\lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} = 1$ .

**Proof** ( $\Rightarrow$ ) Let *A* satisfies  $\lim_{n\to\infty} \sup Ax \leq L_{\theta}(A) - \lim_{n\to\infty} \sup x$  and  $x \in l_{\omega'}$  then  $L_{\theta}(A) - \limsup x \leq \limsup x$  and since  $Ax \in l_{\omega'}$ .

$$\begin{split} \sup_{n} \sum_{k \in I_{r}} \left| a_{nk} \right| &< \infty. \text{ By } \lim supAx \leq L_{\theta}(A) - limsupx \text{ we have} \\ &-L_{\theta}(A) - limsup(-x) \leq -limsup(-Ax) \\ &\leq limsupAx \leq L_{\theta}(A) - limsupx \text{ and} \\ &L_{\theta}(A) - liminfx \leq liminfAx \\ &\leq limsupAx \leq L_{\theta}(A) - limsupx. \end{split}$$

If  $x \in l_{\infty}$  and x is lacunary A-convergent, we have  $L_{\theta}(A) - liminfx = L_{\theta}(A) - limsupx$ . So  $limAx \le L_{\theta}(A) - limx$ . Hence A is regular and  $\lim_{n \to \infty} \sum_{k \in I_r} |a_{nk}| = 0$ , such that  $\delta_A\{I_r\} = 0$ . Also since  $L_{\theta}(A) - limsupx \le limsupx$  and by hipotesis  $limsupAx \le limsupx$  and so

$$\lim_{n\to\infty}\sum_{k=1}^{\infty}a_{nk}=1$$

( $\Leftarrow$ ) Let A be regular such that  $\delta_A\{I_r\} = 0$ ,  $\lim_{n \to \infty} \sum_{k \in I_r} |a_{nk}| = 0$ . If  $x \in I_{\infty}$  then  $Ax \in I_{\infty}$  and  $L_{\theta}(A) - limsupx$  is finite. Given  $\varepsilon > 0$  and  $Y := \{k: x_k > L_{\theta}(A) - limsupx + \varepsilon\}$ . Thus  $\delta_A\{Y\} = 0$  and if  $k \notin Y$  then  $x_k < L_{\theta}(A) - limsupx + \varepsilon$ .

For a fixed positive integer m we write

$$(Ax)_{n} = \sum_{k < m} a_{nk} x_{k} + \sum_{k \ge m} a_{nk} x_{k}$$

$$\leq ||x||_{\infty} \sum_{k < m} |a_{nk}| + ||x||_{\infty} \sum_{k \ge m} (|a_{nk}| - a_{nk})$$

$$\leq ||x||_{\infty} + \sum_{k < m} |a_{nk}| L_{\theta}(A)$$

$$-(limsupx + \varepsilon) \sum_{k \in Y, k \ge m} |a_{nk}|$$

$$+ ||x||_{\infty} \sum_{k > m} (|a_{nk}| - a_{nk})$$

By using the regularity of *A*, we have  $limsup(Ax)_n \le L_n(A) - limsupx + \varepsilon$ .

Since  $\varepsilon$  is arbitrary we complete the proof.

# 3. Rates of Lacunary A-Convergent

Like (Duman et al. 2003, Fridy 1978) defined rates of statistical *A*-convergence. Here we define rates of lacunary *A*-convergence.

**Definition 3.1** Let  $A = (a_{nk})$  be a nonnegative regular summability matrix,  $\theta = \{k_r\}$  be a lacunary sequence and  $hr := k_r - k_{r-1} \rightarrow \infty$  as  $r \rightarrow \infty$ . We say that the sequence  $x = \{xk\}$  is lacunary convergent to the number with the rate of  $o(h_r)$  if for every  $\varepsilon > 0$ ,

$$\lim_{n\to\infty}\frac{1}{h_r}\sum_{k\in I_r:|x_k-L|\geq\varepsilon}a_{nk}=0.$$

In this case, it is denoted by  $L_{\theta}(A) - o(h_r) = x_k - L \ (k \to \infty)$ .

**Definition 3.2** Let  $\theta = \{k_r\}$  be a lacunary sequence and  $A = (a_{nk})$  be a nonnegative regular summability matrix and let  $h_r$  be sequence  $x = \{x_k\}$  is lacunary convergent *A*-bounded with the rate of  $O(h_r)$  if for every  $\varepsilon > 0$ ,

$$\sup_{n} \frac{1}{\mathbf{h}_{\mathbf{r}}} \sum_{k \in I_r : |(x_k - L)| \ge \varepsilon} a_{nk} < \infty$$

In this case, it is denoted by  $L_{\theta}(A) - o(h_{\eta}) = x_k - L$ .

**Theorem 3.3** Let  $x = \{x_k\}, y = \{y_k\}$  be two sequences and  $\{\tilde{k}n\}, \{k_n\}$  lacunary sequences.

Assume that  $A = (a_{nk})$  is a nonnegative regular summability matrix,  $h_r := k_r - k_{r-1} \rightarrow \infty$  and  $t_r := \tilde{k}_r - \tilde{k}_{r-1} \rightarrow \infty$ . If for some real number L,  $\tilde{L}$  we have  $L_{\theta}(A) - o(h_r) = x_k - L$  and (as  $k \rightarrow \infty$ ),  $L_{\theta}(A) - o(h_r) = x_k - L$  then for  $p_r = max\{h_r, t_r\}$ .

i) 
$$(x_k - L) \pm (y_k - \tilde{L}) = L_{\theta}(A) - o(p_k)$$
  
ii)  $(x_k - L)(y_k - \tilde{L}) = L_{\theta}(A) - o(p_k)$ .

Proof

$$i) \quad \frac{1}{p_r} = \sum_{\substack{k \in I_r \\ |(x_k-L) \pm (yk-\bar{L})| \ge \varepsilon}} a_{nk} \le \frac{1}{h_r} \sum_{\substack{k \in I_r \\ |(x_k-L)| \ge \frac{\varepsilon}{2}}} a_{nk}$$
$$+ \frac{1}{t_r} \sum_{\substack{k \in I_r \\ |(y_k-\bar{L})| \ge \frac{\varepsilon}{2}}} a_{nk}$$

so 
$$(x_k - L) \pm (y_k - L) = L_{\theta}(A) - o(p_k)$$

ii) 
$$\frac{1}{p_r} \sum_{\substack{k \in I_r \\ |(x_k - L)(y_k - \tilde{L})| \ge \varepsilon}} a_{nk} \le \frac{1}{h_r} \sum_{\substack{k \in I_r \\ |(x_k - L)| \ge \sqrt{\varepsilon_2}}} a_{nk}$$

$$\frac{1}{t_r} \sum_{\substack{k \in I_r \\ |(y_k - \hat{L})| \ge \sqrt{\varepsilon}/2}} a_{nk}$$

# 4. Results

We study the concepts of lacunary A-convergent and lacunary A-core and proved several important properties of lacunary sequence.

#### 5. Acknowledgements

The author would like to thank the referees and Yusuf Kaya for their careful reading of this paper.

# 6. References

- Aktuğlu, H., Gezer H. 2009. Lacunary equi-statistical convergence of positive linear operators, *Cent. Eur. J. Math.*, 558-567.
- **Connor, J. 1988.** The statictical and strong p Cesaro convergence of sequences. *Analysis*, 47-63.
- Connor, JS., Kline, J. 1996. On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl., 197:392-399.
- Duman, O., Khan, MK., Orhan, C. 2003. A-statistical convergence of approximation operators. *Math. Inequal. Appl.*, 689-699.
- Freedman, AR., Sember, JJ. 1981. Density and summability. Pac. J. Math, 95: 293-305.
- Fridy, JA. 1953. Generalized asymtotic density. Am. J. Math. 75:335-346.
- Fridy, JA. 1978. Minimal rates of summability, Can. J. Math., 30: 808-816.
- Fridy, J., Miller, HI. 1991. A matrix characterization of statistical convergence. *Analysis* 11: 59-66.
- Fridy, JA., Orhan, C. 1993. Lacunary statistical convergence. Pac. J. Math., 160:43-51.
- Fridy, JA., Orhan, C. 1996. Statical limit superior and limit inferior. Proc. Amer. Math. Soc., 125 (12): 3625-3631.
- Mursaleen M., Osama H., Edely, H. 2004. Generalised statistical convergence. *Inform. Sci.*, 287-294.
- Mursaleen M., Osama H., Edely, H. 2009. On statistical A-summability. *Math. Comput. Model.*, 672-680.