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Abstract

In this paper we introduce the concept of Lacunary A _ Summability. We also give the relations between these summability and 
Lacunary A _ statistical Summability. Following the concept of statistical A _ limit superior and inferior, we give a definition of 
Lacunary A _ limit superior and inferior which yields natural relationships among these ideas:  x is Lacunary A-convergent if 
and only if Lθ(A) _ lim(n→∞) supx=Lθ(A) _ lim(n→∞) infx. Lacunary A _ core of x is also introduced and it is proved that a bounded 
sequence that A _ summable to its Lacunary A _ limit superior is Lacunary A-convergent.
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1. Introduction
We now introduce some notation and basic definitions 
used in this paper. Let A=(ank) be a summable infinite 
matrix. For a given sequence x:={xk}, the A- transform of 
x, denoted by Ax:=((Ax)n), is given by 1 ( )  n k nk kAx a x∞

== ∑
provided that the series converges for each n∈ℕ, the set 
of all natural numbers. 

We say that A is regular if limn→∞(Ax)n=L whenever 
limn→∞ xn=L (Freedman and Sember 1981). If A=(ank) be 
an infinite matrix, then Ax is the sequence whose nth 
term is given by 1

( ) .n nk kk
A x a x∞

=
= ∑  Thus we say that x is 

A summable to L if lim  ( )  nn
A x L

→∞
= . (Fridy and Miller 1991). 

The statistical convergence is depend on the density 
of subsets of ℕ. A subset K of ℕ is said to have densi-
ty 1

1
( ) : lim ( ) n

Kn kn
K kδ χ

=→∞
= ∑ where χK is the characteristic 

function of K (Fridy 1953). The A-density of K is defined 
by 1

1
( ) : lim ( ) A nk Kn kn
K a kδ χ∞

=→∞
= ∑ provided the limit exists, 

where χK is the characteristic function of K. Then the 
sequence x:={xk} is said to be A-statistically convergent 
to the number L if, for every ε>0, δA{k∈ℕ:|xk-L|≥ ε}=0 
or equivalently :| - |

lim 0.
k

nkk x Ln
a

ε≥→∞
=∑ We denote this limit 

by stA-limn→∞ x=L (Duman et al. 2003). Let θ={kr} be a se-
quence of positive integers such that k0= 0, 0 < kr-1< kr and 
hr:=kr 

_
 kr-1→ ∞ (r→∞). Then θ is called a lacunary sequence. 

The intervals determined by [kr-1, kr] will be denoted by 
Ir:=[kr-1, kr] and ratio 

1

r

r

k
k −

 will be denoted by ηr. Lacunary 
sequences have been studied in (Fridy and Orhan 1996, 
Aktuglu and Gezer 2009). A sequence x:={xk} is called la-
cunary statistical convergent to L, if

1lim { : } 0,  r kr
r

k I x L
h

ε
→∞

∈ − ≥ =

where |K| denotes the cardinality of the set K. For a real 
number sequnce x, let N, M denote the sets:

N:={a∈ℝ: δ {k:xk>a} ≠ 0}

M:={b∈ℝ: δ {k:xk<b} ≠ 0}.

If x is a real number sequence, then the statistical limit 
superior of x and the statistical limit inferior of x is respec-
tively given by

,   
lim :  ,

,      n

supN if N
st supx

if N
φ

φ→∞

≠
− = +∞ =

  
lim :  

,      n

infM, if M
st infx

if M
φ

φ→∞

≠
− = +∞ =

In (Mursaleen, et al. 2009) defined statistical A-summa-
bility as following. Let x ={xk} be a sequence of real num-
bers and A=(ank) be a nonnegative regular matrix. We say 
that x is statistical A-summability to L if for every ε>0,

1lim { : } 0,  in
i n y L

n
ε

→∞
≤ − ≥ =  

where yi=Ai(x).

2. Lacunary A-Summability
In this section we define Lacunary A-sum-mability for a 
nonnegative regular matrix A and find  its  relationship 
with A- lacunary convergence.

Definition 2.1 Let θ={kr} be a lacunary sequence, x={xk} be 
a sequence of real numbers and A=(ank) be a nonnegative 
regular matrix. We say that x is Lacunary A-summability 
to L if for every ε>0, 

1lim { : } 0,  r kr
r

k I y L
h

ε
→∞

∈ − ≥ =

where yk=Ak(x). In this case, we write lim . 
n

L Ax Lθ →∞
− =
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Remark 2.1 If A is the identity matrix, then lacunary A-
convergence coincides with the ordinary convergence. 
It is not hard to see that every convergent lacunary se-
quence is lacunary A-convergent.

Remark 2.2 Every A-summable sequence may not be la-
cunary A-convergent.

Remark 2.3 Note that every statistical convergent se-
quences is lacunary A-convergent. 

The concepts of the statistical A-limit superior and inferior 
have been introduced in (Fridy and Orhan 1996).

Definition 2.2 Let θ = {kr} be a lacunary sequence, x = {xk} 
be a sequence of real numbers and yi=Ai(x) be a nonnega-
tive regular matrix. If x is a real number sequence, then 
the lacunary A-limit superior of x and the lacunary A-limit 
inferior of x are respectively given by

,   
( ) lim : = ,

,   n

supY if Y
L A supx

if Yθ

φ
φ→∞

≠
− −∞ =

,   
( ) lim : = 

,   n

infZ if Z
L A infx

if Zθ

φ
φ→∞

≠
− +∞ =

where Y:={a∈ℝ: δ{i ∈ Ir: yi > a} ≠ 0} and 

Z:={b∈ℝ: δ{i ∈ Ir: yi < b} ≠ 0}.

Now we give another lacunary analogue of a very ba-
sic property of convergent sequences (Mursaleen et al. 
2009).

Definition 2.3 Let yi = Ai(x) and θ = {kr} be a lacunary se-
quence, then the real numbers sequence x is said to be 
lacunary A-bounded if there is a number K such that

δ{i ∈ Ir:|yi|> K} = 0. 

Theorem 2.1 If φ =Lθ(A)—limn→∞ supx is finite, then for 
every positive number ε>0,

δ{i ∈ Ir:|yi|> φ-ε} ≠ 0 and 

δ{i ∈ Ir:|yi|> φ+ε} = 0.

Proof This is clear from the definition of Lacunary A-limit 
inferior and Lacunary A-limit superior.

Theorem 2.2 Let θ = {kr} be lacunary sequence  then for 
any real numbers sequence x, we have 

 ( ) lim ( ) lim .
n n

L A infx L A supxθ θ→∞ →∞
− ≤ −

Proof First consider the case in which ( ) lim .
n

L A supxθ
→∞

− = −∞  
This implies that Y = ∅, so for every a ∈ ℝ: δ{i∈Ir: yi>a} 
= 0 and δ{i ∈ Ir: yi ≤ a} = 1, so for every b∈ℝ: δ{i∈Ir: yi<b} 
≠ 0. Hence, Lθ(A)—limn→∞supx = -∞. The case in which Lθ 
(A)—limn→∞supx = ∞,  can be proved similarly. Now, γ:= 
Lθ(A)—limn→∞supx is finite and let φ:= Lθ(A)—limn→∞ infx. 

Given ε > 0 we show that γ + φ ∈ ℤ , so that φ ≤ γ + ε. By 
Theorem 2.2, δ{i∈Ir:yi > γ + ε⁄2} = 0, because γ = Lθ(A)—
limn→∞supx. Similarly δ{i∈Ir:yi ≤ φ + ε} = 1  Hence ε + γ ∈ ℤ. 
By definition φ:= Lθ(A)—limn→∞infx, we conclude that φ  ≤ 
γ + ε⁄2; and since ε is arbitrary this gives us φ ≤ γ.

From Theorem 2.1 and definition, it is clear that

lim ( ) lim

            ( ) lim lim
n n

n n

infx L A infx

L A supx supx
θ

θ

→∞ →∞

→∞ →∞

≤ −

≤ − ≤

for any sequnce x.

Theorem 2.3 A lacunary A-bounded sequence x is lacunary 
A-convergent if and only if ( ) lim ( ) lim

n n
L A infx L A supxθ θ→∞ →∞

− = −                        

Proof Let γ:= Lθ(A)—limn→∞supx and φ:= Lθ(A)—limn→∞ 
infx. First assume that γ = φ and define φ = L. If ε>0 then

δ{i∈Ir: yi > L + ε⁄2} = 0 and  δ{i∈Ir: yi < L - ε⁄2} = 0. Hence Lθ 
(A)—limn→∞ x = L. Next assume Lθ(A)—limn→∞ x = L and 
ε>0. Then δ{i∈Ir:|yi - L| ≥ ε} = 0, so 

δ{i∈Ir: yi > L + ε} = 0 

which implies that L ≤ φ. On the other hand δ{i∈Ir: yi < L - 
ε⁄2} = 0, by using the Theorem 2.2, we have γ = φ.

(Osama and Edely 2009) proved β- statistical convergent 
relationship with β-summable. Similarly, we can give 
following theorem.

Theorem 2.4 If the number sequence x is bounded above 
and lacunary A-summability to the number Lθ(A)—
limn→∞supx = L, then x is lacunary A-convergent to L.

Proof  Suppose that x is not lacunary A-convergent to L. 
Then by Theorem 2.3, Lθ(A)—limn→∞infx < L, so there is a 
number K < L such that δ{k∈Ir: yk < K} ≠ 0. Let K1={k∈Ir: 
yk < K}. Then for every ε>0, δ{k∈Ir: yk > L + ε} = 0. We can 
write K2={k∈Ir: K ≤ yk ≤ L + ε} and K3={k∈Ir: yk > L + ε}, and 
let P = supyk < ∞. Since δ(K1) ≠ 0, there are some n such 
that

1

limsup 0,nk
n k K

a m
∈

≥ >∑
and for each n, j∈ℕ, 1

( ) .nk kk
a j x∞

=
< ∞∑  Now

1 2

2

1

1

1

1

1 1

( )

                         

  ( ) ( ) ( )

  ( ) (1)

  ( ) ( ) ( )

                           + (1)
 

nk k nk k nk k
k k K k K

nk k
k K

nk nk
k K k

nk
k K

nk nk
k k

a j x a x a x

a x

K a j L a j

L a o

L a j m L K a j d

o

ε

ε

ε

∞

= ∈ ∈

∈

∞

∈ =

∈

∞ ∞

= =

= +

+

≤ + +

− + +

 ≤ − − + − 
 

∑ ∑ ∑

∑

∑ ∑

∑

∑ ∑
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Since ε is arbitrary, it follows that

( ) lim ( )
n

L A infx L m L K Lθ →∞
− ≤ − − <

Hence x is not lacunary A-summable to L.

Theorem 2.5 Let θ = {kr} be a lacunary sequence. Then sta-
tistical A-convergence implies lacunary A-convergence if 
and only if limr→∞supηr < ∞. 

Proof First, assume that θ be a statistical A-convergent 
sequence and limr→∞supηr < ∞ then there exists a positive

number M such that ηr < M for all r ≥ 1. Lettting 

{ }1lim : 0r kr
r

k I y L
h

ε
→∞

∈ − ≥ = ,

and ε>0 we can then find an r0∈ℕ such that 
{ }1lim : 0r kr

r

k I y L
h

ε
→∞

∈ − ≥ =  for all r > r0.

Now let { }1sup :
r r kh

r
k I y L ε∈ − ≥  and let n be any integer 

satisfying kr-1 < n < kr then

{ }

{ }
1

0 0

1 1

0

1

0

1

1 1: :

1 :

        

        

        

k r k

r k
r

r

r r

r
r

r

k n y L k I y L
n n

k I y L
k

Kr k kr
k k
Kr
k
Kr M
k

ε ε

ε

ε

εη

ε

−

− −

−

−

≤ − ≥ ≤ ∈ − ≥

≤ ∈ − ≥

−
≤ +

≤ +

≤ +

and the sufficiency follows immediately. Conversely, 
assume that limr→∞supηr < ∞. Since θ = {kr} is a lacunary 
sequence, we can choose a subsequence {kr(j)} of θ so that  
kr(j) > j, and then, define

xi = { 1,      if kr(j)-1< i ≤ 2kr(j)-1,    for some j = 01,2,…}                                   
            0, 		               otherwise

and if r ≠ r(j), then { }1lim : 0r kr
r

k I y L
h

ε
→∞

∈ − ≥ = . Thus

( ) 1

: ( ) ( ) 1

1 1
1

r k

r j
nk

k I x Lr r j r j

k
a

h k k jε

−

∈ − ≥ −

= <
− −∑

if r ≠ r(j),   1 
hr

|{k ≤ n:|yk—L|≥ ε} |= 0 for every

( )( ) ( ) 1
:( ) ( )

( ) 1

( )

1 1 2

2
                         1

2                         1

r k

nk r j r j
k I x Lr j r j

r j

r j

a k k
k k

k
k

j

ε
−

∈ − ≥

−

≥ −

 
= −  

 

> −

∑
                

which converges to 1, and for i = 1,2,…2kr(j)-1,

( ) 1

:( ) 1 ( ) 1

1 1 1
2 2 2

r k

r j
nk

k I x Lr j r r j

k
a

k h kε

−

∈ − ≥− −

= =∑

Then, it follows that xk is not lacunary A-convergent.

Definition 2.4 If x is a lacunary A-bounded sequence, 
then the lacunary A-core of x is the closed interval

( ) lim , ( ) lim
n n

L A infx L A supxθ θ→∞ →∞
 − −  .

In this case x is not lacunary A- bounded, Lθ(A) - core{x} 
is defined accordingly as either [Lθ(A)—limn→∞ infx, ∞) or  
(-∞, Lθ(A)—limn→∞ supx] and (-∞, ∞).

It is clear from (Theorem 2.3) that for any sequence x; Lθ 
(A)—core {x} ⊆ core {x} where core {x} is usual core.

Lemma 2.1 Let A satisfy sup  
r

nkk In
a

∈
< ∞∑ , then limn→∞ supAx 

≤ limn→∞supx for every x∈l∞ if and only if A is regular, 
lim 0

r
nkk In

a
∈→∞

=∑  such that δA{Ir}=0 and  
1

lim 1nkkn
a∞

=→∞
=∑ .

Proof (⇒) Let A satisfies limn→∞supAx ≤ Lθ(A)—limn→∞ 
supx and x∈l∞, then Lθ(A)—limsupx ≤ limsupx and since 
Ax∈l∞.

sup  
r

nkk In
a

∈
< ∞∑ . By limsupAx ≤ Lθ(A)—limsupx we have

-Lθ(A)—limsup(-x) ≤ —limsup(-Ax)             

≤ limsupAx ≤ Lθ(A)— limsupx and

Lθ(A)—liminfx ≤ liminfAx                              

≤ limsupAx ≤ Lθ(A)—limsupx.

If x∈l∞ and x is lacunary A-convergent, we have Lθ (A)—
liminfx = Lθ(A)—limsupx. So limAx ≤ Lθ(A)—limx. Hence A 
is regular and lim 0

r
nkk In

a
∈→∞

=∑ , such that δA{Ir} = 0. Also 
since Lθ(A)—limsupx ≤ limsupx and by hipotesis limsupAx 
≤ limsupx and so

1
lim 1nkn k

a
∞

→∞
=

=∑
(⇐) Let A be regular such that δA{Ir} = 0, lim 0

r
nkk In

a
∈→∞

=∑ . 
If x∈l∞ then Ax∈l∞ and Lθ(A)—limsupx is finite. Given ε>0 
and Y:={k: xk > Lθ(A)—limsupx + ε}. Thus δA{Y} = 0 and if 
k∉Y then xk < Lθ(A)—limsupx + ε. 

For a fixed positive integer m we write
( )  n nk k nk k

k m k m
Ax a x a x

< ≥

= +∑ ∑  

( )

( )

( )
,

         ( )

         

         

nk nk nk
k m k m

nk
k m

nk
k Y k m

nk nk
k m

x a x a a

x a L A

limsupx a

x a a

θ

ε

∞ ∞
< ≥

∞
<

∈ ≥

∞
≥

≤ + −

≤ +

− +

+ −

∑ ∑

∑

∑

∑
By  using the regularity of A, we have limsup(Ax)n ≤ 
Lθ(A)—limsupx + ε.
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4. Results
We study the concepts of lacunary A-convergent and la-
cunary A-core and proved several important properties 
of lacunary sequence.
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Since ε is arbitrary we complete the proof.

3. Rates of Lacunary A-Convergent
Like (Duman et al. 2003, Fridy 1978) defined rates of sta-
tistical A-convergence. Here we define rates of lacunary 
A-convergence.

Definition 3.1 Let A = (ank) be a nonnegative regular sum-
mability matrix,  θ = {kr} be a lacunary sequence and hr := 
kr - kr-1 → ∞ as r → ∞. We say that the sequence x = {xk} is 
lacunary convergent to the number with the rate of  o(hr) 
if for every ε > 0,

:

1lim = 0 
r k

nkn k I x Lr

a
h ε→∞

∈ − ≥
∑ .

In this case, it is denoted by Lθ(A)—o(hr) = xk - L (k→∞).

Definition 3.2 Let  θ = {kr} be a lacunary sequence and               
A = (ank) be a nonnegative regular summability matrix 
and let hr be sequence x = {xk} is lacunary convergent A-
bounded with the rate of O(hr) if for every ε > 0,

: ( )r

1sup <  
h

r k

nk
n k I x L

a
ε∈ − ≥

∞∑ .

In this case, it is denoted by Lθ(A)—o(hn) = xk - L.

Theorem 3.3 Let x = {xk}, y = {yk} be two sequences and 
{kn},{kn} lacunary sequences.

Assume that A = (ank) is a nonnegative regular summabil-
ity matrix, hr := kr - kr-1→∞ and tr := kr - kr-1→∞. If for some 
real number L, L we have Lθ(A)—o(hr) = xk - L  and (as 
k→∞), Lθ(A)—o(hr) = xk - L then for pr = max{hr, tr}.                                                         

i) 	 (xk - L) ± (yk - L) = Lθ(A) - o(pk).

ii) 	(xk - L)(yk - L) = Lθ(A) - o(pk).

Proof 

i)	  
                 r
( ) ( ) ( ) 2

      r
( ) 2

1 1   
h

1                  
t

r r
k k

r

k

nk nk
k I k Ir

x L yk L x L

nk
k I

y L

a a
p

a

εε

ε

∈ ∈
− ± − ≥ − ≥

∈
− ≥

= ≤

+

∑ ∑

∑

so (xk - L) ± (yk - L) = Lθ(A) - o(pk).

ii)	  
                  
( )( ) ( ) 2

       
( ) 2

1 1   

1                   

r r
k k k

r

k

nk nk
k I k Ir r

x L y L x L

nk
k Ir

y L

a a
p h

a
t

ε ε

ε

∈ ∈
− − ≥ − ≥

∈

− ≥

≤∑ ∑

∑

 


