Karaelmas Science and Engineering Journal Journal home page: http://fbd.beun.edu.tr **Research Article**

Lacunary A - Convergence

Nazmiye Gönül

Bülent Ecevit University, Department of Mathematics, Faculty of Arts and Science, Zonguldak

Abstract

In this paper we introduce the concept of Lacunary $A -$ Summability. We also give the relations between these summability and Lacunary *A* – statistical Summability. Following the concept of statistical *A* – limit superior and inferior, we give a definition of Lacunary *A* – limit superior and inferior which yields natural relationships among these ideas: x is Lacunary A-convergent if and only if $L_{\theta}(A) - \lim_{(n\to\infty)} supx = L_{\theta}(A) - \lim_{(n\to\infty)} infx$. Lacunary A – core of x is also introduced and it is proved that a bounded sequence that A – summable to its Lacunary A – limit superior is Lacunary A-convergent.

Keywords: Lacunary convergence, Lacunary A – summability, Lacunary A – convergence, Lacunary A – core

1. Introduction

We now introduce some notation and basic definitions used in this paper. Let $A = (a_{nk})$ be a summable infinite matrix. For a given sequence $x = \{x_k\}$, the A- transform of *x*, denoted by $Ax := ((Ax)_n)$, is given by $(Ax)_n = \sum_{k=1}^{\infty} a_k x_k$ provided that the series converges for each *n*∈ℕ, the set of all natural numbers.

We say that A is regular if $\lim_{n\to\infty}(Ax)_n = L$ whenever limn→∞ *xn* =*L* (Freedman and Sember 1981). If *A*=(*ank*) be an infinite matrix, then *Ax* is the sequence whose *nth* term is given by $A_n(x) = \sum_{k=1}^{\infty} a_{nk} x_k$. Thus we say that *x* is *A* summable to *L* if $\lim_{n\to\infty} A_n(x) = L$. (Fridy and Miller 1991). The statistical convergence is depend on the density of subsets of ℕ. A subset *K* of ℕ is said to have density $\delta(K) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_K(k)$ where χ_K is the characteristic function of K (Fridy 1953). The *A*-density of *K* is defined by $\delta_A(K) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{\infty} a_{nk} \chi_K(k)$ provided the limit exists, where χ_{K} is the characteristic function of *K*. Then the sequence $x:=\{x_k\}$ is said to be *A*-statistically convergent to the number *L* if, for every $\varepsilon > 0$, $\delta_A \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\} = 0$ or equivalently $\lim_{n\to\infty}\sum_{k|x_k\text{-}L|\geq \varepsilon} a_{nk} = 0$. We denote this limit by *stA-*lim*n→∞ x=L* (Duman et al. 2003). Let *θ={k^r* } be a sequence of positive integers such that $k_0 = 0$, $0 \le k_{r-1} \le k^r$ and $h_{r} := k_{r} - k_{r-1} \rightarrow \infty$ (*r*→∞). Then θ is called a *lacunary sequence*. The intervals determined by $[k_{r+1}, k_r]$ will be denoted by I_r :=[k_{r-1} , k_r] and ratio $\frac{R_r}{k_{r-1}}$ *r r k* $\frac{k_r}{k_{r-1}}$ will be denoted by η_r . Lacunary sequences have been studied in (Fridy and Orhan 1996, Aktuglu and Gezer 2009). A sequence $x:=\{x_{k}\}$ is called lacunary statistical convergent to L, if

$$
\lim_{r \to \infty} \frac{1}{h_r} \Big| \{ k \in I_r : \Big| x_k - L \Big| \ge \varepsilon \} \Big| = 0,
$$

Corresponding author: nazmiyegonul81@hotmail.com.tr

where $|K|$ denotes the cardinality of the set K. For a real number sequnce *x*, let *N, M* denote the sets:

N:={*a*∈ℝ: *δ* {*k*:*x_k*>*a*} ≠ 0} *M*:={ $b \in \mathbb{R}$: *δ* { $k: x_k < b$ } ≠ 0}.

If *x* is a real number sequence, then the *statistical limit superior* of *x* and the *statistical limit inferior* of *x* is respectively given by

$$
st - \limsup_{n \to \infty} x := \begin{cases} \sup N, & \text{if } N \neq \phi \\ +\infty, & \text{if } N = \phi \end{cases},
$$

$$
st - \liminf_{n \to \infty} x := \begin{cases} \inf M, & \text{if } M \neq \phi \\ +\infty, & \text{if } M = \phi \end{cases}
$$

In (Mursaleen, et al. 2009) defined statistical *A*-summability as following. Let $x = \{x_k\}$ be a sequence of real numbers and $A = (a_{nk})$ be a nonnegative regular matrix. We say that *x* is statistical *A*-summability to *L* if for every $\varepsilon > 0$,

$$
\lim_{n\to\infty}\frac{1}{n}\Big|\{i\leq n:\Big|y_i-L\Big|\geq \varepsilon\}\Big|=0,
$$

where $y_i = A_i(x)$.

2. Lacunary A-Summability

In this section we define Lacunary *A*-sum-mability for a nonnegative regular matrix *A* and find its relationship with *A*- lacunary convergence.

Definition 2.1 Let $\theta = \{k_{r}\}\$ be a lacunary sequence, $x = \{x_{k}\}\$ be a sequence of real numbers and $A=(a_{nk})$ be a nonnegative regular matrix. We say that *x* is Lacunary *A*-summability to *L* if for every *ε*>0,

$$
\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |y_k - L| \ge \varepsilon\}| = 0,
$$

where $y_k = A_k(x)$. In this case, we write $L_\theta - \lim_{n \to \infty} Ax = L$.

Remark 2.1 If *A* is the identity matrix, then lacunary *A*convergence coincides with the ordinary convergence. It is not hard to see that every convergent lacunary sequence is lacunary *A*-convergent.

Remark 2.2 Every *A*-summable sequence may not be lacunary *A*-convergent.

Remark 2.3 Note that every statistical convergent sequences is lacunary *A*-convergent.

The concepts of the statistical *A-limit superior* and *inferior* have been introduced in (Fridy and Orhan 1996).

Definition 2.2 Let $\theta = \{k_{r}\}\$ be a lacunary sequence, $x = \{x_{k}\}\$ be a sequence of real numbers and *yi* =*Ai (x)* be a nonnegative regular matrix. If x is a real number sequence, then the *lacunary A-limit superior* of *x* and the *lacunary A-limit inferior* of *x* are respectively given by

$$
L_{\theta}(A) - \limsup_{n \to \infty} x := \begin{cases} \sup Y, & \text{if } Y \neq \phi \\ -\infty, & \text{if } Y = \phi \end{cases},
$$

$$
L_{\theta}(A) - \liminf_{n \to \infty} x := \begin{cases} \inf Z, & \text{if } Z \neq \phi \\ +\infty, & \text{if } Z = \phi \end{cases}
$$

where *Y*:={ $a \in \mathbb{R}$: $\delta\{i \in I_r : y_i > a\} \neq 0$ } and

$$
Z{:=}\{b{\in}\mathbb{R}{:}\; \delta\{i\in I_{\vec{r}}\colon y_i\leq b\}\neq 0\}.
$$

Now we give another lacunary analogue of a very basic property of convergent sequences (Mursaleen et al. 2009).

Definition 2.3 Let $y_i = A_i(x)$ and $\theta = \{k_i\}$ be a lacunary sequence, then the real numbers sequence x is said to be lacunary *A*-bounded if there is a number *K* such that

$$
\delta\{i\in I_{\vec{r}}\mid y_{i}\mid Y_{i}\}=0.
$$

Theorem 2.1 If $\varphi = L_{\theta}(A) - \lim_{n \to \infty} \sup x$ is finite, then for every positive number *ε*>0,

$$
\delta\{i \in I_{\tau}: |y_i| > \varphi \text{-}\varepsilon\} \neq 0 \text{ and}
$$

$$
\delta\{i \in I_{\tau}: |y_i| > \varphi + \varepsilon\} = 0.
$$

Proof This is clear from the definition of *Lacunary A-limit inferior* and *Lacunary A-limit superior*.

Theorem 2.2 Let $\theta = \{k_{r}\}\$ be lacunary sequence then for any real numbers sequence *x*, we have

$$
L_{\theta}(A) - \liminf_{n \to \infty} \inf \{x \le L_{\theta}(A) - \limsup_{n \to \infty} \sup x.
$$

Proof First consider the case in which $L_{\theta}(A) - \limsup_{n \to \infty} x = -\infty$. This implies that *Y* = \emptyset , so for every $a \in \mathbb{R}$: $\delta\{i \in I_r : y_i > a\}$ $= 0$ and $\delta\{i \in I_r : y_i \le a\} = 1$, so for every $b \in \mathbb{R} : \delta\{i \in I_r : y_i \le b\}$ ≠ 0. Hence, *L^θ (A)*—lim*n→∞supx = -∞*. The case in which *L^θ (A)*—lim_{*n→∞}supx* = ∞, can be proved similarly. Now, γ :=</sub> $L_{\theta}(A) - \lim_{n \to \infty} \sup x$ is finite and let $\varphi := L_{\theta}(A) - \lim_{n \to \infty} \inf x$. Given $\epsilon > 0$ we show that $\gamma + \varphi \in \mathbb{Z}$, so that $\varphi \leq \gamma + \varepsilon$. By Theorem 2.2, $\delta\{i \in I_r : y_i > \gamma + \frac{\varepsilon}{2}\} = 0$, because $\gamma = L_\theta(A)$ lim_{*n→∞}supx*. Similarly $\delta\{i \in I_r : y_i \le \varphi + \varepsilon\} = 1$ Hence $\varepsilon + \gamma \in \mathbb{Z}$.</sub> By definition φ := $L_{\theta}(A) - \lim_{n \to \infty} infx$, we conclude that $\varphi \leq$ *γ + ε⁄ 2*; and since ε is arbitrary this gives us *φ ≤ γ*.

From Theorem 2.1 and definition, it is clear that

$$
\liminf_{n \to \infty} x \le L_{\theta}(A) - \liminf_{n \to \infty} x
$$

\n
$$
\le L_{\theta}(A) - \limsup_{n \to \infty} x \le \limsup_{n \to \infty} x \le \limsup_{n \to \infty} x
$$

for any sequnce *x*.

Theorem 2.3 A lacunary *A*-bounded sequence *x* is lacunary *A*-convergent if and only if $L_{\theta}(A) - \lim_{n \to \infty} \inf x = L_{\theta}(A) - \lim_{n \to \infty} \sup x$

Proof Let γ := $L_{\theta}(A) - \lim_{n \to \infty} \sup x$ and φ := $L_{\theta}(A) - \lim_{n \to \infty}$ *infx*. First assume that $γ = φ$ and define $φ = L$. If $ε > 0$ then

 $\delta\{i \in I_r : y_i > L + \frac{\epsilon}{2}\} = 0$ and $\delta\{i \in I_r : y_i < L - \frac{\epsilon}{2}\} = 0$. Hence L_{ϵ} *(A)*—lim_{*n→∞}* $x = L$. Next assume $L_{\theta}(A)$ —lim_{*n→∞*} $x = L$ and</sub> ε >0. Then δ {*i*∈*I_r*: | *y_i* - *L* | ≥ ε } = 0, so

$$
\delta\{i{\in}I_i; y_i \geq L+\varepsilon\}=0
$$

which implies that $L \leq \varphi$. On the other hand $\delta\{i \in I_r : y_i \leq L - \varphi\}$ *ε⁄ 2*} = 0, by using the Theorem 2.2, we have *γ = φ*.

(Osama and Edely 2009) proved *β*- statistical convergent relationship with *β*-summable. Similarly, we can give following theorem.

Theorem 2.4 If the number sequence x is bounded above and lacunary *A*-summability to the number $L_{\theta}(A)$ — $\lim_{n\to\infty} \sup x = L$, then *x* is lacunary *A*-convergent to *L*.

Proof Suppose that *x* is not lacunary *A*-convergent to *L*. Then by Theorem 2.3, $L_{\theta}(A) - \lim_{n \to \infty} infx \leq L$, so there is a number $K < L$ such that $\delta\{k \in I_i : y_k < K\} \neq 0$. Let $K_1 = \{k \in I_i : X_k = I\}$. *y_k* < *K*}. Then for every ε>0, $δ$ { $k ∈ I$ _{*;*}: *y_k* > *L* + $ε$ } = 0. We can write *K*₂={*k*∈*I_{<i>r*}</sub>: *K* ≤ *y*_{*k*} ≤ *L* + *ε*} and *K*₃={*k*∈*I_{<i>r*}</sub>: *y*_{*k*} > *L* + *ε*}, and let *P* = $supy_k < \infty$. Since $\delta(K_1) \neq 0$, there are some *n* such that

$$
\limsup_{n}\sum_{k\in K_1}a_{nk}\geq m>0,
$$

and for each $n, j \in \mathbb{N}$, $\sum_{k=1}^{\infty} |a_{nk}(j)x_k| < \infty$. Now

$$
\sum_{k=1}^{\infty} a_{nk}(j)x_k = \sum_{k \in K_1} a_{nk}x_k + \sum_{k \in K_2} a_{nk}x_k + \sum_{k \in K_2} a_{nk}x_k + \sum_{k \in K_1} a_{nk}x_k + \sum_{k \in K_1} a_{nk}(j) + (L + \varepsilon) \sum_{k=1}^{\infty} a_{nk}(j) - (L + \varepsilon) \sum_{k \in K_1} a_{nk} + o(1) + \varepsilon \left(\sum_{k=1}^{\infty} a_{nk}(j) - m(L - K) + \varepsilon \left(\sum_{k=1}^{\infty} a_{nk}(j) - d \right) + o(1)
$$

Since *ε* is arbitrary, it follows that

$$
L_{\theta}(A) - \lim_{n \to \infty} \inf x \le L - m(L - K) < L
$$

Hence *x* is not lacunary *A*-summable to *L*.

Theorem 2.5 Let $\theta = \{k_{r}\}$ be a lacunary sequence. Then statistical *A*-convergence implies lacunary *A*-convergence if and only if lim*r→∞supη^r < ∞*.

Proof First, assume that *θ* be a statistical *A*-convergent sequence and lim*r→∞supη^r < ∞* then there exists a positive

number *M* such that η_r < *M* for all $r \geq 1$. Lettting

$$
\lim_{r \to \infty} \frac{1}{h_r} \left| \left\{ k \in I_r : \left| y_k - L \right| \ge \varepsilon \right\} \right| = 0,
$$

and $\epsilon > 0$ we can then find an $r_0 \in \mathbb{N}$ such that ${1 \over h_r} |\{k \in I_r : |y_k - L| \ge \varepsilon\}| = 0$ for all $r > r_0$.

Now let $\sup_{r} \frac{1}{h_r} \left| \left\{ k \in I_r : \left| y_k - L \right| \ge \varepsilon \right\} \right|$ and let *n* be any integer satisfying $k_{r-1} < n < k_r$ then

$$
\frac{1}{n}|k \leq n : |y_k - L| \geq \varepsilon \leq \frac{1}{n} |\{k \in I_r : |y_k - L| \geq \varepsilon\}|
$$

\n
$$
\leq \frac{1}{k_{r-1}} |\{k \in I_r : |y_k - L| \geq \varepsilon\}|
$$

\n
$$
\leq \frac{Kr_0}{k_{r-1}} + \frac{\varepsilon k_r - kr_0}{k_{r-1}}
$$

\n
$$
\leq \frac{Kr_0}{k_{r-1}} + \varepsilon \eta_r
$$

\n
$$
\leq \frac{Kr_0}{k_{r-1}} + \varepsilon M
$$

and the sufficiency follows immediately. Conversely, assume that $\lim_{r\to\infty} \sup_{r} r_r < \infty$. Since $\theta = \{k_r\}$ is a lacunary sequence, we can choose a subsequence $\{k_{ri}\}$ of θ so that $k_{\text{r(i)}}$ > *j*, and then, define

$$
x_i = \left\{ \begin{array}{ll} 1, & \text{ if } k_{r(j)-1} < i \leq 2k_{r(j)-1,} & \textit{for some } j = 01, 2, \cdots \\ 0, & \textit{otherwise} \end{array} \right\}
$$

and if $r \neq r(j)$, then $\frac{1}{h_r} \Big| \Big\{ k \in I_r : |y_k - L| \geq \varepsilon \Big\} \Big| = 0$. Thus

$$
\frac{1}{h_r} \sum_{k \in I_r; |x_k - L| \ge \varepsilon} a_{nk} = \frac{k_{r(j)-1}}{k_{r(j)} - k_{r(j)-1}} < \frac{1}{j-1}
$$

if $r \neq r(j)$, $\frac{1}{1}$ $\frac{1}{h_r}$ | { $k \le n$: | $y_k - L$ |≥ ε } | = 0 for every

$$
\frac{1}{k_{r(j)}} \sum_{k \in I_r: |x_k - L| \ge \varepsilon} a_{nk} \ge \frac{1}{k_{r(j)}} \left(k_{r(j)} - 2k_{r(j)-1} \right)
$$

$$
= \left(1 - \frac{2k_{r(j)-1}}{k_{r(j)}} \right)
$$

$$
> 1 - \frac{2}{j}
$$

which converges to 1, and for $i = 1,2,...2k_{r(i)-1}$,

$$
\frac{1}{2k_{r(j)-1}}\frac{1}{h_r}\sum_{k\in I_r:\|x_k-L\|\geq \varepsilon}a_{nk}=\frac{k_{r(j)-1}}{2k_{r(j)-1}}=\frac{1}{2}
$$

Then, it follows that x_k is not lacunary *A*-convergent.

Definition 2.4 If *x* is a lacunary *A*-bounded sequence, then the lacunary *A*-core of *x* is the closed interval

$$
\left\lfloor L_{\theta}(A) - \liminf_{n \to \infty} \inf X, L_{\theta}(A) - \limsup_{n \to \infty} \sup X \right\rfloor.
$$

In this case *x* is not lacunary *A*- bounded, $L_{\theta}(A)$ - core $\{x\}$ is defined accordingly as either $[L_{\theta}(A) - \lim_{n \to \infty} infx, \infty)$ or $(-\infty, L_{\theta}(A) - \lim_{n \to \infty} supx]$ and $(-\infty, \infty)$.

It is clear from (Theorem 2.3) that for any sequence x ; L_a *(A)* − *core* $\{x\}$ ⊆ *core* $\{x\}$ where *core* $\{x\}$ is usual core.

Lemma 2.1 Let *A* satisfy $\sup_{n} \sum_{k \in I_n} a_{nk} < \infty$, then $\lim_{n \to \infty} \sup Ax$ ≤ lim*n→∞supx* for every *x*∈*l [∞]* if and only if *A* is regular, $\lim_{n\to\infty}\sum_{k=1}^{n} a_{nk} = 0$ such that $\delta_A[I_r]=0$ and $\lim_{n\to\infty}\sum_{k=1}^{\infty} a_{nk} = 1$.

Proof (\Rightarrow) Let *A* satisfies $\lim_{n\to\infty} \sup Ax \leq L_{\theta}(A) - \lim_{n\to\infty}$ *supx* and $x \in l_{\infty}$, then $L_{\theta}(A)$ —limsupx \leq limsupx and since *Ax*∈*l ∞*.

$$
\sup_{n} \sum_{k \in I_{r}} |a_{nk}| < \infty. \text{ By } \limsup Ax \leq L_{\theta}(A) - \limsup x \text{ we have}
$$
\n
$$
-L_{\theta}(A) - \limsup (-x) \leq -\limsup (-Ax)
$$
\n
$$
\leq \limsup Ax \leq L_{\theta}(A) - \limsup x \text{ and }
$$
\n
$$
L_{\theta}(A) - \liminf x \leq \liminf Ax
$$
\n
$$
\leq \limsup Ax \leq L_{\theta}(A) - \limsup x.
$$

If $x \in l_{\infty}$ and x is lacunary *A*-convergent, we have $L_{\theta}(A)$ $liminf x = L_{\theta}(A) - lim \sup x$. So $lim Ax \le L_{\theta}(A) - lim x$. Hence *A* is regular and $\lim_{n\to\infty}\sum_{k\in I_r}|a_{nk}|=0$, such that $\delta_A\{I_r\}=0$. Also since *L^θ (A)*—*limsupx ≤ limsupx* and by hipotesis lim*supAx ≤ limsupx* and so

$$
\lim_{n\to\infty}\sum_{k=1}^{\infty}a_{nk}=1
$$

(⇐) Let *A* be regular such that δ_A {*I_r*</sub>} = 0, $\lim_{n\to\infty}$ $\sum_{k\in I_r} |a_{nk}|$ = 0. If $x \in l_\infty$ then $Ax \in l_\infty$ and $L_\theta(A)$ — *limsupx* is finite. Given $\varepsilon > 0$ and *Y*:={ k : x_k > $L_{\theta}(A)$ - *limsupx* + ε }. Thus $\delta_A\{Y\}$ = 0 and if $k \notin Y$ then $x_k < L_{\theta}(A) - \limsup x + \varepsilon$.

For a fixed positive integer m we write

$$
(Ax)_n = \sum_{k < m} a_{nk} x_k + \sum_{k \ge m} a_{nk} x_k
$$
\n
$$
\le ||x||_{\infty} \sum_{k < m} |a_{nk}| + ||x||_{\infty} \sum_{k \ge m} (|a_{nk}| - a_{nk})
$$
\n
$$
\le ||x||_{\infty} + \sum_{k < m} |a_{nk}| L_{\theta}(A)
$$
\n
$$
-(\text{limsup} x + \varepsilon) \sum_{k \in T, k \ge m} |a_{nk}|
$$
\n
$$
+ ||x||_{\infty} \sum_{k \ge m} (|a_{nk}| - a_{nk})
$$

By using the regularity of *A*, we have $limsup(Ax)$ _n \le *Lθ (A)*—*limsupx + ε.*

Since ε is arbitrary we complete the proof.

3. Rates of Lacunary A-Convergent

Like (Duman et al. 2003, Fridy 1978) defined rates of statistical *A*-convergence. Here we define rates of lacunary *A*-convergence.

Definition 3.1 Let $A = (a_{nk})$ be a nonnegative regular summability matrix, $\theta = \{k_{r}\}\$ be a lacunary sequence and $hr :=$ k_r - k_{r-1} $\rightarrow \infty$ as $r \rightarrow \infty$. We say that the sequence $x = \{xk\}$ is lacunary convergent to the number with the rate of $o(h_r)$ if for every $\varepsilon > 0$,

$$
\lim_{n\to\infty}\frac{1}{h_r}\sum_{k\in I_r:\,|x_k-L|\geq\varepsilon}a_{nk}=0.
$$

In this case, it is denoted by $L_{\theta}(A) - o(h_{r}) = x_{k} - L$ (*k*→∞).

Definition 3.2 Let $\theta = \{k_{r}\}\$ be a lacunary sequence and $A = (a_{nk})$ be a nonnegative regular summability matrix and let h_r be sequence $x = \{x_k\}$ is lacunary convergent *A*bounded with the rate of $O(h_r)$ if for every $\varepsilon > 0$,

$$
\sup_n \frac{1}{h_r} \sum_{k \in I_r: |(x_k - L)| \geq \varepsilon} a_{nk} < \infty.
$$

In this case, it is denoted by $L_{\theta}(A) - o(h_n) = x_k - L$.

Theorem 3.3 Let $x = \{x_k\}$, $y = \{y_k\}$ be two sequences and {*kn*},{*kn* } lacunary sequences.

Assume that $A = (a_{n})$ is a nonnegative regular summability matrix, $h_r := k_r - k_{r-1} \rightarrow \infty$ and $t_r := k_r - k_{r-1} \rightarrow \infty$. If for some real number *L*, *L* we have $L_{\theta}(A) - o(h_{\tau}) = x_{k} - L$ and (as $(k \rightarrow \infty)$, $L_{\theta}(A) - o(h_{r}) = x_{k} - L$ then for $p_{r} = max\{h_{r}, t_{r}\}.$

i)
$$
(x_k - L) \pm (y_k - \tilde{L}) = L_\theta(A) - o(p_k).
$$

\nii) $(x_k - L)(y_k - \tilde{L}) = L_\theta(A) - o(p_k).$

Proof

i)
$$
\frac{1}{p_r} = \sum_{\substack{k \in I_r \\ |(x_k - L) \pm (yk - \hat{L})| \ge \varepsilon}} a_{nk} \le \frac{1}{h_r} \sum_{\substack{k \in I_r \\ |(x_k - L)| \ge \frac{\varepsilon}{2} \\ |(y_k - \hat{L})| \ge \frac{\varepsilon}{2}}} a_{nk}
$$

so
$$
(x_k - L) \pm (y_k - L) = L_\theta(A) - o(p_k)
$$
.

ii)
$$
\frac{1}{p_r} \sum_{\substack{k \in I_r \\ |(x_k - L)(y_k - \bar{L})| \geq \varepsilon}} a_{nk} \leq \frac{1}{h_r} \sum_{\substack{k \in I_r \\ |(x_k - L)| \geq \sqrt{\varepsilon}/2}} a_{nk}
$$

$$
\frac{1}{t_r}\sum_{\substack{k\in I_r\\ |(y_k-\tilde{L})|\geq \sqrt{\varepsilon}/2}}a_{nk}
$$

4. Results

We study the concepts of lacunary A-convergent and lacunary A-core and proved several important properties of lacunary sequence.

5. Acknowledgements

The author would like to thank the referees and Yusuf Kaya for their careful reading of this paper.

6. References

- **Aktuğlu, H., Gezer H. 2009.** Lacunary equi-statistical convergence of positive linear operators, *Cent. Eur. J. Math.*, 558-567.
- **Connor, J. 1988.** The statictical and strong p Cesaro convergence of sequences. *Analysis,* 47-63.
- **Connor, JS., Kline, J. 1996.** On statistical limit points and the consistency of statistical convergence, *J. Math. Anal. Appl.,* 197:392-399.
- **Duman, O., Khan, MK., Orhan, C. 2003.** A-statistical convergence of approximation operators. *Math. Inequal. Appl.,* 689-699.
- **Freedman, AR., Sember, JJ. 1981.** Density and summability. *Pac. J. Math*, 95: 293-305.
- **Fridy, JA. 1953.** Generalized asymtotic density. *Am. J. Math.* 75:335-346.
- **Fridy, JA. 1978.** Minimal rates of summability, *Can. J. Math.,* 30: 808-816.
- **Fridy, J., Miller, HI. 1991.** A matrix characterization of statistical convergence. *Analysis* 11: 59-66.
- **Fridy, JA., Orhan, C. 1993.** Lacunary statistical convergence. *Pac. J. Math*.,160:43-51.
- **Fridy, JA., Orhan, C. 1996.** Statical limit superior and limit inferior. *Proc. Amer. Math. Soc.*,125 (12): 3625-3631.
- **Mursaleen M., Osama H., Edely, H. 2004.** Generalised statistical convergence. *Inform. Sci.*, 287-294.
- **Mursaleen M., Osama H., Edely, H. 2009.** On statistical A-summability. *Math. Comput. Model.,* 672-680.