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Abstract 

Android, the most widely-used mobile operating system, attracts the attention of malware developers as well 

as benign users. Despite the serious proactive actions taken by Android, the Android malware is still 

widespread as a result of the increasing sophistication and the diversity of malware. Android malware 

detection systems are generally classified into two: (1) Static analysis, and (2) dynamic analysis. In this study, 

a novel Android malware detection framework, namely, Hybroid, was proposed which combines both the 

static and dynamic analysis techniques to benefit from the advantages of both of these techniques. An up-to-

date version of Android, namely, Android Oreo, was specifically employed in order to handle the problem 

from an up-to-date perspective as the recent versions of Android provide new security mechanisms, which are 

discussed with this study. Hybroid was evaluated on a large dataset that consists of        applications, and 

the accuracy of Hybroid was calculated as high as       when it was utilized with the J48 classification 

algorithm which outperforms the state-of-the-art studies. The key findings in consequence of the experimental 

result are discussed in order to shed light on Android malware detection.  

 

Keywords: Android malware detection, mobile malware, mobile security, static analysis, dynamic analysis, 

Android 

 

Hybroid: Benzersiz Hibrit Bir Android Kötücül Yazılım Tespit Uygulama Çatısı  

Öz 

Dünyanın en çok kullanılan mobil işletim sistemi olan Android, zararsız kullanıcılar gibi kötücül yazılım 

geliştiricilerin de ilgisini çekmektedir. Android tarafından ön alıcı ciddi eylemler alınmasına rağmen Android 

kötücül yazılım artan kötücül yazılım çeşitliliği ve karmaşıklığı sebebiyle hala yaygındır. Android kötücül 

yazılım sistemleri genellikle ikiye ayrılır: (1) Statik analiz ve (2) dinamik analiz. Bu çalışmada statik ve 

dinamik analizi birleştirerek her ikisinin de avantajlarından faydalanan Hybroid ismiyle benzersiz bir hibrit 

Android kötücül yazılım tespit uygulama çatısı sunulmuştur. Çalışmada tartışıldığı üzere Android'in yeni 

sürümlerinde sunulan yeni güvenlik mekanizmalarıyla birlikte problemi güncel bir bakış açısıyla ele almak 

için Android'in güncel bir sürümü, Android Oreo, kullanılmıştır. Hybroid        uygulamadan oluşan geniş 

bir verisetinde test edilmiş ve Hybroid'in doğruluğu J48 sınıflandırma algoritması kullanıldığında en gelişkin 

uygulamaları geride bırakarak       kadar yüksek çıkmıştır. Deneysel sonuçlar neticesinde elde edilen en 

önemli bulgular Android kötücül yazılım tespitine ışık tutmak amacıyla tartışılmıştır. 

 

Anahtar Kelimeler: Android kötücül yazılım tespiti, mobil kötücül yazılım, mobil güvenlik, statik analiz, 

dinamik analiz, Android. 
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1. Introduction 

The number of global smartphone users is 

growing rapidly thanks to the easiness and 

accessibility provided by them. The GSM 

Association predicts that the number of 

unique mobile subscribers will reach     

billion by 2025 which is equivalent to 

    of the world‟s population (“The Mobile 

Economy 2018,” 2018). Android, Google‟s 

mobile operating system, has dominated the 

global smartphone market. According to a 

recent report by IDC, Android‟s global 

smartphone market share has reached       

in the third quarter of 2018 (“IDC - 

Smartphone Market Share,” 2019). During 

the annual developer conference, Google I/O 

2017, Google has announced that there are   

billion monthly active Android devices 

globally (Burke, 2017; Popper, 2017). The 

main reasons behind this popularity can be 

listed as follows: (1) Being an open-source 

distribution which has made it a favorite for 

both consumers and developers since that 

makes the operating system to be customized 

and extended by companies for free such as 

OxygenOS
1
, (2) being developed with the 

help of a consortium of    technology firms 

namely Open Handset Alliance
2
, (3) building 

on the Linux kernel which is developed with 

the contributions of almost        

developers from a large number of 

companies, and is a well-designed and stable 

software as the result of    years of 

experience, (4) the high level of 

sophistication (Aresu, Ariu, Ahmadi, 

Maiorca, & Giacinto, 2015; Karbab, 

Debbabi, Derhab, & Mouheb, 2018; A. 

Kumar, Kuppusamy, & Aghila, 2018; “Who 

Writes Linux? Almost 10,000 Developers,” 

2013; Yang, Wang, Ling, Liu, & Ni, 2017). 

This popularity has also attracted the 

attention of malicious software (malware) 

                                                 
1
 https://www.oneplus.com/3t/oxygenos 

2
 https://www.openhandsetalliance.com 

developers as Sophos reports that the number 

of malware has risen to nearly     million in 

2017 which was under     million in 2015 

(“SophosLabs 2018 Malware Forecast,” 

2018). The official application market of 

Android, Play Store
3
, contains malware even 

though it is regularly scanned for malware 

through an always-on service provided by 

Google named Google Play Protect
4
 and the 

found ones are immediately removed from 

the store (“Android – Google Play Protect,” 

2021; Cunningham, 2017; Villas-Boas, 

2018). But many devices are affected until 

they are removed from the store. For 

example, according to the reports, the 

Android malware „Judy‟ is thought to be 

reached      million devices through the 

Play Store (Morris, 2017). Similarly, 

„FalseGuide‟, which is an Android malware 

that hides its malicious actions in over forty 

fake companion guide applications for 

popular mobile games such as Pokemon Go 

and FIFA Mobile has affected about   

million devices (M. Kumar, 2017). Most 

recently, ESET has reported an Android 

trojan that steals money from PayPal 

accounts even bypassing PayPal‟s two-factor 

authentication (Stefanko, 2018). When the 

literature is investigated, the aims of Android 

malware can be listed as follows: (1) 

Privilege escalation, (2) turning the devices 

into bots that are ready to be controlled 

remotely, (3) causing financial charges (i.e. 

sending messages to premium numbers, etc.), 

and (4) collecting sensitive information (i.e. 

the user‟s bank detail, etc.) from devices 

(Arshad, Ahmed, Shah, & Khan, 2016; Fan, 

Sang, Zhang, Sun, & Liu, 2017; Grace, Zhou, 

Zhang, Zou, & Jiang, 2012; Kang, Jang, 

                                                 
3
 https://play.google.com/store 

4
 Google Play Protect is the built-in, real-time 

malware protection tool for Android that uses 

Google‟s machine learning algorithms to improve its 

malware knowledge-base and malware detection 

accuracy by scanning over 50 billion applications 

from over 2 billion devices. 
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Mohaisen, & Kim, 2015; King, Lampinen, & 

Smolen, 2011; Peng et al., 2012; Rastogi, 

Chen, & Enck, 2013; Shabtai et al., 2014; 

Stefanko, 2018; Suarez-Tangil, Tapiador, 

Peris-Lopez, & Ribagorda, 2014; Y. Wang, 

Zheng, Sun, & Mukkamala, 2013; X. Wei, 

Gomez, Neamtiu, & Faloutsos, 2012; Xue et 

al., 2017; Yang et al., 2017; Yerima, Sezer, 

McWilliams, & Muttik, 2013; Yu, Huang, & 

Yian, 2016; Zhou & Jiang, 2012). 

The security mechanism of Android solely 

depends on the permissions that are granted 

by the end-user during the application 

installation time (Bläsing, Batyuk, Schmidt, 

Camtepe, & Albayrak, 2010; Di Cerbo, 

Girardello, Michahelles, & Voronkova, 2011; 

Felt, Chin, Hanna, Song, & Wagner, 2011; 

Grace, Zhou, Wang, & Jiang, 2012; 

Mahmood et al., 2012). Prior to Android 6.0 

(a.k.a. Marshmallow), Android shows a 

prompt window such as the one presented in 

Fig. 1 that lists the dangerous permissions 

that the application, which is going to be 

installed, demands, and the end-user has no 

choices but to grant these permissions to the 

application in order to complete the 

installation. 

 
Figure 1. A sample prompt window 

displayed by Android, prior to Android 6.0, 

that lists the dangerous permissions 

demanded by the application during the 

installation. 

By the release of Android 6.0, the end-user is 

not prompted during the installation 

regarding the dangerous permissions that the 

application demands. Instead of that, a 

prompt window, such as the one presented in 

Fig. 2, is being displayed to the end-user 

when the application needs the access grant 

of dangerous permissions during the runtime. 

This mechanism is also known as runtime 

permissions which lets the end-user revoke 

the grant access after the installation phase. 

In addition to this ability, the user may select 

the “Deny & don’t ask again” option, which 

is displayed to users when the same 

permission is demanded by the application 

after denying, in order to always deny the 

dangerous action demanded by the 

application. Despite malware in the Android 

ecosystem is very common and risky, the 

researchers report that most of the end-users 

are unaware of the exact meanings and 

potential risks of granting these permissions, 

and they simply grant these permissions 

(Backes et al., 2012; Enck, Ongtang, & 

McDaniel, 2009; Gibler, Crussell, Erickson, 

& Chen, 2012; A.T. Kabakus & Dogru, 

2018; Kelley et al., 2012; King et al., 2011; 

Mylonas, Kastania, & Gritzalis, 2013; Singh, 

Tiwari, & Singh, 2016; Yang et al., 2017). 

The applications are able to reach sensitive 

contents (i.e. messages, contacts, location, 

etc.) and use the hardware (i.e. camera, 

storage, sensors, etc.) of the smartphone if 

the related permission, which is declared in 

the application manifest file (namely 

AndroidManifest.xml), is granted by the end-

user. 
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Figure 2. A sample prompt window 

displayed by the Android 6.0+ that asks the 

end-user‟s grant for a dangerous permission, 

namely, making and managing phone calls, 

during the runtime. 

Android malware detection approaches in the 

literature are generally divided into two: (1) 

Static analysis which focuses on analyzing 

the application through its source files which 

are obtained thanks to the reverse 

engineering techniques without executing the 

application (Alzaylaee, Yerima, & Sezer, 

2017; Enck et al., 2009; Fuchs, Chaudhuri, & 

Foster, 2009; Grace, Zhou, Zhang, et al., 

2012; Zhou & Jiang, 2012), and (2) dynamic 

analysis which executes the application in an 

isolated environment (i.e. a sandbox, a virtual 

machine, etc.) to track the behavior (i.e. 

memory usage, network access, dynamic 

taint, etc.) and the effects of the application 

on that isolated environment (Alzaylaee et 

al., 2017; Chandramohan & Tan, 2012; Liang 

& Du, 2014; Singh et al., 2016; Suarez-

Tangil, Tapiador, Peris-Lopez, & Blasco, 

2014). The advantages of static analysis are 

(1) it is fast compared to dynamic analysis as 

applications are not actually being executed 

in an isolated environment, (2) it provide a 

better code coverage as it evaluates all 

sources of an application, and (3) according 

to the related work, they are very effective in 

terms of malware detection. The main 

disadvantage of static analysis is that it fails 

to against the malware that protects its code 

through advanced obfustication techniques 

(e.g., code obfuscation) (Massarelli et al., 

2017; Moser, Kruegel, & Kirda, 2007; 

Rhode, Burnap, & Jones, 2018; C. Wang, Li, 

Mo, Yang, & Zhao, 2017), dynamic loading 

techniques (e.g., reflection) (C. Wang et al., 

2017; Zheng, Sun, & Lui, 2014), and 

encryption algorithms (Arshad et al., 2016; 

Bae & Shin, 2017; Tam, Feizollah, Anuar, 

Salleh, & Cavallaro, 2017; Tong & Yan, 

2017; C. Wang et al., 2017). The main 

advantage of dynamic analysis is that it is 

able to come through advanced obfuscation 

and dynamic loading techniques as a result of 

examining applications during execution 

(Gadhiya, Bhavsar, & Student, 2013; Zheng 

et al., 2014). The main disadvantages of 

dynamic analysis are (1) it may miss some of 

the code sections that are not executed during 

the analysis (Arshad et al., 2016), and (2) it 

takes a relatively long time to analyze 

applications compared to static analysis. To 

this end, the main objectives of the proposed 

study, namely, Hybroid, are (1) benefitting 

from the advantages of both analysis 

techniques by proposing a novel hybrid 

approach that combines both of these 

techniques, and (2) extracting a novel feature 

set that can be used to efficiently detect 

Android malware. The rest of the paper is 

structured as follows: Section 2 presents the 

related work. Section 3 describes the material 

and method used within the proposed 

approach. Section 4 discusses the key 

findings and experimental results. Finally, 

Section 5 concludes the paper with future 

directions. 

2. Related Work 

In this section, the related work is briefly 

reviewed through the analysis technique it is 

based on, namely, (1) static analysis, and (2) 

dynamic analysis. 

Static analysis 
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Stowaway (Felt et al., 2011) traces the API 

calls and aims to map them with the 

permissions in order to detect over-privileged 

applications. Sato et al. (Sato, Chiba, & 

Goto, 2013) extracts each application‟s 

malignancy score through the information 

extracted from the application manifest file, 

then calculated a malignancy score with 

threshold values. If the application‟s 

calculated malignancy score exceeds the 

threshold values, then the application is 

classified as malware. PUMA (Sanz et al., 

2012) extracts the permissions and features 

defined in the application manifest file, then 

analyzes an application through its extracted 

information. Then it classifies applications 

thanks to the utilized machine learning 

algorithms which are the algorithms that 

extract information from raw data and 

represent it in some models (Kayikci, 2018). 

Tang et al. (Tang, Jin, He, & Jiang, 2011) 

use the security distance model to measure 

the dangerous level of an application due to 

the combinations of requested permissions. 

AndroSimilar (Faruki, Ganmoor, Laxmi, 

Gaur, & Bharmal, 2013) creates a variable-

length signature to compare it with the 

signature database. It classifies an application 

as benign or malicious on the basis of the 

calculated similarity percentage. The biggest 

disadvantage of this approach when it is 

compared to the proposed one is that it can 

only detect known malware variants. 

DroidAnalytics (Zheng, Sun, & Lui, 2013) 

creates three-level signatures for each 

application on the basis of API calls and 

performs the op-code level analysis. Then it 

correlates the analysis with the existing 

malware in the database through the 

similarity score based on the class level 

signature. Kirin (Enck et al., 2009) compares 

the security configuration of an application 

with the security rules to mitigate malware at 

installation time by modifying the Android 

Application Installer. The proposed approach 

is specifically designed not to alter the core 

parts of the operating system itself (aka 

rooting). SCanDroid (Fuchs et al., 2009) 

analyzes an application‟s data flow in order 

to classify it as benign or malicious. APK 

Auditor (Abdullah Talha Kabakus, Dogru, & 

Cetin, 2015) is a permission-based static 

analysis system that extracts an application‟s 

permissions from the application‟s manifest 

file. Then it calculates a malware score 

through the extracted permissions by 

calculating a malware score for each 

permission which is calculated on the basis 

of how often the permission is demanded by 

the malicious or benign applications. If the 

application‟s calculated malware score 

exceeds the threshold score which is 

determined by utilizing the Logistic 

Regression algorithm, then the application is 

classified as malicious. Sayfullina et al. 

(Sayfullina et al., 2015) present an approach 

based on the extraction of three resources 

from the apk file namely (1) application 

manifest file, (2) classes.dex file which 

contains the compiled source code in dex 

(Dalvik executable) format which is a 

proprietary format for Java bytecode that is 

designed to be more compact and memory-

efficient than regular Java class files 

(Shabtai, Kanonov, Elovici, Glezer, & Weiss, 

2012), and (3) resources.arsc file which 

contains the compiled resources. Then they 

propose and utilize Normalized Bernoulli 

Naïve Bayes classifier in order to classify the 

applications based on these static resources. 

Bao et al. (Bao, Lo, Xia, & Li, 2017)  

propose two static analysis approaches which 

are (1) the approach that utilizes a 

collaborative filtering technique which is 

inspired from the intuition that applications 

that provide similar features usually demand 

similar permissions, and (2) the approach 

recommends permissions based on text 

mining technique that utilizes Naïve Bayes 

Multinomial classification algorithm to build 
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a prediction model by analyzing the 

description of applications which are 

available on the Play Store. The limitations 

of this approach can be listed as follows: (1) 

Not all applications do have descriptions (i.e. 

the applications in the datasets), (2) they 

detect API usages through the import 

statements but an import statement does not 

guarantee that the related API is used which 

is known as “unused import” in the context 

of Java programming language, and (3) they 

only consider the classes, which are available 

in Android SDK and Java standard libraries 

but the developers may define their own 

classes, and those classes may extend the 

classes in Android SDK or Java standard 

library thanks to the inheritance mechanism 

provided by Java programming language. 

DroidDet (Zhu et al., 2017) utilizes the 

Rotation Forest algorithm based on the static 

analysis features such as permissions, system 

events, and the rate of sensitive API calls to 

classify applications. Significant Permission 

IDentification (J. Li et al., 2018) detects 

Android malware based on permission usage. 

But unlike the related work, they do not 

extract and analyze all the permissions 

defined in the application manifest file. 

Instead of that, they propose three levels of 

pruning by mining permission data to 

identify the most significant permissions that 

can be effective in classifying Android 

applications as benign or malicious. 

MalDozer (Karbab et al., 2018) uses raw 

sequences of API calls based on neural 

networks and utilizes an automatic feature 

extraction technique during the training using 

method embedding where the input is the raw 

sequence of API calls that are extracted from 

DEX assembly. Kim et al. (Kim, Kang, Rho, 

Sezer, & Im, 2019) propose the first study of 

the multimodal deep learning to be used for 

Android malware detection. The proposed 

approach uses seven features, namely, (1) 

String feature, (2) method opcode feature, (3) 

method API feature, (4) shared library 

function opcode feature, (5) permission 

feature, (6) component feature, and (7) 

environmental feature. 

Dynamic analysis 

Androidetect (L. Wei et al., 2017) uses the 

process injection technique, Hook method, 

and inter-procedural communication that 

constructs the eigenvectors by extracting the 

characteristics of the Android application. 

CrowDroid (Burguera, Zurutuza, & Nadjm-

Tehrani, 2011) performs system call tracing 

thanks to the strace
5
 tool. Then CrowDroid 

client application creates a log file regarding 

the system calls and sends it to a remote 

server for deep analysis. K-means clustering 

algorithm is utilized through the constructed 

feature vectors. The limitation of the 

CrowDroid is the need for the installation of 

a CrowDroid client application to perform 

malware detection. Also, if a benign 

application uses more system calls, then it 

may be classified as malicious by 

CrowDroid. MADAM (Dini, Martinelli, 

Saracino, & Sgandurra, 2012) combines 

features that both the kernel-level and 

application-level and perform malware 

analysis. The drawback of the MADAM is 

that it performs whole analysis on the device 

which is not applicable since mobile devices 

generally have limited computation (e.g., 

CPU) and storage capabilities (e.g., memory, 

disk, battery) (Dini et al., 2012; Liu, Yan, 

Zhang, & Chen, 2009; Tam et al., 2017). 

MimeoDroid (Faruki, Zemmari, Gaur, 

Laxmi, & Conti, 2016) extracts features such 

as CPU and memory usages, Binder IPC 

transfers, network interaction, battery 

charging status, and permissions defined in 

the application manifest file in order to detect 

malicious behavior by utilizing tree-based 

machine learning classifiers. Andromaly 

                                                 
5
 https://strace.io 
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(Shabtai et al., 2012) is an on-device 

anomaly detector that analysis features such 

as SMS, voice call, data sent/received, and 

battery usage to detect anomalous malware 

behavior. Then Andromaly utilizes machine 

learning algorithms to classify applications as 

malicious or benign. TaintDroid (Enck et al., 

2010) is a system-wide dynamic taint 

tracking and analysis system that 

simultaneously tracks multiple sources of 

sensitive data. AppsPlayground (Rastogi et 

al., 2013) proposes a real device-based 

sandbox emulation that utilizes malware 

detection techniques such as taint tracing for 

information leakage detection (which is 

based on TaintDroid), sensitive API 

monitoring, and kernel-level monitoring for 

the detection of root exploits. Paranoid 

Android (Portokalidis, Homburg, 

Anagnostakis, & Bos, 2010) transfers the 

execution trace which is recorded by a tracer 

located in the mobile device to a remote 

server which is responsible for replaying the 

execution trace within the replica of the 

mobile device. Paranoid Android has a 

similar limitation to CrowDroid which is the 

need for the installation of its tracer on the 

mobile device. AntiMalDroid (Zhao, Ge, 

Zhang, & Yuan, 2011) monitors the behavior 

of applications and their characteristics, then 

it categorizes these characteristics as 

malicious or benign. Then the learning 

module generates signatures through the 

extracted characteristics. If the application‟s 

signature matches an existing benign 

application‟s signature in the database, then 

the application is classified as benign. If the 

application‟s signature matches a malicious 

application‟s signature in the database, this 

time the application is classified as 

malicious. 

3. Material and Method 

In this section, the material and method used 

to develop the proposed novel hybrid 

Android malware detection framework, 

namely, Hybroid, are described. 

Static analysis 

An Android application is packaged as an 

apk (Android Application Package) file 

which is basically an archive file that 

contains all the sources and resources of the 

application. A Python script was 

implemented as a part of the proposed 

framework that is responsible for (1) 

extracting features from the application 

manifest file, and (2) storing the extracted 

features in the database. The input of the 

Python script is the apk file of the analyzed 

application. A tool, namely, apktool, was 

used to extract the content of the apk files. 

This tool was executed through the 

implemented Python script using the 

subprocess
6
 module of Python. Then from 

the extracted archive, the application 

manifest file was parsed in order to retrieve 

the information related to the application. 

The Android permissions are categorized into 

three as follows (“Permissions Overview | 

Android Developers,” 2019): 

 Normal permissions are those that 

contain very little risk to the user‟s 

privacy or the operation of other 

applications. Hence, this type of 

permission is automatically granted 

by the system at install time without 

prompting the user to grant them. 

 Dangerous permissions cover areas 

where the application wants to access 

sensitive data or could potentially 

affect the user‟s stored data or the 

operation of other applications 

through harmful API calls (Felt et al., 

2011). 

 Signature permissions are granted by 

the system when the app that attempts 

                                                 
6
 https://docs.python.org/3/library/subprocess.html 
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to use permission that is signed by the 

same certificate as the app that 

defines the permission. 

Alongside these built-in permissions types, 

which are defined in the Android SDK, the 

developers may define their own 

permissions. This type of permissions is 

called “custom permissions”. Alongside the 

permissions, an application‟s activities, 

services, features, and receivers are declared 

in the application file. This information was 

also extracted and stored in the database. 

Any component that is not declared in the 

application manifest file, cannot be used in 

the application. Otherwise, the application 

simply crashes. Obviously, this rule is valid 

for the permissions, as well. The API calls 

are mapped with the built-in permissions and 

the developer should declare the related 

permission in order to use the API call(s). In 

addition to the information defined in the 

application‟s manifest file, the total number 

of the lines of code in the application source 

code files was calculated after (1) 

decompiling the Dalvik executable file 

(classes.dex) into a Java archive file (jar) by 

using the dex2jar (“Pxb1988/Dex2jar: Tools 

to Work with Android .Dex and Java .Class 

Files,” 2018) tool, and (2) extracting the jar 

file into the readable Java source code files 

by using the jd-cmd (Cacek, 2018) tool. All 

of these operations were handled 

automatically thanks to the implemented 

Python scripts. The whole static features of 

Hybroid are listed in Table 1 with their 

descriptions.  

 

Table 1. The static analysis features of Hybroid. 

 

Dynamic analysis 

The built-in emulator of Android, which 

comes with the Android SDK, was used to 

execute the application in order to monitor its 

runtime behavior. The utilized emulator‟s 

hardware and software specifications are 

listed in Table 2. 

Table 2. The utilized emulator‟s hardware 

and software specifications. 

Specification Value 

Operating 

System 

Android Oreo 8.1 x86 

API Level    

RAM       MB 

VM Heap     MB 

Network Speed  Full 

Network Latency None 

Feature Description 

                          The number of dangerous permissions defined in 

the application manifest file 

                       The number of custom permissions defined in the 

application manifest file 

                      The number of other permissions defined in the 

application manifest file 

              The number of features defined in the application 

manifest file 

               The number of broadcast receivers defined in the 

application manifest file 

              The number of services defined in the application 

manifest file 

                The number of activities defined in the application 

manifest file 

    The total number of lines of code in the 

application‟s source code files 
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The Monkey tool, which is distributed with 

the Android SDK, is designed to provide a 

random testing tool that generates random 

events to interact with the applications to 

developers (Afonso, de Amorim, Grégio, 

Junquera, & de Geus, 2015; Alzaylaee et al., 

2017; Canfora, Medvet, Mercaldo, & 

Visaggio, 2015; Spreitzenbarth, Freiling, 

Echtler, Schreck, & Hoffmann, 2013). In 

order to manage the emulator 

programmatically and monitor the 

application‟s behavior and traces, a Python 

script was implemented. Within the 

implemented Python script, a Python library 

namely AndroidViewClient (Milano, 2018) 

was utilized in order to interact with the 

emulator. The implemented Python script 

accepts the apk file as the input, and 

responsible for (1) installing the application, 

(2) detecting the launchable activity of the 

application through the aapt (Android Asset 

Packaging Tool), which is a tool provided by 

the Android SDK, (3) executing the 

application through the detected launchable 

activity, (4) waiting for the application to be 

launched for   seconds, and (5) generating 

    random events. The event generation 

was configured as follows: (1) Wait   second 

between each event, (2) the percentage of the 

system key events is set to   in order to 

prevent being pressed system keys such as 

HOME, and BACK, and (3) the timeouts and 

crashes were ignored. As a natural 

consequence of being built on the Linux 

Kernel, Android assigns a unique process id 

(PID) for each running process (application), 

and the PID of the executed application was 

detected in order to retrieve the detail 

regarding the application‟s CPU, memory, 

and network usages from the files in the 

/proc filesystem. As a total,    features, 

which are listed in Table 3, were extracted 

from the files in the /proc filesystem. When 

the execution of an application finishes, the 

obtained result of the dynamic analysis is 

stored in the database. Each time the 

emulator is started for a new analysis, it is 

restored to its initial status, which is a clean 

install of the Android operating system by 

wiping all the data created during the 

previous application execution in order to 

prevent any side effects. The average 

duration for an application to be analyzed is 

calculated as    seconds. The analysis was 

carried out on a computer with Intel Core i7-

7700HQ CPU of      GHz clock speed and 

   GB of RAM of      GHz speed. 

Table 3. The analyzed files in the /proc 

filesystem and their descriptions. 

File Description 

/proc/stat Stores information 

about process status 

/proc/[PID]/stat Stores detailed 

information about the 

process 

/proc/net/dev Stores information 

related to network 

usage 

/proc/[PID]/statm Stores detailed 

information about 

process memory status 

information 

The content of a sample /proc/stat file is 

presented in Fig. 3 as the content of the 

samples of the other analyzed files is 

presented in the Appendix. The features 

extracted from each analyzed file in the /proc 

filesystem are listed in the following tables. 

cpu  10786 12539 13662 704375 10081 3 

833 0 0 0 

cpu0 2390 2840 3145 175753 1974 3 810 0 0 

0 

cpu1 2437 3249 3047 176489 2817 0 8 0 0 0 

cpu2 2587 3283 3735 176414 2838 0 9 0 0 0 

cpu3 3372 3167 3735 175719 2452 0 6 0 0 0 

intr 1132090 20 0 0 0 2 0 0 0 1 0 46252 

13272 0 0 0 0 2 0 65688 1 0 6539 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ctxt 2292635 

btime 1546290061 

processes 7423 

procs_running 1 

procs_blocked 0 

softirq 595539 23106 112270 625 14135 0 0 

235143 92951 524 116785 

Figure 3. The content of a sample /proc/stat 

file. 

Table 4. The features that were extracted 

from the /proc/stat file with their descriptions 

according to the Linux documentation
7
 

(Bowden, Bauer, Nerin, Feng, & Seibold, 

2018). 

Feature Description 

        Normal processes 

executing in user mode 

        Niced processes 

executing in user mode 

          Processes executing in 

kernel mode 

        Twiddling thumbs 

       Servicing interrupts 

           Servicing softirqs 

         Involuntary wait 

         Running a normal guest 

             Running a niced guest 

 

                                                 
7
 The iowait feature is intentionally excluded since 

reading it from /proc/stat is not reliable according to 

the Linux documentation. 

Table 5. The features that were extracted 

from the /proc/net/dev file with their 

descriptions. 

Feature Description 

        Received packets in bytes 

          Number of received packets 

        Transmitted packets in 

bytes 

          Number of transmitted 

packets 

 

Table 6. The features that were extracted 

from the /proc/[PID]/stat file with their 

descriptions according to the Linux 

documentation (Bowden et al., 2018). 

Feature Description 

        Number of major faults 

with child's 

        Number of minor faults 

with child's 

       Kernel mode jiffies with 

child's 

       User mode jiffies with 

child's 

       Number of major faults 

       Number of minor faults 

           Number of threads 

    Resident set memory size 

    Virtual memory size 

        Which CPU the task is 

scheduled on 

      User mode jiffies 

      Kernel mode jiffies 

 

Table 7. The features that were extracted 

from the /proc/[PID]/statm file with their 

descriptions according to the Linux 

documentation (Bowden et al., 2018). 

Feature Description 

       Total program size 

(pages) 

             Size of memory 

portions (pages) 

              Number of pages that 

are shared 

            Number of pages that 

are „code‟ 
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            Number of pages of 

data/stack 

 

Sample screenshots that were captured 

during the executions of the malicious 

applications are presented in Fig. 4. Android 

malware tends to hide its malicious actions 

(B. Li, Zhang, Li, Yang, & Gu, 2018). As 

can be seen from the screenshots presented in 

Fig. 4, the malicious applications tend to hide 

their malicious actions from the end-users by 

providing some entertainment content (e.g., 

games) which is one of the commonly used 

tactics (“Infected Fake Versions of Arcade 

Games on Google Play Threatened Players 

with Nasty Trojans,” 2015; Villas-Boas, 

2018). For the Android versions prior to 

Android 6.0, since the permissions that these 

applications need for their malicious actions 

are already granted during the installation 

time, they do not need user interactions to 

complete their aims. Therefore, upgrading 

the Android operating system at least to 

Android 6.0 is highly recommended for 

comprehensive permission control. 

Figure 4. Sample screenshots that were captured during the executions of malicious 

applications. 

An overview of the architecture of Hybroid is 

presented in Fig. 5. The whole operations for 

the analysis were carried out through the 

scripts, which were implemented using the 

Python programming language. The data of 

both the applications in the dataset and their 

analysis result was stored in the database, 

namely, MongoDB
8
, which is the most 

popular NoSQL database (“DB-Engines 

Ranking - Popularity Ranking of Database 

Management Systems,” 2019; Kaur & Rani, 

                                                 
8
 https://www.mongodb.com 

2013; Violino, 2018) that provides quite 

better performance in terms of reading and 

writing data compared to the traditional SQL 

databases (Boicea, Radulescu, & Agapin, 

2012; Ming Wu, 2015; Nyati, Pawar, & 

Ingle, 2013; Parker, Poe, & Vrbsky, 2013). 

For the dynamic analysis, the built-in 

emulator of Android SDK (a.k.a. Android 

Virtual Device) was preferred since it is 
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bundled with the official IDE for Android 

development namely Android Studio
9
. 

 

 

 

4. Experimental Results and Discussion 

A dataset, that consists of 

       applications, was constructed from 

the widely-used, gold standard datasets in the 

literature. For the benign applications, the 

dataset that was constructed by (A.T. 

Kabakus & Dogru, 2018) was used which 

contains the applications from the various top 

charts (i.e. “Top Grossing Games”, “Top 

Selling Games”, “Music and Audio”, etc.) in 

the Play Store. For the malicious 

applications, Drebin (Arp, Spreitzenbarth, 

Malte, Gascon, & Rieck, 2014), F-droid, and 

Android Genome Project (Zhou & Jiang, 

2012) were intentionally preferred as they are 

widely used in the literature. The overview of 

the constructed dataset within the scope of 

Hybroid is listed in Table 8. 

Table 8. The overview of the constructed 

dataset. 

Dataset Type Number of 

                                                 
9
 https://developer.android.com/studio/ 

Applications 

Drebin (Arp et 

al., 2014) 

Malicious       

F-droid Malicious       

Android 

Genome Project 

(Zhou & Jiang, 

2012) 

Malicious       

(A.T. Kabakus 

& Dogru, 2018) 

Benign       

 

The proposed framework, Hybroid, was 

utilized with various machine learning 

algorithms in order to reveal its effectiveness 

on Android malware detection. The 

performances of the classification systems 

based on supervised learning are generally 

evaluated by the confusion matrix, which 

greatly reflects the relationship between the 

classification results and actual values 

(Afonso et al., 2015; Kang et al., 2015; 

Narudin, Feizollah, Anuar, & Gani, 2016; 

Suarez-Tangil, Tapiador, Peris-Lopez, & 

Blasco, 2014; X. Wang, Zhang, Su, & Li, 

2017; Wu, Mao, Wei, Lee, & Wu, 2012). 

Hence, the Hybroid‟s effectiveness was also 

evaluated by using the confusion matrix. The 

definitions of the metrics that the confusion 

matrix model defines are listed as follows: 

Figure 5. An overview of the architecture of Hybroid. 
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(1)    (             ) means the number of 

malicious applications that are correctly 

classified, (2)    (             ) means 

the number of benign applications that are 

correctly classified, (3)    (              ) 

means the number of malicious applications 

that are classified as benign, and (4)    

(              ) means the number of 

benign applications that are classified as 

malicious. The          is calculated as           (     )  (         

  ), the        (aka                    or            ) is calculated as            

(     ), the         is calculated as             (     ), the           is 

calculated as               (     ), the           is calculated as   

         (                  )  (                ), and the 

    (                                ) is calculated as      (         

  )  √[(     )  (     )  (     )  (     )]. Hybroid was evaluated 

with thirteen widely-used machine learning algorithms, and the best          was calculated 

as high as       and the         was calculated as low as      when the system was 

trained with the J48 algorithm as the confusion matrix of the experimental results is listed in 

Table 9. For all evaluations, a widely-used, open-source machine learning tool, namely, 

WEKA (Waikato Environment for Knowledge Analysis) (“Weka 3 - Data Mining with Open 

Source Machine Learning Software in Java,” 2021), was utilized with the default 

configurations of the machine learning algorithms. The arff file format is one of the file 

formats that WEKA supports to load data from the filesystem. Hence, the data, which was 

stored in the database, was exported to an arff file through the implemented Python script. 

Table 9. The confusion matrix of the experimental results of the evaluations of the machine 

learning algorithms. 
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The attributes were evaluated with the 

CfsSubsetEval algorithm conjunction with 

the GreedyStepwise search algorithm, the 

selected attributes were found as follows, 

respectively: (1) The number of dangerous 

permissions 

(                         ), (2) the 

total number of lines of code in the 

application‟s source code files (   ), (3) the 

niced processes executing in user mode 

(       ), (4) the number of received 

packets (         ), (5) the user-mode 

jiffies with child's (      ), and (6) the 

virtual memory size (   ). When the features 

were investigated through the experimental 

result as the analysis of each feature for both 

the benign and malicious applications is 

listed in Table 10, the following insights 

were deduced: 

 Dangerous permissions were 

demanded by malicious applications 

more than benign applications which 

are reasonable since the malicious 

applications target hazardous actions 

that are mapped to dangerous 

permissions by the Android operating 

system (see Fig. 6).  

 Activities and services were more 

widely-used in benign applications 

since their sole aim is to provide 

better service to the end-users while 

the malicious applications seek after 

to achieve their malicious actions. For 

the same reason, the average number 

of lines of code (   ) of benign 

applications is lots more than 

malicious applications (see Fig. 6). 

 An unexpected insight was that 

despite that malicious applications do 

Machine 

Learning 

Algorithm 

Accur

acy 
FP Rate Precision Recall F-measure MCC 

BayesNet                                     

NaïveBayes                                     

LogisticRegress

ion 
                                    

MultilayerPerc

eptron 
                                    

SVM                                     

kNN (   )                                     

AdaBoost                                     

Bagging                                     

LogitBoost                                     

DecisionTable                                     

J48                                     

RandomForest                                     

RandomTree                                     
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not provide as many activities and 

services as benign applications (see 

Fig. 7), they consumed a similar size 

of memory. This can be explained as 

one of the aims of the malware is the 

abuse of system resources (Elish, 

Shu, Yao, Ryder, & Jiang, 2015). 

Table 10. The statistics of the features for 

both benign and malicious applications. 

Feature Averag

e for 

Benign 

Applica

tions 

Averag

e for 

Malicio

us 

Applica

tions 

Number of dangerous 

permissions 

(

                         
) 

          

Number of activities 

(               ) 

           

Number of services 

(             ) 

          

Number of lines of 

code (   ) 

                 

Niced processes 

executing in user mode 

(       ) 

            

Virtual memory size 

(   ) in MB 

            

 

 

Figure 6. The plot of the usages of the 

number of activities (               ) and 

the number of dangerous permissions 

(                         ) by 

malicious and benign applications. 
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Figure 7. The plot of the usages of the 

number of activities (               ) and 

the number of services (             ) by 

malicious and benign applications. 

 

As the related work is described in Section 2, 

there are lots of studies regarding Android 

malware detection. Due to each proposed 

approach in the literature utilizes its own 

dataset because (1) fetching new apps from 

the Play Store makes the dataset unique and 

this is necessary as there does not exist both 

gold standard and up-to-date benign datasets, 

(2) some apps are being eliminated when 

their packaging architectures (e.g., x86, 

ARM) are not compatible with the employed 

one as this situation is also discussed in 

“Known Limitations”. Therefore, we do not 

aim to directly compare the efficiency of the 

proposed study with the related work. Aside 

from providing an accuracy as high as 

     , the proposed framework utilizes an 

up-to-date Android version, namely, Android 

Oreo. As a natural result of using an up-to-

date Android version, the new security 

mechanisms such as runtime permissions, 

and always denying mechanism are discussed 

with this study for the first time in the 

literature (to the best of our knowledge). The 

comparison of Hybroid with the related work 

in terms of the utilized classification 

algorithm and accuracy is listed in Table 11.

 

  



Hybroid: A Novel Hybrid Android Malware Detection Framework 

347 

 

Table 11. The comparison of the related work.

 

Known Limitations 

During the dynamic analysis, it was 

experienced that some applications were 

compiled for the ARM architecture. The 

emulator used within this study utilized the 

Intel architecture since (1) the Android Oreo 

images were not available for the ARM 

architecture at the time of writing, and (2) the 

images based on x86 architecture are 

recommended by Android Studio. Hence, the 

applications, which are compiled for the 

ARM architecture, could not be analyzed. 

Also, some applications were not compatible 

with the API level of the emulator which is 

specifically selected to be a recent version of 

Android to handle the problem from an up-

to-date perspective. Similarly, the 

applications in the utilized datasets which 

were packaged for the ARM architecture 

could not be dynamically analyzed due to the 

aforementioned reason. The number of 

applications in the constructed dataset was 

not increased further as it takes a relatively 

long time to complete the dynamic analysis. 

The proposed framework can be easily 

applied in an environment, which is powered 

by super-computers, to evaluate its 

effectiveness on huge datasets. 

5. Conclusion 

Android malware is still widespread despite 

the serious actions taken by Android. In this 

paper, a novel Android malware detection 

framework, namely, Hybroid, was proposed 

which combines both the static and dynamic 

analysis techniques in order to benefit from 

the advantages of both of them. Then 

Hybroid was trained with various machine 

learning algorithms and evaluated on a 

constructed dataset that consists of        

applications in order to reveal its efficiency. 

According to the experimental result, the best 

accuracy was calculated as high as       

Related Work Classification Algorithm Accuracy 

(%) 

Drebin (Arp et al., 2014) SVM      

Zhang et al. (Zhang, Duan, Yin, & Zhao, 

2014) 

Naïve Bayes    

Yerima et al. (Yerima et al., 2013) Bayesian Based Classifier      

McLaughlin et al. (McLaughlin et al., 

2017) 

Convolutional Neural 

Network 
   

DroidDetector (Yuan, Lu, & Xue, 2016) Deep Belief Network      

SigPID (J. Li et al., 2018) Functional Tree       

FAMOUS (A. Kumar et al., 2018) Random Forest    

DroidDet (Zhu et al., 2017) Rotation Forest       

Sayfullina et al. (Sayfullina et al., 2015) Normalized Bernoulli 

Naïve Bayes 
   

DroidAPIMiner (Aafer, Du, & Yin, 2013) kNN    

SAMADroid (Arshad, Shah, Wahid, 

Mehmood, & Song, 2018) 

Random Forest       

DroidScribe (Dash et al., 2016) SVM with Conformal 

Prediction 
   

APK Auditor (Abdullah Talha Kabakus 

et al., 2015) 

Own classifier based on 

Logistic Regression 
      

DroidMat (Wu et al., 2012) A combination of K-means 

and kNN 
      

Hybroid J48      
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when Hybroid was utilized with the J48 

classification algorithm which outperforms 

the related state-of-the-art studies. The key 

contributions of this study are listed as 

follows: 

 Hybrid analysis. Hybroid utilizes 

both static and dynamic analysis 

techniques in order to detect Android 

malware. 

 High accuracy and low FP rate. 

Hybroid‟s accuracy was calculated as 

high as       when it was evaluated 

on a large dataset that consists of 

       applications as it 

outperformed the related state-of-the-

art studies. Similarly, Hybroid‟s FP 

rate was calculated as low as     . 

 Key findings through experiments. 

The proposed framework was 

evaluated on a large dataset that 

consists of a total of        

applications, and the key findings 

through the experimental result were 

discussed in order to shed light on 

Android malware detection and 

inform the digital investigators.  

 An up-to-date perspective. As a 

natural result of using an up-to-date 

Android version, namely, Android 

Oreo, the new security mechanisms, 

such as runtime permissions, and 

always denying mechanism, are 

discussed with this study for the first 

time in the literature (for the best of 

our knowledge). 

 Fully automated approach. The 

proposed framework was fully 

automated which means no need for 

the human effort is required to carry 

out the analysis for all applications in 

the dataset. The input of Hybroid is 

the apk file of the application that is 

going to be analyzed. Then both the 

static and dynamic analysis is being 

carried out through the implemented 

Python software, and the analysis 

result is being stored in the database. 

As future work, the construction of a dataset 

that contains more samples than the one used 

in this study is considered. Also, deep 

learning techniques can be integrated into the 

proposed malware detection framework. 
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Appendix 

Appendix 1. The content of a sample /proc/net/dev file 

Inter-|   Receive                                                |  Transmit 

 face |bytes    packets errs drop fifo frame compressed multicast|bytes    packets errs drop 

fifo colls carrier compressed 

radio0:    7489      56    0    0    0     0          0         0    30349     194    0    0    0     0       0          

0 

 wlan0: 85773067   58825    0    0    0     0          0         0  2567199   28267    0    0    0     0       

0          0 

  sit0:       0       0    0    0    0     0          0         0        0       0    0    0    0     0       0          0 

    lo:       0       0    0    0    0     0          0         0        0       0    0    0    0     0       0          0 

hwsim0:       0       0    0    0    0     0          0         0        0       0    0    0    0     0       0          0 
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Appendix 2. The content of a sample /proc/[PID]/stat file 

8208 (.android.chrome) S 1495 1495 0 0 -1 1077961024 9029 21 346 0 49 52 0 0 16 -4 39 

0 264240 1566953472 36326 4294967295 1 1 0 0 0 0 4612 0 1073775864 4294967295 0 0 

17 3 0 0 23 0 0 0 0 0 0 0 0 0 0 
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Appendix 3. The content of a sample /proc/[PID]/statm file 

382557 36260 31201 4 0 38152 0 

 


