
Erzincan Üniversitesi Erzincan University

Fen Bilimleri Enstitüsü Dergisi Journal of Science and Technology

2021, 14(1),331-356 2021, 14(1), 331-356

ISSN: 1307-9085, e-ISSN: 2149-4584

Araştırma Makalesi

DOI: 10.18185/erzifbed.806683

Research Article

331

Hybroid: A Novel Hybrid Android Malware Detection Framework

Abdullah Talha Kabakus
1*

1
Department of Computer Engineering, Faculty of Engineering, Duzce University

Geliş / Received: 06/10/2020, Kabul / Accepted: 24/02/2021

Abstract

Android, the most widely-used mobile operating system, attracts the attention of malware developers as well

as benign users. Despite the serious proactive actions taken by Android, the Android malware is still

widespread as a result of the increasing sophistication and the diversity of malware. Android malware

detection systems are generally classified into two: (1) Static analysis, and (2) dynamic analysis. In this study,

a novel Android malware detection framework, namely, Hybroid, was proposed which combines both the

static and dynamic analysis techniques to benefit from the advantages of both of these techniques. An up-to-

date version of Android, namely, Android Oreo, was specifically employed in order to handle the problem

from an up-to-date perspective as the recent versions of Android provide new security mechanisms, which are

discussed with this study. Hybroid was evaluated on a large dataset that consists of applications, and

the accuracy of Hybroid was calculated as high as when it was utilized with the J48 classification

algorithm which outperforms the state-of-the-art studies. The key findings in consequence of the experimental

result are discussed in order to shed light on Android malware detection.

Keywords: Android malware detection, mobile malware, mobile security, static analysis, dynamic analysis,

Android

Hybroid: Benzersiz Hibrit Bir Android Kötücül Yazılım Tespit Uygulama Çatısı

Öz

Dünyanın en çok kullanılan mobil işletim sistemi olan Android, zararsız kullanıcılar gibi kötücül yazılım

geliştiricilerin de ilgisini çekmektedir. Android tarafından ön alıcı ciddi eylemler alınmasına rağmen Android

kötücül yazılım artan kötücül yazılım çeşitliliği ve karmaşıklığı sebebiyle hala yaygındır. Android kötücül

yazılım sistemleri genellikle ikiye ayrılır: (1) Statik analiz ve (2) dinamik analiz. Bu çalışmada statik ve

dinamik analizi birleştirerek her ikisinin de avantajlarından faydalanan Hybroid ismiyle benzersiz bir hibrit

Android kötücül yazılım tespit uygulama çatısı sunulmuştur. Çalışmada tartışıldığı üzere Android'in yeni

sürümlerinde sunulan yeni güvenlik mekanizmalarıyla birlikte problemi güncel bir bakış açısıyla ele almak

için Android'in güncel bir sürümü, Android Oreo, kullanılmıştır. Hybroid uygulamadan oluşan geniş

bir verisetinde test edilmiş ve Hybroid'in doğruluğu J48 sınıflandırma algoritması kullanıldığında en gelişkin

uygulamaları geride bırakarak kadar yüksek çıkmıştır. Deneysel sonuçlar neticesinde elde edilen en

önemli bulgular Android kötücül yazılım tespitine ışık tutmak amacıyla tartışılmıştır.

Anahtar Kelimeler: Android kötücül yazılım tespiti, mobil kötücül yazılım, mobil güvenlik, statik analiz,

dinamik analiz, Android.

https://orcid.org/0000-0003-2181-4292

Hybroid: A Novel Hybrid Android Malware Detection Framework

332

1. Introduction

The number of global smartphone users is

growing rapidly thanks to the easiness and

accessibility provided by them. The GSM

Association predicts that the number of

unique mobile subscribers will reach

billion by 2025 which is equivalent to

 of the world‟s population (“The Mobile

Economy 2018,” 2018). Android, Google‟s

mobile operating system, has dominated the

global smartphone market. According to a

recent report by IDC, Android‟s global

smartphone market share has reached

in the third quarter of 2018 (“IDC -

Smartphone Market Share,” 2019). During

the annual developer conference, Google I/O

2017, Google has announced that there are

billion monthly active Android devices

globally (Burke, 2017; Popper, 2017). The

main reasons behind this popularity can be

listed as follows: (1) Being an open-source

distribution which has made it a favorite for

both consumers and developers since that

makes the operating system to be customized

and extended by companies for free such as

OxygenOS
1
, (2) being developed with the

help of a consortium of technology firms

namely Open Handset Alliance
2
, (3) building

on the Linux kernel which is developed with

the contributions of almost

developers from a large number of

companies, and is a well-designed and stable

software as the result of years of

experience, (4) the high level of

sophistication (Aresu, Ariu, Ahmadi,

Maiorca, & Giacinto, 2015; Karbab,

Debbabi, Derhab, & Mouheb, 2018; A.

Kumar, Kuppusamy, & Aghila, 2018; “Who

Writes Linux? Almost 10,000 Developers,”

2013; Yang, Wang, Ling, Liu, & Ni, 2017).

This popularity has also attracted the

attention of malicious software (malware)

1
 https://www.oneplus.com/3t/oxygenos

2
 https://www.openhandsetalliance.com

developers as Sophos reports that the number

of malware has risen to nearly million in

2017 which was under million in 2015

(“SophosLabs 2018 Malware Forecast,”

2018). The official application market of

Android, Play Store
3
, contains malware even

though it is regularly scanned for malware

through an always-on service provided by

Google named Google Play Protect
4
 and the

found ones are immediately removed from

the store (“Android – Google Play Protect,”

2021; Cunningham, 2017; Villas-Boas,

2018). But many devices are affected until

they are removed from the store. For

example, according to the reports, the

Android malware „Judy‟ is thought to be

reached million devices through the

Play Store (Morris, 2017). Similarly,

„FalseGuide‟, which is an Android malware

that hides its malicious actions in over forty

fake companion guide applications for

popular mobile games such as Pokemon Go

and FIFA Mobile has affected about

million devices (M. Kumar, 2017). Most

recently, ESET has reported an Android

trojan that steals money from PayPal

accounts even bypassing PayPal‟s two-factor

authentication (Stefanko, 2018). When the

literature is investigated, the aims of Android

malware can be listed as follows: (1)

Privilege escalation, (2) turning the devices

into bots that are ready to be controlled

remotely, (3) causing financial charges (i.e.

sending messages to premium numbers, etc.),

and (4) collecting sensitive information (i.e.

the user‟s bank detail, etc.) from devices

(Arshad, Ahmed, Shah, & Khan, 2016; Fan,

Sang, Zhang, Sun, & Liu, 2017; Grace, Zhou,

Zhang, Zou, & Jiang, 2012; Kang, Jang,

3
 https://play.google.com/store

4
 Google Play Protect is the built-in, real-time

malware protection tool for Android that uses

Google‟s machine learning algorithms to improve its

malware knowledge-base and malware detection

accuracy by scanning over 50 billion applications

from over 2 billion devices.

Hybroid: A Novel Hybrid Android Malware Detection Framework

333

Mohaisen, & Kim, 2015; King, Lampinen, &

Smolen, 2011; Peng et al., 2012; Rastogi,

Chen, & Enck, 2013; Shabtai et al., 2014;

Stefanko, 2018; Suarez-Tangil, Tapiador,

Peris-Lopez, & Ribagorda, 2014; Y. Wang,

Zheng, Sun, & Mukkamala, 2013; X. Wei,

Gomez, Neamtiu, & Faloutsos, 2012; Xue et

al., 2017; Yang et al., 2017; Yerima, Sezer,

McWilliams, & Muttik, 2013; Yu, Huang, &

Yian, 2016; Zhou & Jiang, 2012).

The security mechanism of Android solely

depends on the permissions that are granted

by the end-user during the application

installation time (Bläsing, Batyuk, Schmidt,

Camtepe, & Albayrak, 2010; Di Cerbo,

Girardello, Michahelles, & Voronkova, 2011;

Felt, Chin, Hanna, Song, & Wagner, 2011;

Grace, Zhou, Wang, & Jiang, 2012;

Mahmood et al., 2012). Prior to Android 6.0

(a.k.a. Marshmallow), Android shows a

prompt window such as the one presented in

Fig. 1 that lists the dangerous permissions

that the application, which is going to be

installed, demands, and the end-user has no

choices but to grant these permissions to the

application in order to complete the

installation.

Figure 1. A sample prompt window

displayed by Android, prior to Android 6.0,

that lists the dangerous permissions

demanded by the application during the

installation.

By the release of Android 6.0, the end-user is

not prompted during the installation

regarding the dangerous permissions that the

application demands. Instead of that, a

prompt window, such as the one presented in

Fig. 2, is being displayed to the end-user

when the application needs the access grant

of dangerous permissions during the runtime.

This mechanism is also known as runtime

permissions which lets the end-user revoke

the grant access after the installation phase.

In addition to this ability, the user may select

the “Deny & don’t ask again” option, which

is displayed to users when the same

permission is demanded by the application

after denying, in order to always deny the

dangerous action demanded by the

application. Despite malware in the Android

ecosystem is very common and risky, the

researchers report that most of the end-users

are unaware of the exact meanings and

potential risks of granting these permissions,

and they simply grant these permissions

(Backes et al., 2012; Enck, Ongtang, &

McDaniel, 2009; Gibler, Crussell, Erickson,

& Chen, 2012; A.T. Kabakus & Dogru,

2018; Kelley et al., 2012; King et al., 2011;

Mylonas, Kastania, & Gritzalis, 2013; Singh,

Tiwari, & Singh, 2016; Yang et al., 2017).

The applications are able to reach sensitive

contents (i.e. messages, contacts, location,

etc.) and use the hardware (i.e. camera,

storage, sensors, etc.) of the smartphone if

the related permission, which is declared in

the application manifest file (namely

AndroidManifest.xml), is granted by the end-

user.

Hybroid: A Novel Hybrid Android Malware Detection Framework

334

Figure 2. A sample prompt window

displayed by the Android 6.0+ that asks the

end-user‟s grant for a dangerous permission,

namely, making and managing phone calls,

during the runtime.

Android malware detection approaches in the

literature are generally divided into two: (1)

Static analysis which focuses on analyzing

the application through its source files which

are obtained thanks to the reverse

engineering techniques without executing the

application (Alzaylaee, Yerima, & Sezer,

2017; Enck et al., 2009; Fuchs, Chaudhuri, &

Foster, 2009; Grace, Zhou, Zhang, et al.,

2012; Zhou & Jiang, 2012), and (2) dynamic

analysis which executes the application in an

isolated environment (i.e. a sandbox, a virtual

machine, etc.) to track the behavior (i.e.

memory usage, network access, dynamic

taint, etc.) and the effects of the application

on that isolated environment (Alzaylaee et

al., 2017; Chandramohan & Tan, 2012; Liang

& Du, 2014; Singh et al., 2016; Suarez-

Tangil, Tapiador, Peris-Lopez, & Blasco,

2014). The advantages of static analysis are

(1) it is fast compared to dynamic analysis as

applications are not actually being executed

in an isolated environment, (2) it provide a

better code coverage as it evaluates all

sources of an application, and (3) according

to the related work, they are very effective in

terms of malware detection. The main

disadvantage of static analysis is that it fails

to against the malware that protects its code

through advanced obfustication techniques

(e.g., code obfuscation) (Massarelli et al.,

2017; Moser, Kruegel, & Kirda, 2007;

Rhode, Burnap, & Jones, 2018; C. Wang, Li,

Mo, Yang, & Zhao, 2017), dynamic loading

techniques (e.g., reflection) (C. Wang et al.,

2017; Zheng, Sun, & Lui, 2014), and

encryption algorithms (Arshad et al., 2016;

Bae & Shin, 2017; Tam, Feizollah, Anuar,

Salleh, & Cavallaro, 2017; Tong & Yan,

2017; C. Wang et al., 2017). The main

advantage of dynamic analysis is that it is

able to come through advanced obfuscation

and dynamic loading techniques as a result of

examining applications during execution

(Gadhiya, Bhavsar, & Student, 2013; Zheng

et al., 2014). The main disadvantages of

dynamic analysis are (1) it may miss some of

the code sections that are not executed during

the analysis (Arshad et al., 2016), and (2) it

takes a relatively long time to analyze

applications compared to static analysis. To

this end, the main objectives of the proposed

study, namely, Hybroid, are (1) benefitting

from the advantages of both analysis

techniques by proposing a novel hybrid

approach that combines both of these

techniques, and (2) extracting a novel feature

set that can be used to efficiently detect

Android malware. The rest of the paper is

structured as follows: Section 2 presents the

related work. Section 3 describes the material

and method used within the proposed

approach. Section 4 discusses the key

findings and experimental results. Finally,

Section 5 concludes the paper with future

directions.

2. Related Work

In this section, the related work is briefly

reviewed through the analysis technique it is

based on, namely, (1) static analysis, and (2)

dynamic analysis.

Static analysis

Hybroid: A Novel Hybrid Android Malware Detection Framework

335

Stowaway (Felt et al., 2011) traces the API

calls and aims to map them with the

permissions in order to detect over-privileged

applications. Sato et al. (Sato, Chiba, &

Goto, 2013) extracts each application‟s

malignancy score through the information

extracted from the application manifest file,

then calculated a malignancy score with

threshold values. If the application‟s

calculated malignancy score exceeds the

threshold values, then the application is

classified as malware. PUMA (Sanz et al.,

2012) extracts the permissions and features

defined in the application manifest file, then

analyzes an application through its extracted

information. Then it classifies applications

thanks to the utilized machine learning

algorithms which are the algorithms that

extract information from raw data and

represent it in some models (Kayikci, 2018).

Tang et al. (Tang, Jin, He, & Jiang, 2011)

use the security distance model to measure

the dangerous level of an application due to

the combinations of requested permissions.

AndroSimilar (Faruki, Ganmoor, Laxmi,

Gaur, & Bharmal, 2013) creates a variable-

length signature to compare it with the

signature database. It classifies an application

as benign or malicious on the basis of the

calculated similarity percentage. The biggest

disadvantage of this approach when it is

compared to the proposed one is that it can

only detect known malware variants.

DroidAnalytics (Zheng, Sun, & Lui, 2013)

creates three-level signatures for each

application on the basis of API calls and

performs the op-code level analysis. Then it

correlates the analysis with the existing

malware in the database through the

similarity score based on the class level

signature. Kirin (Enck et al., 2009) compares

the security configuration of an application

with the security rules to mitigate malware at

installation time by modifying the Android

Application Installer. The proposed approach

is specifically designed not to alter the core

parts of the operating system itself (aka

rooting). SCanDroid (Fuchs et al., 2009)

analyzes an application‟s data flow in order

to classify it as benign or malicious. APK

Auditor (Abdullah Talha Kabakus, Dogru, &

Cetin, 2015) is a permission-based static

analysis system that extracts an application‟s

permissions from the application‟s manifest

file. Then it calculates a malware score

through the extracted permissions by

calculating a malware score for each

permission which is calculated on the basis

of how often the permission is demanded by

the malicious or benign applications. If the

application‟s calculated malware score

exceeds the threshold score which is

determined by utilizing the Logistic

Regression algorithm, then the application is

classified as malicious. Sayfullina et al.

(Sayfullina et al., 2015) present an approach

based on the extraction of three resources

from the apk file namely (1) application

manifest file, (2) classes.dex file which

contains the compiled source code in dex

(Dalvik executable) format which is a

proprietary format for Java bytecode that is

designed to be more compact and memory-

efficient than regular Java class files

(Shabtai, Kanonov, Elovici, Glezer, & Weiss,

2012), and (3) resources.arsc file which

contains the compiled resources. Then they

propose and utilize Normalized Bernoulli

Naïve Bayes classifier in order to classify the

applications based on these static resources.

Bao et al. (Bao, Lo, Xia, & Li, 2017)

propose two static analysis approaches which

are (1) the approach that utilizes a

collaborative filtering technique which is

inspired from the intuition that applications

that provide similar features usually demand

similar permissions, and (2) the approach

recommends permissions based on text

mining technique that utilizes Naïve Bayes

Multinomial classification algorithm to build

Hybroid: A Novel Hybrid Android Malware Detection Framework

336

a prediction model by analyzing the

description of applications which are

available on the Play Store. The limitations

of this approach can be listed as follows: (1)

Not all applications do have descriptions (i.e.

the applications in the datasets), (2) they

detect API usages through the import

statements but an import statement does not

guarantee that the related API is used which

is known as “unused import” in the context

of Java programming language, and (3) they

only consider the classes, which are available

in Android SDK and Java standard libraries

but the developers may define their own

classes, and those classes may extend the

classes in Android SDK or Java standard

library thanks to the inheritance mechanism

provided by Java programming language.

DroidDet (Zhu et al., 2017) utilizes the

Rotation Forest algorithm based on the static

analysis features such as permissions, system

events, and the rate of sensitive API calls to

classify applications. Significant Permission

IDentification (J. Li et al., 2018) detects

Android malware based on permission usage.

But unlike the related work, they do not

extract and analyze all the permissions

defined in the application manifest file.

Instead of that, they propose three levels of

pruning by mining permission data to

identify the most significant permissions that

can be effective in classifying Android

applications as benign or malicious.

MalDozer (Karbab et al., 2018) uses raw

sequences of API calls based on neural

networks and utilizes an automatic feature

extraction technique during the training using

method embedding where the input is the raw

sequence of API calls that are extracted from

DEX assembly. Kim et al. (Kim, Kang, Rho,

Sezer, & Im, 2019) propose the first study of

the multimodal deep learning to be used for

Android malware detection. The proposed

approach uses seven features, namely, (1)

String feature, (2) method opcode feature, (3)

method API feature, (4) shared library

function opcode feature, (5) permission

feature, (6) component feature, and (7)

environmental feature.

Dynamic analysis

Androidetect (L. Wei et al., 2017) uses the

process injection technique, Hook method,

and inter-procedural communication that

constructs the eigenvectors by extracting the

characteristics of the Android application.

CrowDroid (Burguera, Zurutuza, & Nadjm-

Tehrani, 2011) performs system call tracing

thanks to the strace
5
 tool. Then CrowDroid

client application creates a log file regarding

the system calls and sends it to a remote

server for deep analysis. K-means clustering

algorithm is utilized through the constructed

feature vectors. The limitation of the

CrowDroid is the need for the installation of

a CrowDroid client application to perform

malware detection. Also, if a benign

application uses more system calls, then it

may be classified as malicious by

CrowDroid. MADAM (Dini, Martinelli,

Saracino, & Sgandurra, 2012) combines

features that both the kernel-level and

application-level and perform malware

analysis. The drawback of the MADAM is

that it performs whole analysis on the device

which is not applicable since mobile devices

generally have limited computation (e.g.,

CPU) and storage capabilities (e.g., memory,

disk, battery) (Dini et al., 2012; Liu, Yan,

Zhang, & Chen, 2009; Tam et al., 2017).

MimeoDroid (Faruki, Zemmari, Gaur,

Laxmi, & Conti, 2016) extracts features such

as CPU and memory usages, Binder IPC

transfers, network interaction, battery

charging status, and permissions defined in

the application manifest file in order to detect

malicious behavior by utilizing tree-based

machine learning classifiers. Andromaly

5
 https://strace.io

Hybroid: A Novel Hybrid Android Malware Detection Framework

337

(Shabtai et al., 2012) is an on-device

anomaly detector that analysis features such

as SMS, voice call, data sent/received, and

battery usage to detect anomalous malware

behavior. Then Andromaly utilizes machine

learning algorithms to classify applications as

malicious or benign. TaintDroid (Enck et al.,

2010) is a system-wide dynamic taint

tracking and analysis system that

simultaneously tracks multiple sources of

sensitive data. AppsPlayground (Rastogi et

al., 2013) proposes a real device-based

sandbox emulation that utilizes malware

detection techniques such as taint tracing for

information leakage detection (which is

based on TaintDroid), sensitive API

monitoring, and kernel-level monitoring for

the detection of root exploits. Paranoid

Android (Portokalidis, Homburg,

Anagnostakis, & Bos, 2010) transfers the

execution trace which is recorded by a tracer

located in the mobile device to a remote

server which is responsible for replaying the

execution trace within the replica of the

mobile device. Paranoid Android has a

similar limitation to CrowDroid which is the

need for the installation of its tracer on the

mobile device. AntiMalDroid (Zhao, Ge,

Zhang, & Yuan, 2011) monitors the behavior

of applications and their characteristics, then

it categorizes these characteristics as

malicious or benign. Then the learning

module generates signatures through the

extracted characteristics. If the application‟s

signature matches an existing benign

application‟s signature in the database, then

the application is classified as benign. If the

application‟s signature matches a malicious

application‟s signature in the database, this

time the application is classified as

malicious.

3. Material and Method

In this section, the material and method used

to develop the proposed novel hybrid

Android malware detection framework,

namely, Hybroid, are described.

Static analysis

An Android application is packaged as an

apk (Android Application Package) file

which is basically an archive file that

contains all the sources and resources of the

application. A Python script was

implemented as a part of the proposed

framework that is responsible for (1)

extracting features from the application

manifest file, and (2) storing the extracted

features in the database. The input of the

Python script is the apk file of the analyzed

application. A tool, namely, apktool, was

used to extract the content of the apk files.

This tool was executed through the

implemented Python script using the

subprocess
6
 module of Python. Then from

the extracted archive, the application

manifest file was parsed in order to retrieve

the information related to the application.

The Android permissions are categorized into

three as follows (“Permissions Overview |

Android Developers,” 2019):

 Normal permissions are those that

contain very little risk to the user‟s

privacy or the operation of other

applications. Hence, this type of

permission is automatically granted

by the system at install time without

prompting the user to grant them.

 Dangerous permissions cover areas

where the application wants to access

sensitive data or could potentially

affect the user‟s stored data or the

operation of other applications

through harmful API calls (Felt et al.,

2011).

 Signature permissions are granted by

the system when the app that attempts

6
 https://docs.python.org/3/library/subprocess.html

Hybroid: A Novel Hybrid Android Malware Detection Framework

338

to use permission that is signed by the

same certificate as the app that

defines the permission.

Alongside these built-in permissions types,

which are defined in the Android SDK, the

developers may define their own

permissions. This type of permissions is

called “custom permissions”. Alongside the

permissions, an application‟s activities,

services, features, and receivers are declared

in the application file. This information was

also extracted and stored in the database.

Any component that is not declared in the

application manifest file, cannot be used in

the application. Otherwise, the application

simply crashes. Obviously, this rule is valid

for the permissions, as well. The API calls

are mapped with the built-in permissions and

the developer should declare the related

permission in order to use the API call(s). In

addition to the information defined in the

application‟s manifest file, the total number

of the lines of code in the application source

code files was calculated after (1)

decompiling the Dalvik executable file

(classes.dex) into a Java archive file (jar) by

using the dex2jar (“Pxb1988/Dex2jar: Tools

to Work with Android .Dex and Java .Class

Files,” 2018) tool, and (2) extracting the jar

file into the readable Java source code files

by using the jd-cmd (Cacek, 2018) tool. All

of these operations were handled

automatically thanks to the implemented

Python scripts. The whole static features of

Hybroid are listed in Table 1 with their

descriptions.

Table 1. The static analysis features of Hybroid.

Dynamic analysis

The built-in emulator of Android, which

comes with the Android SDK, was used to

execute the application in order to monitor its

runtime behavior. The utilized emulator‟s

hardware and software specifications are

listed in Table 2.

Table 2. The utilized emulator‟s hardware

and software specifications.

Specification Value

Operating

System

Android Oreo 8.1 x86

API Level

RAM MB

VM Heap MB

Network Speed Full

Network Latency None

Feature Description

 The number of dangerous permissions defined in

the application manifest file

 The number of custom permissions defined in the

application manifest file

 The number of other permissions defined in the

application manifest file

 The number of features defined in the application

manifest file

 The number of broadcast receivers defined in the

application manifest file

 The number of services defined in the application

manifest file

 The number of activities defined in the application

manifest file

 The total number of lines of code in the

application‟s source code files

Hybroid: A Novel Hybrid Android Malware Detection Framework

339

The Monkey tool, which is distributed with

the Android SDK, is designed to provide a

random testing tool that generates random

events to interact with the applications to

developers (Afonso, de Amorim, Grégio,

Junquera, & de Geus, 2015; Alzaylaee et al.,

2017; Canfora, Medvet, Mercaldo, &

Visaggio, 2015; Spreitzenbarth, Freiling,

Echtler, Schreck, & Hoffmann, 2013). In

order to manage the emulator

programmatically and monitor the

application‟s behavior and traces, a Python

script was implemented. Within the

implemented Python script, a Python library

namely AndroidViewClient (Milano, 2018)

was utilized in order to interact with the

emulator. The implemented Python script

accepts the apk file as the input, and

responsible for (1) installing the application,

(2) detecting the launchable activity of the

application through the aapt (Android Asset

Packaging Tool), which is a tool provided by

the Android SDK, (3) executing the

application through the detected launchable

activity, (4) waiting for the application to be

launched for seconds, and (5) generating

 random events. The event generation

was configured as follows: (1) Wait second

between each event, (2) the percentage of the

system key events is set to in order to

prevent being pressed system keys such as

HOME, and BACK, and (3) the timeouts and

crashes were ignored. As a natural

consequence of being built on the Linux

Kernel, Android assigns a unique process id

(PID) for each running process (application),

and the PID of the executed application was

detected in order to retrieve the detail

regarding the application‟s CPU, memory,

and network usages from the files in the

/proc filesystem. As a total, features,

which are listed in Table 3, were extracted

from the files in the /proc filesystem. When

the execution of an application finishes, the

obtained result of the dynamic analysis is

stored in the database. Each time the

emulator is started for a new analysis, it is

restored to its initial status, which is a clean

install of the Android operating system by

wiping all the data created during the

previous application execution in order to

prevent any side effects. The average

duration for an application to be analyzed is

calculated as seconds. The analysis was

carried out on a computer with Intel Core i7-

7700HQ CPU of GHz clock speed and

 GB of RAM of GHz speed.

Table 3. The analyzed files in the /proc

filesystem and their descriptions.

File Description

/proc/stat Stores information

about process status

/proc/[PID]/stat Stores detailed

information about the

process

/proc/net/dev Stores information

related to network

usage

/proc/[PID]/statm Stores detailed

information about

process memory status

information

The content of a sample /proc/stat file is

presented in Fig. 3 as the content of the

samples of the other analyzed files is

presented in the Appendix. The features

extracted from each analyzed file in the /proc

filesystem are listed in the following tables.

cpu 10786 12539 13662 704375 10081 3

833 0 0 0

cpu0 2390 2840 3145 175753 1974 3 810 0 0

0

cpu1 2437 3249 3047 176489 2817 0 8 0 0 0

cpu2 2587 3283 3735 176414 2838 0 9 0 0 0

cpu3 3372 3167 3735 175719 2452 0 6 0 0 0

intr 1132090 20 0 0 0 2 0 0 0 1 0 46252

13272 0 0 0 0 2 0 65688 1 0 6539 0 0 0 0 0 0

0

0

Hybroid: A Novel Hybrid Android Malware Detection Framework

340

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

ctxt 2292635

btime 1546290061

processes 7423

procs_running 1

procs_blocked 0

softirq 595539 23106 112270 625 14135 0 0

235143 92951 524 116785

Figure 3. The content of a sample /proc/stat

file.

Table 4. The features that were extracted

from the /proc/stat file with their descriptions

according to the Linux documentation
7

(Bowden, Bauer, Nerin, Feng, & Seibold,

2018).

Feature Description

 Normal processes

executing in user mode

 Niced processes

executing in user mode

 Processes executing in

kernel mode

 Twiddling thumbs

 Servicing interrupts

 Servicing softirqs

 Involuntary wait

 Running a normal guest

 Running a niced guest

7
 The iowait feature is intentionally excluded since

reading it from /proc/stat is not reliable according to

the Linux documentation.

Table 5. The features that were extracted

from the /proc/net/dev file with their

descriptions.

Feature Description

 Received packets in bytes

 Number of received packets

 Transmitted packets in

bytes

 Number of transmitted

packets

Table 6. The features that were extracted

from the /proc/[PID]/stat file with their

descriptions according to the Linux

documentation (Bowden et al., 2018).

Feature Description

 Number of major faults

with child's

 Number of minor faults

with child's

 Kernel mode jiffies with

child's

 User mode jiffies with

child's

 Number of major faults

 Number of minor faults

 Number of threads

 Resident set memory size

 Virtual memory size

 Which CPU the task is

scheduled on

 User mode jiffies

 Kernel mode jiffies

Table 7. The features that were extracted

from the /proc/[PID]/statm file with their

descriptions according to the Linux

documentation (Bowden et al., 2018).

Feature Description

 Total program size

(pages)

 Size of memory

portions (pages)

 Number of pages that

are shared

 Number of pages that

are „code‟

Hybroid: A Novel Hybrid Android Malware Detection Framework

341

 Number of pages of

data/stack

Sample screenshots that were captured

during the executions of the malicious

applications are presented in Fig. 4. Android

malware tends to hide its malicious actions

(B. Li, Zhang, Li, Yang, & Gu, 2018). As

can be seen from the screenshots presented in

Fig. 4, the malicious applications tend to hide

their malicious actions from the end-users by

providing some entertainment content (e.g.,

games) which is one of the commonly used

tactics (“Infected Fake Versions of Arcade

Games on Google Play Threatened Players

with Nasty Trojans,” 2015; Villas-Boas,

2018). For the Android versions prior to

Android 6.0, since the permissions that these

applications need for their malicious actions

are already granted during the installation

time, they do not need user interactions to

complete their aims. Therefore, upgrading

the Android operating system at least to

Android 6.0 is highly recommended for

comprehensive permission control.

Figure 4. Sample screenshots that were captured during the executions of malicious

applications.

An overview of the architecture of Hybroid is

presented in Fig. 5. The whole operations for

the analysis were carried out through the

scripts, which were implemented using the

Python programming language. The data of

both the applications in the dataset and their

analysis result was stored in the database,

namely, MongoDB
8
, which is the most

popular NoSQL database (“DB-Engines

Ranking - Popularity Ranking of Database

Management Systems,” 2019; Kaur & Rani,

8
 https://www.mongodb.com

2013; Violino, 2018) that provides quite

better performance in terms of reading and

writing data compared to the traditional SQL

databases (Boicea, Radulescu, & Agapin,

2012; Ming Wu, 2015; Nyati, Pawar, &

Ingle, 2013; Parker, Poe, & Vrbsky, 2013).

For the dynamic analysis, the built-in

emulator of Android SDK (a.k.a. Android

Virtual Device) was preferred since it is

Hybroid: A Novel Hybrid Android Malware Detection Framework

342

bundled with the official IDE for Android

development namely Android Studio
9
.

4. Experimental Results and Discussion

A dataset, that consists of

 applications, was constructed from

the widely-used, gold standard datasets in the

literature. For the benign applications, the

dataset that was constructed by (A.T.

Kabakus & Dogru, 2018) was used which

contains the applications from the various top

charts (i.e. “Top Grossing Games”, “Top

Selling Games”, “Music and Audio”, etc.) in

the Play Store. For the malicious

applications, Drebin (Arp, Spreitzenbarth,

Malte, Gascon, & Rieck, 2014), F-droid, and

Android Genome Project (Zhou & Jiang,

2012) were intentionally preferred as they are

widely used in the literature. The overview of

the constructed dataset within the scope of

Hybroid is listed in Table 8.

Table 8. The overview of the constructed

dataset.

Dataset Type Number of

9
 https://developer.android.com/studio/

Applications

Drebin (Arp et

al., 2014)

Malicious

F-droid Malicious

Android

Genome Project

(Zhou & Jiang,

2012)

Malicious

(A.T. Kabakus

& Dogru, 2018)

Benign

The proposed framework, Hybroid, was

utilized with various machine learning

algorithms in order to reveal its effectiveness

on Android malware detection. The

performances of the classification systems

based on supervised learning are generally

evaluated by the confusion matrix, which

greatly reflects the relationship between the

classification results and actual values

(Afonso et al., 2015; Kang et al., 2015;

Narudin, Feizollah, Anuar, & Gani, 2016;

Suarez-Tangil, Tapiador, Peris-Lopez, &

Blasco, 2014; X. Wang, Zhang, Su, & Li,

2017; Wu, Mao, Wei, Lee, & Wu, 2012).

Hence, the Hybroid‟s effectiveness was also

evaluated by using the confusion matrix. The

definitions of the metrics that the confusion

matrix model defines are listed as follows:

Figure 5. An overview of the architecture of Hybroid.

Hybroid: A Novel Hybrid Android Malware Detection Framework

343

(1) () means the number of

malicious applications that are correctly

classified, (2) () means

the number of benign applications that are

correctly classified, (3) ()

means the number of malicious applications

that are classified as benign, and (4)

() means the number of

benign applications that are classified as

malicious. The is calculated as () (

), the (aka or) is calculated as

(), the is calculated as (), the is

calculated as (), the is calculated as

 () (), and the

 () is calculated as (

) √[() () () ()]. Hybroid was evaluated

with thirteen widely-used machine learning algorithms, and the best was calculated

as high as and the was calculated as low as when the system was

trained with the J48 algorithm as the confusion matrix of the experimental results is listed in

Table 9. For all evaluations, a widely-used, open-source machine learning tool, namely,

WEKA (Waikato Environment for Knowledge Analysis) (“Weka 3 - Data Mining with Open

Source Machine Learning Software in Java,” 2021), was utilized with the default

configurations of the machine learning algorithms. The arff file format is one of the file

formats that WEKA supports to load data from the filesystem. Hence, the data, which was

stored in the database, was exported to an arff file through the implemented Python script.

Table 9. The confusion matrix of the experimental results of the evaluations of the machine

learning algorithms.

Hybroid: A Novel Hybrid Android Malware Detection Framework

344

The attributes were evaluated with the

CfsSubsetEval algorithm conjunction with

the GreedyStepwise search algorithm, the

selected attributes were found as follows,

respectively: (1) The number of dangerous

permissions

(), (2) the

total number of lines of code in the

application‟s source code files (), (3) the

niced processes executing in user mode

(), (4) the number of received

packets (), (5) the user-mode

jiffies with child's (), and (6) the

virtual memory size (). When the features

were investigated through the experimental

result as the analysis of each feature for both

the benign and malicious applications is

listed in Table 10, the following insights

were deduced:

 Dangerous permissions were

demanded by malicious applications

more than benign applications which

are reasonable since the malicious

applications target hazardous actions

that are mapped to dangerous

permissions by the Android operating

system (see Fig. 6).

 Activities and services were more

widely-used in benign applications

since their sole aim is to provide

better service to the end-users while

the malicious applications seek after

to achieve their malicious actions. For

the same reason, the average number

of lines of code () of benign

applications is lots more than

malicious applications (see Fig. 6).

 An unexpected insight was that

despite that malicious applications do

Machine

Learning

Algorithm

Accur

acy
FP Rate Precision Recall F-measure MCC

BayesNet

NaïveBayes

LogisticRegress

ion

MultilayerPerc

eptron

SVM

kNN ()

AdaBoost

Bagging

LogitBoost

DecisionTable

J48

RandomForest

RandomTree

Hybroid: A Novel Hybrid Android Malware Detection Framework

345

not provide as many activities and

services as benign applications (see

Fig. 7), they consumed a similar size

of memory. This can be explained as

one of the aims of the malware is the

abuse of system resources (Elish,

Shu, Yao, Ryder, & Jiang, 2015).

Table 10. The statistics of the features for

both benign and malicious applications.

Feature Averag

e for

Benign

Applica

tions

Averag

e for

Malicio

us

Applica

tions

Number of dangerous

permissions

(

)

Number of activities

()

Number of services

()

Number of lines of

code ()

Niced processes

executing in user mode

()

Virtual memory size

() in MB

Figure 6. The plot of the usages of the

number of activities () and

the number of dangerous permissions

() by

malicious and benign applications.

Hybroid: A Novel Hybrid Android Malware Detection Framework

346

Figure 7. The plot of the usages of the

number of activities () and

the number of services () by

malicious and benign applications.

As the related work is described in Section 2,

there are lots of studies regarding Android

malware detection. Due to each proposed

approach in the literature utilizes its own

dataset because (1) fetching new apps from

the Play Store makes the dataset unique and

this is necessary as there does not exist both

gold standard and up-to-date benign datasets,

(2) some apps are being eliminated when

their packaging architectures (e.g., x86,

ARM) are not compatible with the employed

one as this situation is also discussed in

“Known Limitations”. Therefore, we do not

aim to directly compare the efficiency of the

proposed study with the related work. Aside

from providing an accuracy as high as

 , the proposed framework utilizes an

up-to-date Android version, namely, Android

Oreo. As a natural result of using an up-to-

date Android version, the new security

mechanisms such as runtime permissions,

and always denying mechanism are discussed

with this study for the first time in the

literature (to the best of our knowledge). The

comparison of Hybroid with the related work

in terms of the utilized classification

algorithm and accuracy is listed in Table 11.

Hybroid: A Novel Hybrid Android Malware Detection Framework

347

Table 11. The comparison of the related work.

Known Limitations

During the dynamic analysis, it was

experienced that some applications were

compiled for the ARM architecture. The

emulator used within this study utilized the

Intel architecture since (1) the Android Oreo

images were not available for the ARM

architecture at the time of writing, and (2) the

images based on x86 architecture are

recommended by Android Studio. Hence, the

applications, which are compiled for the

ARM architecture, could not be analyzed.

Also, some applications were not compatible

with the API level of the emulator which is

specifically selected to be a recent version of

Android to handle the problem from an up-

to-date perspective. Similarly, the

applications in the utilized datasets which

were packaged for the ARM architecture

could not be dynamically analyzed due to the

aforementioned reason. The number of

applications in the constructed dataset was

not increased further as it takes a relatively

long time to complete the dynamic analysis.

The proposed framework can be easily

applied in an environment, which is powered

by super-computers, to evaluate its

effectiveness on huge datasets.

5. Conclusion

Android malware is still widespread despite

the serious actions taken by Android. In this

paper, a novel Android malware detection

framework, namely, Hybroid, was proposed

which combines both the static and dynamic

analysis techniques in order to benefit from

the advantages of both of them. Then

Hybroid was trained with various machine

learning algorithms and evaluated on a

constructed dataset that consists of

applications in order to reveal its efficiency.

According to the experimental result, the best

accuracy was calculated as high as

Related Work Classification Algorithm Accuracy

(%)

Drebin (Arp et al., 2014) SVM

Zhang et al. (Zhang, Duan, Yin, & Zhao,

2014)

Naïve Bayes

Yerima et al. (Yerima et al., 2013) Bayesian Based Classifier

McLaughlin et al. (McLaughlin et al.,

2017)

Convolutional Neural

Network

DroidDetector (Yuan, Lu, & Xue, 2016) Deep Belief Network

SigPID (J. Li et al., 2018) Functional Tree

FAMOUS (A. Kumar et al., 2018) Random Forest

DroidDet (Zhu et al., 2017) Rotation Forest

Sayfullina et al. (Sayfullina et al., 2015) Normalized Bernoulli

Naïve Bayes

DroidAPIMiner (Aafer, Du, & Yin, 2013) kNN

SAMADroid (Arshad, Shah, Wahid,

Mehmood, & Song, 2018)

Random Forest

DroidScribe (Dash et al., 2016) SVM with Conformal

Prediction

APK Auditor (Abdullah Talha Kabakus

et al., 2015)

Own classifier based on

Logistic Regression

DroidMat (Wu et al., 2012) A combination of K-means

and kNN

Hybroid J48

Hybroid: A Novel Hybrid Android Malware Detection Framework

348

when Hybroid was utilized with the J48

classification algorithm which outperforms

the related state-of-the-art studies. The key

contributions of this study are listed as

follows:

 Hybrid analysis. Hybroid utilizes

both static and dynamic analysis

techniques in order to detect Android

malware.

 High accuracy and low FP rate.

Hybroid‟s accuracy was calculated as

high as when it was evaluated

on a large dataset that consists of

 applications as it

outperformed the related state-of-the-

art studies. Similarly, Hybroid‟s FP

rate was calculated as low as .

 Key findings through experiments.

The proposed framework was

evaluated on a large dataset that

consists of a total of

applications, and the key findings

through the experimental result were

discussed in order to shed light on

Android malware detection and

inform the digital investigators.

 An up-to-date perspective. As a

natural result of using an up-to-date

Android version, namely, Android

Oreo, the new security mechanisms,

such as runtime permissions, and

always denying mechanism, are

discussed with this study for the first

time in the literature (for the best of

our knowledge).

 Fully automated approach. The

proposed framework was fully

automated which means no need for

the human effort is required to carry

out the analysis for all applications in

the dataset. The input of Hybroid is

the apk file of the application that is

going to be analyzed. Then both the

static and dynamic analysis is being

carried out through the implemented

Python software, and the analysis

result is being stored in the database.

As future work, the construction of a dataset

that contains more samples than the one used

in this study is considered. Also, deep

learning techniques can be integrated into the

proposed malware detection framework.

Acknowledgments

The author would like to thank Computer

Security Group – the University of Göttingen

for sharing the Drebin dataset, and Zhou Y.,

Jiang X. for sharing the dataset of the

Android Malware Genome Project.

References

Aafer, Y., Du, W., & Yin, H. (2013).

DroidAPIMiner: Mining API-Level Features

for Robust Malware Detection in Android.

9th International Conference on Security and

Privacy in Communication Networks

(SecureComm 2013), 86–103. Sydney,

Australia. https://doi.org/10.1007/978-3-319-

04283-1_6

Afonso, V. M., de Amorim, M. F., Grégio,

A. R. A., Junquera, G. B., & de Geus, P. L.

(2015). Identifying Android malware using

dynamically obtained features. Journal of

Computer Virology and Hacking Techniques,

11(1), 9–17. https://doi.org/10.1007/s11416-

014-0226-7

Alzaylaee, M. K., Yerima, S. Y., & Sezer, S.

(2017). Improving Dynamic Analysis of

Android Apps Using Hybrid Test Input

Generation. IEEE International Conference

On Cyber Security And Protection Of Digital

Services (Cyber Security 2017), 1–8.

London, UK.

Android – Google Play Protect. (2021).

Retrieved January 29, 2021, from Google

website: https://www.android.com/play-

protect/

Aresu, M., Ariu, D., Ahmadi, M., Maiorca,

Hybroid: A Novel Hybrid Android Malware Detection Framework

349

D., & Giacinto, G. (2015). Clustering

Android Malware Families by Http Traffic.

2015 10th International Conference on

Malicious and Unwanted Software,

MALWARE 2015, 128–135. Fajardo, Puerto

Rico.

https://doi.org/10.1109/MALWARE.2015.74

13693

Arp, D., Spreitzenbarth, M., Malte, H.,

Gascon, H., & Rieck, K. (2014). Drebin:

Effective and Explainable Detection of

Android Malware in Your Pocket.

Symposium on Network and Distributed

System Security (NDSS), 23–26. San Diego,

California, USA.

Arshad, S., Ahmed, M., Shah, M. A., &

Khan, A. (2016). Android Malware

Detection & Protection: A Survey.

International Journal of Advanced Computer

Science and Applications (IJACSA), 7(2),

463–475.

https://doi.org/10.14569/IJACSA.2016.0702

62

Arshad, S., Shah, M. A., Wahid, A.,

Mehmood, A., & Song, H. (2018).

SAMADroid: A Novel 3-Level Hybrid

Malware Detection Model for Android

Operating System. IEEE Access, 6, 4321–

4339.

https://doi.org/10.1109/ACCESS.2018.27929

41

Backes, M., Gerling, S., Hammer, C., Maffei,

M., Backes, M., Gerling, S., & Hammer, C.

(2012). AppGuard - Real-time policy

enforcement for third-party applications.

Retrieved January 29, 2021, from

Universitäts und Landesbibliothek Bonn

website: http://sps.cs.uni-

saarland.de/publications/monitor.pdf

Bae, C., & Shin, S. (2017). A collaborative

approach on host and network level android

malware detection. Security and

Communication Networks, 9(18), 5639–

5650. https://doi.org/10.1002/sec.1723

Bao, L., Lo, D., Xia, X., & Li, S. (2017).

Automated Android application permission

recommendation. Science China Information

Sciences, 60(9), 1–17.

https://doi.org/10.1007/s11432-016-9072-3

Bläsing, T., Batyuk, L., Schmidt, A. D.,

Camtepe, S. A., & Albayrak, S. (2010). An

android application sandbox system for

suspicious software detection. 5th IEEE

International Conference on Malicious and

Unwanted Software (Malware 2010), 55–62.

Nancy, France: IEEE.

https://doi.org/10.1109/MALWARE.2010.56

65792

Boicea, A., Radulescu, F., & Agapin, L. I.

(2012). MongoDB vs Oracle - Database

comparison. Proceedings of 3rd

International Conference on Emerging

Intelligent Data and Web Technologies,

EIDWT 2012, 330–335. Bucharest, Romania.

https://doi.org/10.1109/EIDWT.2012.32

Bowden, T., Bauer, B., Nerin, J., Feng, S., &

Seibold, S. (2018). The /proc Filesystem.

Retrieved January 29, 2021, from

https://github.com/torvalds/linux/blob/master

/Documentation/filesystems/proc.txt

Burguera, I., Zurutuza, U., & Nadjm-

Tehrani, S. (2011). Crowdroid: Behavior-

Based Malware Detection System for

Android. Proceedings of the 1st ACM

Workshop on Security and Privacy in

Smartphones and Mobile Devices - SPSM

’11, 1–11. Chicago, IL, USA.

https://doi.org/10.1145/2046614.2046619

Burke, D. (2017). Android: celebrating a big

milestone together with you. Retrieved

January 29, 2021, from Google website:

https://www.blog.google/products/android/2b

n-milestone/

Cacek, J. (2018). kwart/jd-cmd: Command

line Java Decompiler. Retrieved January 29,

2021, from https://github.com/kwart/jd-cmd

Canfora, G., Medvet, E., Mercaldo, F., &

Visaggio, C. A. (2015). Detecting Android

malware using sequences of system calls.

Proceedings of the 3rd International

Workshop on Software Development

Lifecycle for Mobile - DeMobile 2015, 13–

20. Bergamo, Italy.

Hybroid: A Novel Hybrid Android Malware Detection Framework

350

https://doi.org/10.1145/2804345.2804349

Chandramohan, M., & Tan, H. B. K. (2012).

Detection of Mobile Malware in the Wild.

Computer, 45(9), 65–71.

https://doi.org/10.1109/MC.2012.36

Cunningham, E. (2017). Keeping you safe

with Google Play Protect. Retrieved January

29, 2021, from Google website:

https://blog.google/products/android/google-

play-protect/

Dash, S. K., Suarez-Tangil, G., Khan, S.,

Tam, K., Ahmadi, M., Kinder, J., &

Cavallaro, L. (2016). DroidScribe:

Classifying Android Malware Based on

Runtime Behavior. Proceedings - 2016 IEEE

Symposium on Security and Privacy

Workshops, SPW 2016, 252–261. San Jose,

CA, USA.

https://doi.org/10.1109/SPW.2016.25

DB-Engines Ranking - popularity ranking of

database management systems. (2019).

Retrieved January 29, 2021, from DB-

Engines website: https://db-

engines.com/en/ranking

Di Cerbo, F., Girardello, A., Michahelles, F.,

& Voronkova, S. (2011). Detection of

malicious applications on android OS. 4th

International Workshop on Computational

Forensics, IWCF 2010, November 11, 2010 -

November 12, 2010, 6540 LNCS, 138–149.

https://doi.org/10.1007/978-3-642-19376-

7_12

Dini, G., Martinelli, F., Saracino, A., &

Sgandurra, D. (2012). MADAM: A Multi-

level Anomaly Detector for Android

Malware. In I. Kotenko & V. Skormin (Eds.),

Computer Network Security (pp. 240–253).

Berlin, Heidelberg: Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-

642-33704-8

Elish, K. O., Shu, X., Yao, D., Ryder, B. G.,

& Jiang, X. (2015). Profiling user-trigger

dependence for Android malware detection.

Computers and Security, 49, 255–273.

https://doi.org/10.1016/j.cose.2014.11.001

Enck, W., Gilbert, P., Chun, B.-G., Cox, L.

P., Jung, J., Mcdaniel, P., & Sheth, A. N.

(2010). TaintDroid: An Information-Flow

Tracking System for Realtime Privacy

Monitoring on Smartphones. Proceedings of

the 9th USENIX Conference on Operating

Systems Design and Implementation (OSDI

’10), 393–407. Vancouver, BC, Canada.

Enck, W., Ongtang, M., & McDaniel, P.

(2009). On Lightweight Mobile Phone

Application Certification. Proceedings of the

16th ACM Conference on Computer and

Communications Security (CCS ’09), 235–

245. Chicago, Illinois, USA.

https://doi.org/10.1145/1653662.1653691

Fan, W., Sang, Y., Zhang, D., Sun, R., &

Liu, Y. (2017). DroidInjector: A process

injection-based dynamic tracking system for

runtime behaviors of Android applications.

Computers and Security, 70, 224–237.

https://doi.org/10.1016/j.cose.2017.06.001

Faruki, P., Ganmoor, V., Laxmi, V., Gaur,

M. S., & Bharmal, A. (2013). AndroSimilar:

Robust Statistical Feature Signature For

Android Malware Detection. Proceedings of

the 6th International Conference on Security

of Information and Networks - SIN ’13, 1–8.

https://doi.org/10.1145/2523514.2523539

Faruki, P., Zemmari, A., Gaur, M. S., Laxmi,

V., & Conti, M. (2016). MimeoDroid: Large

Scale Dynamic App Analysis on Cloned

Devices via Machine Learning Classifiers.

Proceedings - 46th Annual IEEE/IFIP

International Conference on Dependable

Systems and Networks, DSN-W 2016, 60–65.

https://doi.org/10.1109/DSN-W.2016.33

Felt, A. P., Chin, E., Hanna, S., Song, D., &

Wagner, D. (2011). Android permissions

demystified. Proceedings of the 18th ACM

Conference on Computer and

Communications Security - CCS ’11, 627–

638. New York, New York, USA: ACM

Press.

https://doi.org/10.1145/2046707.2046779

Fuchs, A. P., Chaudhuri, A., & Foster, J. S.

(2009). SCanDroid: Automated Security

Certification of Android Applications.

Hybroid: A Novel Hybrid Android Malware Detection Framework

351

https://doi.org/10.1.1.164.6899

Gadhiya, S., Bhavsar, K., & Student, P. D.

(2013). Techniques for Malware Analysis.

International Journal of Advanced Research

in Computer Science and Software

Engineering, 3(4), 972–975.

Gibler, C., Crussell, J., Erickson, J., & Chen,

H. (2012). AndroidLeaks: Automatically

detecting potential privacy leaks in Android

applications on a large scale. TRUST’12

Proceedings of the 5th International

Conference on Trust and Trustworthy

Computing, 7344 LNCS, 291–307. Vienna,

Austria. https://doi.org/10.1007/978-3-642-

30921-2_17

Grace, M., Zhou, Y., Wang, Z., & Jiang, X.

(2012). Systematic Detection of Capability

Leaks in Stock Android Smartphones.

Proceedings of the 19th Network and

Distributed System Security Symposium

(NDSS 2012), 1–15. San Diego, California,

USA.

Grace, M., Zhou, Y., Zhang, Q., Zou, S., &

Jiang, X. (2012). RiskRanker: Scalable and

Accurate Zero-day Android Malware

Detection. Proceedings of the 10th

International Conference on Mobile Systems,

Applications, and Services - MobiSys ’12,

281–294. Low Wood Bay, Lake District,

United Kingdom: ACM Press.

https://doi.org/10.1145/2307636.2307663

IDC - Smartphone Market Share. (2019).

Retrieved January 29, 2021, from IDC

website:

https://www.idc.com/promo/smartphone-

market-share/os

Infected Fake Versions of Arcade Games on

Google Play Threatened Players with Nasty

Trojans. (2015). Retrieved January 29, 2021,

from ESET website:

https://www.eset.com/int/about/newsroom/pr

ess-releases/announcements/infected-arcade-

games-trojan-dropper/

Kabakus, A.T., & Dogru, I. A. (2018). An in-

depth analysis of Android malware using

hybrid techniques. Digital Investigation, 24,

25–33.

https://doi.org/10.1016/j.diin.2018.01.001

Kabakus, Abdullah Talha, Dogru, I. A., &

Cetin, A. (2015). APK Auditor: Permission-

based Android malware detection system.

Digital Investigation, 13, 1–14.

https://doi.org/10.1016/j.diin.2015.01.001

Kang, H., Jang, J. W., Mohaisen, A., & Kim,

H. K. (2015). Detecting and classifying

android malware using static analysis along

with creator information. International

Journal of Distributed Sensor Networks,

2015, 1–9.

https://doi.org/10.1155/2015/479174

Karbab, E. M. B., Debbabi, M., Derhab, A.,

& Mouheb, D. (2018). MalDozer: Automatic

framework for android malware detection

using deep learning. Digital Investigation,

24, S48–S59.

https://doi.org/10.1016/j.diin.2018.01.007

Kaur, K., & Rani, R. (2013). Modeling and

querying data in NoSQL databases.

Proceedings - 2013 IEEE International

Conference on Big Data, Big Data 2013, 1–

7. Santa Clara, CA, USA: IEEE.

https://doi.org/10.1109/BigData.2013.669176

5

Kayikci, S. (2018). A Deep Learning Method

for Passing Completely Automated Public

Turing Test. 3rd International Conference on

Computer Science and Engineering (UBMK

2018), 41–44. Sarajevo, Bosnia-

Herzegovina: IEEE.

https://doi.org/10.1109/UBMK.2018.856631

8

Kelley, P. G., Consolvo, S., Cranor, L. F.,

Jung, J., Sadeh, N., & Wetherall, D. (2012).

A Conundrum of Permissions: Installing

Applications on an Android Smartphone.

Proceedings of the 16th International

Conference on Financial Cryptography and

Data Security (FC ’12), 68–79. Kralendijk,

Bonaire: Springer.

https://doi.org/10.1007/978-3-642-34638-5

Kim, T., Kang, B., Rho, M., Sezer, S., & Im,

E. G. (2019). A multimodal deep learning

Hybroid: A Novel Hybrid Android Malware Detection Framework

352

method for android malware detection using

various features. IEEE Transactions on

Information Forensics and Security, 14(3),

773–788.

https://doi.org/10.1109/TIFS.2018.2866319

King, J., Lampinen, A., & Smolen, A.

(2011). Privacy: is there an app for that?

Proceedings of the Seventh Symposium on

Usable Privacy and Security (SOUPS ’11),

1–20. New York, NY, USA: ACM Press.

https://doi.org/10.1145/2078827.2078843

Kumar, A., Kuppusamy, K. S., & Aghila, G.

(2018). FAMOUS: Forensic Analysis of

MObile Using Scoring of application

permission. Future Generation Computer

Systems, 83, 158–172.

https://doi.org/10.1016/j.future.2018.02.001

Kumar, M. (2017). Beware! New Android

Malware Infected 2 Million Google Play

Store Users. Retrieved January 29, 2021,

from The Hacker News website:

http://thehackernews.com/2017/04/android-

malware-playstore.html

Li, B., Zhang, Y., Li, J., Yang, W., & Gu, D.

(2018). APPSPEAR: Automating the hidden-

code extraction and reassembling of packed

android malware. Journal of Systems and

Software, 140, 3–16.

https://doi.org/10.1016/j.jss.2018.02.040

Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W.,

& Ye, H. (2018). Significant Permission

Identification for Machine-Learning-Based

Android Malware Detection. IEEE

Transactions on Industrial Informatics,

14(7), 3216–3225.

https://doi.org/10.1109/TII.2017.2789219

Liang, S., & Du, X. (2014). Permission-

combination-based scheme for Android

mobile malware detection. 2014 IEEE

International Conference on

Communications (ICC), 2301–2306. Sydney,

Australia: IEEE.

https://doi.org/10.1109/ICC.2014.6883666

Liu, L., Yan, G., Zhang, X., & Chen, S.

(2009). Virusmeter: Preventing your

cellphone from spies. Proceedings of the

12th International Symposium on Recent

Advances in Intrusion Detection (RAID ’09),

244–264. https://doi.org/10.1007/978-3-642-

04342-0_13

Mahmood, R., Esfahani, N., Kacem, T.,

Mirzaei, N., Malek, S., & Stavrou, A. (2012).

A whitebox approach for automated security

testing of Android applications on the cloud.

7th International Workshop on Automation

of Software Test (AST 2012), 22–28. Zurich,

Switzerland: IEEE Press.

https://doi.org/10.1109/IWAST.2012.622898

6

Massarelli, L., Aniello, L., Ciccotelli, C.,

Querzoni, L., Ucci, D., & Baldoni, R. (2017).

Android Malware Family Classification

Based on Resource Consumption over Time.

2017 12th International Conference on

Malicious and Unwanted Software

(MALWARE), 31–38. Fajardo, PR, USA.

Retrieved from

http://arxiv.org/abs/1709.00875

McLaughlin, N., Martinez del Rincon, J.,

Kang, B., Yerima, S., Miller, P., Sezer, S., …

Joon Ahn, G. (2017). Deep Android Malware

Detection. Proceedings of the Seventh ACM

on Conference on Data and Application

Security and Privacy - CODASPY ’17, 301–

308. Scottsdale, Arizona, USA.

https://doi.org/10.1145/3029806.3029823

Milano, D. T. (2018). AndroidViewClient.

Retrieved January 29, 2021, from

https://github.com/dtmilano/AndroidViewCli

ent

Ming Wu, C. (2015). Comparisons Between

MongoDB and MS-SQL Databases on the

TWC Website. American Journal of

Software Engineering and Applications, 4(2),

35–41.

https://doi.org/10.11648/j.ajsea.20150402.12

Morris, D. Z. (2017). Android Malware

Judy‟ Hits As Many As 36.5 Million Phones.

Retrieved January 29, 2021, from Fortune

website:

http://fortune.com/2017/05/28/android-

malware-judy/

Hybroid: A Novel Hybrid Android Malware Detection Framework

353

Moser, A., Kruegel, C., & Kirda, E. (2007).

Limits of static analysis for malware

detection. 23rd Annual Computer Security

Applications Conference (ACSAC 2007),

421–430. Miami Beach, FL, USA.

https://doi.org/10.1109/ACSAC.2007.21

Mylonas, A., Kastania, A., & Gritzalis, D.

(2013). Delegate the smartphone user?

Security awareness in smartphone platforms.

Computers and Security, 34, 47–66.

https://doi.org/10.1016/j.cose.2012.11.004

Narudin, F. A., Feizollah, A., Anuar, N. B.,

& Gani, A. (2016). Evaluation of machine

learning classifiers for mobile malware

detection. Soft Computing, 20(1), 343–357.

https://doi.org/10.1007/s00500-014-1511-6

Nyati, S. S., Pawar, S., & Ingle, R. (2013).

Performance evaluation of unstructured

NoSQL data over distributed framework.

Proceedings of the 2013 International

Conference on Advances in Computing,

Communications and Informatics, ICACCI

2013, 1623–1627.

https://doi.org/10.1109/ICACCI.2013.66374

24

Parker, Z., Poe, S., & Vrbsky, S. V. (2013).

Comparing NoSQL MongoDB to an SQL

DB. Proceedings of the 51st ACM Southeast

Conference on - ACMSE ’13, 1–6.

https://doi.org/10.1145/2498328.2500047

Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y.,

Potharaju, R., … Molloy, I. (2012). Using

Probabilistic Generative Models for Ranking

Risks of Android Apps. Proceedings of the

2012 ACM Conference on Computer and

Communications Security (CCS ’12), 241–

252. Raleigh, North Carolina, USA.

https://doi.org/10.1145/2382196.2382224

Permissions overview | Android Developers.

(2019). Retrieved January 29, 2021, from

Google website:

https://developer.android.com/guide/topics/p

ermissions/overview#normal_permissions

Popper, B. (2017). Google announces over 2

billion monthly active devices on Android.

Retrieved January 29, 2021, from The Verge

website:

https://www.theverge.com/2017/5/17/156544

54/android-reaches-2-billion-monthly-active-

users

Portokalidis, G., Homburg, P., Anagnostakis,

K., & Bos, H. (2010). Paranoid Android:

Versatile Protection For Smartphones.

Annual Computer Security Applications

Conference (ACSAC), 347–356. Austin,

Texas, USA.

https://doi.org/10.1145/1920261.1920313

pxb1988/dex2jar: Tools to work with android

.dex and java .class files. (2018). Retrieved

January 29, 2021, from

https://github.com/pxb1988/dex2jar

Rastogi, V., Chen, Y., & Enck, W. (2013).

AppsPlayground : Automatic Security

Analysis of Smartphone Applications.

Proceedings of the Third ACM Conference

on Data and Application Security and

Privacy (CODASPY ’13), 209–220. San

Antonio, Texas, USA.

https://doi.org/10.1145/2435349.2435379

Rhode, M., Burnap, P., & Jones, K. (2018).

Early-stage malware prediction using

recurrent neural networks. Computers and

Security, 77, 578–594.

https://doi.org/10.1016/j.cose.2018.05.010

Sanz, B., Santos, I., Laorden, C., Ugarte-

Pedrero, X., Bringas, P. G., & Álvarez, G.

(2012). PUMA: Permission usage to detect

malware in android. International Joint

Conference CISIS’12-ICEUTE´12-SOCO´12

Special Sessions, 289–298. Ostrava, Czech

Republic: Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-33018-

6_30

Sato, R., Chiba, D., & Goto, S. (2013).

Detecting Android Malware by Analyzing

Manifest Files. Proceedings of the Asia-

Pacific Advanced Network 2013 (APAN ’13),

23–31. Kaist, Daejeon, Korea.

https://doi.org/10.7125/APAN.36.4

Sayfullina, L., Eirola, E., Komashinsky, D.,

Palumbo, P., Miche, Y., Lendasse, A., &

Karhunen, J. (2015). Efficient detection of

Hybroid: A Novel Hybrid Android Malware Detection Framework

354

zero-day android malware using normalized

bernoulli naive bayes. Proceedings of

The14th IEEE International Conference on

Trust, Security and Privacy in Computing

and Communications (TrustCom 2015), 198–

205. Helsinki, Finland.

https://doi.org/10.1109/Trustcom.2015.375

Shabtai, A., Kanonov, U., Elovici, Y.,

Glezer, C., & Weiss, Y. (2012).

“Andromaly”: A behavioral malware

detection framework for android devices.

Journal of Intelligent Information Systems,

38, 161–190. https://doi.org/10.1007/s10844-

010-0148-x

Shabtai, A., Tenenboim-Chekina, L.,

Mimran, D., Rokach, L., Shapira, B., &

Elovici, Y. (2014). Mobile malware detection

through analysis of deviations in application

network behavior. Computers & Security, 43,

1–18.

https://doi.org/10.1016/j.cose.2014.02.009

Singh, P., Tiwari, P., & Singh, S. (2016).

Analysis of Malicious Behavior of Android

Apps. Procedia Computer Science, 79, 215–

220.

https://doi.org/10.1016/j.procs.2016.03.028

SophosLabs 2018 Malware Forecast. (2018).

Retrieved January 29, 2021, from Sophos

website: https://www.sophos.com/en-us/en-

us/medialibrary/PDFs/technical-

papers/malware-forecast-2018.pdf

Spreitzenbarth, M., Freiling, F. C., Echtler,

F., Schreck, T., & Hoffmann, J. (2013).

Mobile-sandbox: Having a Deeper Look into

Android Applications. Proceedings of the

28th Annual ACM Symposium on Applied

Computing (SAC 2013), 1808–1815.

Coimbra, Portugal: ACM.

https://doi.org/10.1145/2480362.2480701

Stefanko, L. (2018). Android Trojan steals

money from PayPal accounts even with 2FA

on. Retrieved January 29, 2021, from ESET

website:

https://www.welivesecurity.com/2018/12/11/

android-trojan-steals-money-paypal-

accounts-2fa/

Suarez-Tangil, G., Tapiador, J. E., Peris-

Lopez, P., & Blasco, J. (2014). Dendroid: A

text mining approach to analyzing and

classifying code structures in Android

malware families. Expert Systems with

Applications, 41(4 PART 1), 1104–1117.

https://doi.org/10.1016/j.eswa.2013.07.106

Suarez-Tangil, G., Tapiador, J. E., Peris-

Lopez, P., & Ribagorda, A. (2014).

Evolution, detection and analysis of malware

for smart devices. IEEE Communications

Surveys and Tutorials, 16(2), 961–987.

https://doi.org/10.1109/SURV.2013.101613.

00077

Tam, K., Feizollah, A., Anuar, N. B., Salleh,

R., & Cavallaro, L. (2017). The Evolution of

Android Malware and Android Analysis

Techniques. ACM Computing Surveys, 49(4),

1–41. https://doi.org/10.1145/3017427

Tang, W., Jin, G., He, J., & Jiang, X. (2011).

Extending android security enforcement with

a security distance model. Proceedings of the

2011 International Conference on Internet

Technology and Applications (ITAP 2011),

1–4.

https://doi.org/10.1109/ITAP.2011.6006288

The Mobile Economy 2018. (2018).

Retrieved January 29, 2021, from

https://www.gsma.com/mobileeconomy/wp-

content/uploads/2018/02/The-Mobile-

Economy-Global-2018.pdf

Tong, F., & Yan, Z. (2017). A hybrid

approach of mobile malware detection in

Android. Journal of Parallel and Distributed

Computing, 103, 22–31.

https://doi.org/10.1016/j.jpdc.2016.10.012

Villas-Boas, A. (2018). Google removed 13

games from the Play Store for containing

malware. Retrieved January 29, 2021, from

Business Insider website:

https://www.businessinsider.com/google-

play-store-game-apps-removed-malware-

2018-11

Violino, B. (2018). How to choose the right

NoSQL database. Retrieved January 29,

2021, from InfoWorld website:

Hybroid: A Novel Hybrid Android Malware Detection Framework

355

https://www.infoworld.com/article/3260184/

nosql/how-to-choose-the-right-nosql-

database.html

Wang, C., Li, Z., Mo, X., Yang, H., & Zhao,

Y. (2017). An android malware dynamic

detection method based on service call co-

occurrence matrices. Annals of

Telecommunications, 72(9–10), 1–9.

https://doi.org/10.1007/s12243-017-0580-9

Wang, X., Zhang, D., Su, X., & Li, W.

(2017). Mlifdect: Android malware detection

based on parallel machine learning and

information fusion. Security and

Communication Networks, 2017, 1–15.

https://doi.org/10.1155/2017/6451260

Wang, Y., Zheng, J., Sun, C., & Mukkamala,

S. (2013). Quantitative security risk

assessment of Android permissions and

applications. In L. Wang & B. Shafiq (Eds.),

27th Data and Applications Security and

Privacy (DBSec) (pp. 226–241). Newark, NJ,

USA: Springer. https://doi.org/10.1007/978-

3-642-39256-6_15

Wei, L., Luo, W., Weng, J., Zhong, Y.,

Zhang, X., & Yan, Z. (2017). Machine

Learning-Based Malicious Application

Detection of Android. IEEE Access, 5,

25591–25601.

https://doi.org/10.1109/ACCESS.2017.27714

70

Wei, X., Gomez, L., Neamtiu, I., &

Faloutsos, M. (2012). Malicious Android

Applications in the Enterprise: What Do

They Do and How Do We Fix It? ICDEW

’12 Proceedings of the 2012 IEEE 28th

International Conference on Data

Engineering Workshops, 251–254. Arlington,

Virginia, USA: IEEE.

Weka 3 - Data Mining with Open Source

Machine Learning Software in Java. (2021).

Retrieved January 29, 2021, from

https://www.cs.waikato.ac.nz/ml/weka/

Who writes Linux? Almost 10,000

developers. (2013). Retrieved January 29,

2021, from ZDNet website:

https://www.zdnet.com/article/who-writes-

linux-almost-10000-developers/

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-

M., & Wu, K.-P. (2012). DroidMat: Android

Malware Detection through Manifest and

API Calls Tracing. 2012 Seventh Asia Joint

Conference on Information Security, 62–69.

Minato, Tokyo, Japan.

https://doi.org/10.1109/AsiaJCIS.2012.18

Xue, Y., Meng, G., Liu, Y., Tan, T. H., Chen,

H., Sun, J., & Zhang, J. (2017). Auditing

Anti-Malware Tools by Evolving Android

Malware and Dynamic Loading Technique.

IEEE Transactions on Information Forensics

and Security, 12(7), 1529–1544.

https://doi.org/10.1109/TIFS.2017.2661723

Yang, M., Wang, S., Ling, Z., Liu, Y., & Ni,

Z. (2017). Detection of malicious behavior in

android apps through API calls and

permission uses analysis. Concurrency and

Computation: Practice and Experience,

29(19), 1–13.

https://doi.org/10.1002/cpe.4172

Yerima, S. Y., Sezer, S., McWilliams, G., &

Muttik, I. (2013). A New Android Malware

Detection Approach Using Bayesian

Classification. 2013 IEEE 27th International

Conference on Advanced Information

Networking and Applications (AINA), 121–

128. Barcelona, Spain: IEEE.

https://doi.org/10.1109/AINA.2013.88

Yu, J., Huang, Q., & Yian, C. H. (2016).

DroidScreening: a practical framework for

real-world Android malware analysis.

Security and Communication Networks,

9(11), 1435–1449.

https://doi.org/10.1002/sec.1430

Yuan, Z., Lu, Y., & Xue, Y. (2016).

DroidDetector: Android Malware

Characterization and Detection Using Deep

Learning. Tsinghua Science and Technology,

21(1), 114–123.

https://doi.org/10.1109/TST.2016.7399288

Zhang, M., Duan, Y., Yin, H., & Zhao, Z.

(2014). Semantics-Aware Android Malware

Classification Using Weighted Contextual

API Dependency Graphs. Proceedings of the

Hybroid: A Novel Hybrid Android Malware Detection Framework

356

2014 ACM SIGSAC Conference on Computer

and Communications Security (CCS ’14),

1105–1116.

https://doi.org/10.1145/2660267.2660359

Zhao, M., Ge, F., Zhang, T., & Yuan, Z.

(2011). AntiMalDroid: An Efficient SVM-

Based Malware Detection Framework for

Android. Communications in Computer and

Information Science, 243 CCIS, 158–166.

https://doi.org/10.1007/978-3-642-27503-

6_22

Zheng, M., Sun, M., & Lui, J. C. S. (2013).

DroidAnalytics: A Signature Based Analytic

System to Collect, Extract, Analyze and

Associate Android Malware. 2013 12th IEEE

International Conference on Trust, Security

and Privacy in Computing and

Communications, 163–171. Melbourne,

Victoria, Australia.

https://doi.org/10.1109/TrustCom.2013.25

Zheng, M., Sun, M., & Lui, J. C. S. (2014).

DroidTrace: A ptrace based Android

dynamic analysis system with forward

execution capability. IWCMC 2014 - 10th

International Wireless Communications and

Mobile Computing Conference, 128–133.

Nicosia, Cyprus.

https://doi.org/10.1109/IWCMC.2014.69063

44

Zhou, Y., & Jiang, X. (2012). Dissecting

Android Malware: Characterization and

Evolution. Proceedings of the 33rd IEEE

Symposium on Security and Privacy

(Oakland 2012), 95–109. San Francisco, CA,

USA: IEEE.

https://doi.org/10.1109/SP.2012.16

Zhu, H. J., You, Z. H., Zhu, Z. X., Shi, W.

L., Chen, X., & Cheng, L. (2017). DroidDet:

Effective and robust detection of android

malware using static analysis along with

rotation forest model. Neurocomputing, 272,

638–646.

https://doi.org/10.1016/j.neucom.2017.07.03

0

Hybroid: A Novel Hybrid Android Malware Detection Framework

I

Appendix

Appendix 1. The content of a sample /proc/net/dev file

Inter-| Receive | Transmit

 face |bytes packets errs drop fifo frame compressed multicast|bytes packets errs drop

fifo colls carrier compressed

radio0: 7489 56 0 0 0 0 0 0 30349 194 0 0 0 0 0

0

 wlan0: 85773067 58825 0 0 0 0 0 0 2567199 28267 0 0 0 0

0 0

 sit0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 lo: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

hwsim0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hybroid: A Novel Hybrid Android Malware Detection Framework

II

Appendix 2. The content of a sample /proc/[PID]/stat file

8208 (.android.chrome) S 1495 1495 0 0 -1 1077961024 9029 21 346 0 49 52 0 0 16 -4 39

0 264240 1566953472 36326 4294967295 1 1 0 0 0 0 4612 0 1073775864 4294967295 0 0

17 3 0 0 23 0 0 0 0 0 0 0 0 0 0

Hybroid: A Novel Hybrid Android Malware Detection Framework

III

Appendix 3. The content of a sample /proc/[PID]/statm file

382557 36260 31201 4 0 38152 0

