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Adiabat Shaping in Direct Drive Inertial Confinement Fusion 

Implosions through the Decaying Shock Approximation 
 

Highlights 

 The implosions of a double-layer spherical target driven by a two-step pressure pulse is considered. 

 The adiabat of the entropy is shaped by employing the Decaying Shock method. 

 The optimum adiabat parameter is calculated for three different fuel density states. 

 The effect of the initial density on the adiabat parameter is obtained. 

 

 

Graphical Abstract 

In this study we have considered the implosions of a two-layer spherical shell, one of which consists of DT fuel and 

the other acts like a pusher layer, accelerated by the shock waves generated by a two-step pressure pulse. 

  

Figure 

 

Aim 

The aim of the present study is the investigation of the shaping the adiabat of the entropy in Inertial Confinement 

Fusion (ICF) implosions. 

Design & Methodology 

The adiabat is shaped by the Decaying Shock (DS) method and the optimum adiabat parameter is calculated for three 

different fuel density states. 

Originality 

The DS-shaped adiabat follows a power law in agreement with the established theoretical models. The obtained 

adiabat values are found comparable with those in previous investigations, although they are achieved for relatively 

faster irradiation times and lower laser intensities. 

Findings 

It is found that the higher the initial density is, the lower adiabat parameter. 

Conclusion 

Shaping the adiabat of the entropy during the implosions of ICF capsules plays an important role in the control and 

efficiency of the fuel targets in relation to a balance between energy gaining and stability. 
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 ABSTRACT 

We consider the implosions of a double-layer spherical target driven by a two-step pressure pulse. By employing the decaying 

shock approximation the adiabat of the entropy is shaped, following a simple power law in agreement with the established 

theoretical models. Then we directly calculate the optimum adiabat parameter for three different fuel density states and find that 

the higher the initial density is, the lower adiabat parameter. Although the calculated adiabat values are close to ones obtained in 

previous investigations, they are achieved for relatively fast irradiation times and low laser intensity. 

Keywords: Inertial confinement fusion, adiabat shaping, decaying shock method. 

Doğrudan Tahrikli Eylemsiz Hapsedilme Füzyon 

içersinde Azalan Şok Yaklaşımı Boyunca Adiabat 

Şekillendirme 

ÖZ 

Bu çalışmada, iki aşamalı bir basınç darbesi ile tahrik edilen çift katmanlı küresel bir hedefin iç patlamalarını inceledik. Çalışmada 

ilk önce azalan şok yaklaşımı kullanılarak entropinin adiabatının, yerleşik teorik modellerle uyumlu basit bir güç yasasını izleyerek 

nasıl bir forma dönüştüğünü belirledik. Daha sonra üç farklı yakıt yoğunluğu koşulu için optimum adiabat parametresini doğrudan 

matematiksel yaklaşımla ,başlangıç yoğunluğu ne kadar yüksekse ve  adiabat parametresinin bir o kadar azaldığını hesapladık. 

Sonuç olarak, nispeten hızlı ışınlama süreleri ve düşük lazer yoğunluğu için, tabakalı adiyabitik değerlerimizin literatürdeki 

çalışmalarla uyumlu olduğunu belirledik. 

Anahtar Kelimeler: Eylemsiz füzyon hapsetme, adiabat şekillendirme, azalan şok yaklaşımı. 

1. INTRODUCTION 

In inertial confinement fusion (ICF) approach [1, 2] the 

energy produced by lasers is deposited into the outer 

surface of a small spherical shell of fusible fuel ionizing 

a part of its outer material. Thermal energy is transferred 

inward up to an ablation surface which separates the hot 

plasma from the inner dense part of the shell, forcing the 

plasma to blast outwards by a rocket-like blow-off. 

Reaction forces create inward-traveling shock waves that 

compress the core of the pellet causing it to implode, 

thus, creating the appropriate conditions for ignition to 

take place. In direct drive ICF [3–5] the compression of 

the target is based on its uniform bombardment by 

symmetrically placed laser beams directly onto the 

shell’s surface. The target, which ideally has to be 

perfectly symmetric, is composed by a layer filled with 

cryogenic solid deuterium-tritium (DT) fuel deposited in 

an outer layer of ablator material that acts like a pusher; 

the inner part of the pellet usually consists of a layer filled 

with DT gas and is in thermal equilibrium with the dense, 

solid DT fuel. 

The aforementioned process is susceptible to the 

Rayleigh-Taylor (RT) instability [6, 7] which occurs due 

to the local created density gradients between the inner 

and the outer parts of the shell material; controlling the 

growth of the RT instability is crucial to the success of 

the process [8]. The hydrodynamic instability is seeded 

by imperfections in target design as well as by laser non-

uniformities (laser imprint), leading to modulations on 

both the ablation and the inner shell surfaces. However, 

phenomena like mass ablation and thermal transport are 

found to reduce the instability growth rates and play a 

stabilizing role in shorter wavelengths [9–12]. 

An important parameter in ICF hydrodynamic theory is 

the adiabat 𝛼, defined as the ratio of the shell pressure, P, 

to the Fermi-degenerate pressure calculated at the shell 

density, through 𝛼 ≡ 𝑃 (2.18𝜌5 3⁄ )⁄ , where the pressure 

is measured in 𝑀𝑏 and density measured in 𝑔 𝑐𝑚3⁄ . 

Adiabat shaping [13–16] has the potential to achieve 

optimum balance between improved stability and high 
*Sorumlu Yazar  (Corresponding Author)  
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target gain [17–20]. In standard direct drive laser 

implosions laser beams generate shaped pressure pulses 

that drive multiple shock-waves capable of compressing 

the target and shaping the adiabat. In practice, a strong 

shock launched from the picket pulse which later decays 

as it propagates through the shell, on the one hand raises 

the ablation velocity and therefore the adiabat value on 

the ablation surface, while on the other hand establishes 

the adiabat of the inner surface at a low value. It follows 

that for a shaped driver pressure, the increase in the 

entropy becomes smaller as the density increases, and 

therefore, the adiabat parameter can also be interpreted as 

a measure of the deviation from the minimum energy 

required to compress the fuel for which minimum 

entropy is added; since a low entropy fuel is easier to 

compress, the compression must approximately be 

isentropic. The relations for the pressure and density of 

an ideal fuel in terms of the radius, for each pulse being 

fired towards the center of the sphere during such an 

isentropic compression of a two-layer shell driven by a 

two-step pressure pulse, were obtained in [21]. 

     At least two different techniques have been proposed 

for adiabat shaping in direct drive implosions; these are 

the decaying shock (DS) method [13,14] and the 

relaxation (RX) method [15,16]. In the DS 

approximation a strong shock launched by the prepulse is 

used to shape the adiabat after it later starts decaying 

when propagating into the inner shell material as the 

prepulse is switched off; on the other hand in the RX 

method the adiabat is shaped by the main strong shock, 

after the pressure and density profiles are relaxed by the 

prepulse decaying shock. It was found that a DS-shaped 

adiabat follows a power law with respect to the mass [14], 

as 

𝛼 = 𝛼𝑖𝑛𝑛 (
𝑚

𝑚𝑠
)

𝛿

, (1) 

 

where 𝑚 denotes the mass coordinate calculated from the 

outer surface, 𝑚𝑠 is the total areal mass of the capsule and 

𝛼𝑖𝑛𝑛 corresponds to the adiabat parameter on the inner 

surface; the exponent 𝛿 is approximately independent of 

the initial pulse characteristics. The effect of such steep 

adiabat profiles were investigated by two dimensional 

simulations in [19, 22]. In general, shaped adiabat 

profiles are found to be more beneficial, with respect to 

improved stability, than flat ones (𝛼 ≈ 𝛼𝑖𝑛𝑛). 

In this work the implosion of a two layer shell driven by 

a two-step pressure pulse as that introduced in Ref. [21] 

is considered. The DS method is employed to shape the 

adiabat of the entropy which follows a power law as that 

in (1). Specifically, in section 2 the general problem of 

the decaying shock for the two-layer shell presented in 

Ref. [21] is reviewed. The pressure and density in the 

shell are formulated in Hugoniot conditions together with 

the equations of motion, once first obtained in terms of 

the surface mass. In section 3 the pertinent differential 

equations are solved approximately by employing the 

Decaying Shock method, and the applied pressure, pulse 

radiation time, laser intensity and adiabat parameter are 

directly calculated for three different states considered. 

We find that the optimum state with respect to the 

minimum adiabat parameter corresponds to shell’s initial 

density equal to 0.6 𝑔 𝑐𝑚3⁄ , and post shock density equal 

to 2.4 𝑔 𝑐𝑚3⁄ , achieved in relatively fast pulse radiation 

times. Finally, Section 4 summarizes the main results.           

 

2. IMPLOSIONS OF A DOUBLE-LAYER 

TARGET 

2.1 Pressure and Density in a Spherical Shell 

We consider a small spherical shell consisting of an outer 

pusher layer of ablative material and an inner solid 

cryogenic DT fuel layer, followed by a vacuum layer, as 

shown in Fig. 1. 

 
Figure 1. Schematic of a two-layer spherical fuel with an empty 

center. 

 

In principle, for the implosion of the target at a low 

isentrope, at least two shock waves are required. We 

study the propagation of the shock waves driven by a 

two-step pressure pulse directly applied to the spherical 

target over a time interval ∆𝑡, as that shown in Fig. 2. 

At the first stage a low pressure 𝑃𝑝 of the order of 1 to 5 

𝑀𝑏 drives the first shock, while at the time 𝑡𝑝 a sudden 

jump in the pressure 𝑃0 of the order of 10 to 100 𝑀𝑏 

launches the second shock wave. The applied pressures 

are assumed to be sufficient for the generation of strong 

shocks that drive the entropy in the shell. Also, all non-

ideal phenomena are neglected, and therefore, both the 

pusher material and the fuel are treated as ideal gases 

with enthalpy constant 𝛾 = 5 3⁄ . 

 
Figure 2. The pressure diagram applied in terms of time. 
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In the beginning of the process a shock wave is launched 

by the pressure prepulse at 𝑡0, setting the pressure of the 

pusher to the value 𝑃𝑝. Expansion of the pusher results in 

a decrease of the radius of the target, the density of which 

increases, thus, converting it into plasma. This wave then 

propagates inside the fuel layer and when it reaches the 

layer-vacuum interface, at time 𝑡1, a rarefaction shock is 

reflected off the vacuum boundary surface; the 

rarefaction shock then moves towards the ablation 

surface and arrives at the pusher layer at time 𝜏1. The 

pressure and density profiles in this stage where acquired 

via an isentropic expansion [21,23], being uniform in the 

regions that are not affected by the rarefaction for times 

𝜏 < 𝑡1. Furthermore, at time 𝑡𝑝 the laser-intensity is 

highly increased and a second shock is launched in the 

pusher layer due to the main pressure pulse, 𝑃0. This 

shock catches up with the rarefaction one at time 𝑡𝐵, 

when the radius of shell equals 𝑅𝐵, and interferes with it. 

When it later reaches the fuel vacuum surface it shapes 

the pressure and density profiles as that introduced in 

Ref. [21], leaving the entropy profile almost uniform 

until the end of the implosion once additional sources of 

entropy generation, such as preheating due to 

superthermal electrons, are neglected. We note that for 

effectively achieving high compression of the shell 

precise timing between the shocks is required [24,25]. 

The shock-waves generation and propagation details 

during the aforementioned process are illustrated in Fig. 

3. 

The compression of the fuel must be achieved rapidly and 

in an isentropic manner [1]. After the vacuum space is 

enclosed at 𝑡0, the velocity of the shell reduces, leading 

to its deceleration without significant change in the 

entropy. In this stage, the kinetic energy of the shell is 

completely trasformed into internal energy and the 

maximum pressure, density and temperature values are 

achieved at time 𝑡𝑚. Piriz and Wouchuk obtained the 

pressure and density profiles during an isentropic 

compression under the assumption that the velocity of the 

shell is small compared to the implosion velocity at times  

 
Figure 3. The position of the first wave, the wave of rarefaction, 

the second wave and the interference of the first and 

second wave at time 𝑡𝐵. 

 

close to 𝑡𝑚; these are given as functions of the radius 𝑟, 

measuring the distance from the center, by the following 

relations [21]: 

 

𝑃(𝑟) = {

𝑃𝐵 (
𝑅𝑚 − 𝑟

𝑅𝑚 − 𝑅𝐵
)

3𝛾 2⁄

, 𝑟 ⩾ 𝑅𝐵

𝑃𝑐 [1 − 𝐴 (
𝑟

𝑅𝐵
)

4

]

3𝛾 2⁄

, 𝑟 < 𝑅𝐵

 (2) 

and 

𝜌(𝑟) = {

(
𝑃𝐵

𝜎
)

1 𝛾⁄

(
𝑅𝑚 − 𝑟

𝑅𝑚 − 𝑅𝐵
)

5 2⁄ 𝛾

, 𝑟 ⩾ 𝑅𝐵

(
𝑃𝑐

𝜎
)

1 𝛾⁄

(
𝑟

𝑅𝐵
)

3

[1 − 𝐴 (
𝑟

𝑅𝐵
)

4

]

5 2⁄ 𝛾

, 𝑟 < 𝑅𝐵

 (3) 

 

where, 𝜌0denotes the initial density of the shell, 𝜎 =

𝑃0 (16𝜌0)𝛾⁄ , 𝐴 = 1 − (𝑃𝐵 𝑃𝑐⁄ )2 5⁄ , 𝑃𝑐 = 𝑃(𝑟 = 0), 𝑃𝐵 =
𝑃(𝑟 = 𝑅𝐵) and 𝑅𝑚 = 𝑟(𝑡 = 𝑡𝑚). Equations (2) and (3) 

can be simplified in a form relating the pressure directly 

with the density for the two regions in the shell; this is 

given by 

𝜌(𝑟) = {
(

𝑃

𝜎
)

1 𝛾⁄

{
1

𝐴
[1 − (

𝑃

𝑃𝑐

)
2 3⁄ 𝛾

]}

3 4⁄

, 𝑟 < 𝑅𝐵

(
𝑃

𝜎
)

1 𝛾⁄

, 𝑟 ≥ 𝑅𝐵

 (4) 

implying that 𝑃 ∝ 𝜌𝛾 for 𝑟 ≥ 𝑅𝐵. The above relations 

denfine the final form of the pressure and density of the 

second shock wave obtained for the implosions of a 

spherical double-layer shell, and therefore the adiabat 

parameter. 

2.2 Dynamics of the Implosion 

The dynamics of the shocked material is determined by 

the equations of motion for the fluid together with the 

Hugoniot conditions [26,27]. In one dimensional 

geometry, the equations governing mass, momentum and 

energy conservation can be interpreted in a Lagrangian 

frame by changing the independent spatial coordinate 𝑟 

with the mass areal density 𝑚, in the form [14, 15]: 

 
𝜕𝑢

𝜕𝑚
−

𝜕

𝜕𝑡

1

𝜌
= 0 (5) 

𝜕𝑢

𝜕𝑡
+

𝜕𝑃

𝜕𝑚
= 0 (6) 

𝜕

𝜕𝑡
(

𝑃 𝜌⁄

𝛾 − 1
+

𝑢2

2
) +

𝜕

𝜕𝑚
(𝑃𝑢) = 0 (7) 

where 𝑢 is the velocity, 𝜌 is the density, and 𝑃 is the 

pressure of the fluid as functions of m and t. Note that in 

the adopted frame of reference the outer surface of the 

shell is defined by 𝑚 = 0. The above equations refer to 

an ideal gas of index 𝛾, in which phenomena related with 

thermal conductivity and fluid viscocity are neglected. 

However, plasma viscocity may have some important 

impact on the implosions [28]. The Hugoniot relations 
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are jump conditions providing the connection between 

the pre- and post- shock macroscopic variables of the 

material, and can be derived by an integration of the 

equations of motion at the shock front. In the strong 

shock regime they are given by the forms: 

 

𝜌𝑀 =
𝛾 + 1

𝛾 − 1
𝜌0, (8) 

𝑢𝑀 =
2

𝛾 − 1

𝑚𝑠

𝜌𝑀

, (9) 

�́�𝑠 = √
(𝑟 − 1)

2
𝑃𝑀𝜌𝑀, (10) 

 

connecting the areal mass, 𝑚𝑠, with the post shock 

density, velocity and pressure. Here, the subscript M 

refers to the post shock variables, while the dot (.) implies 

differentiation with respect to 𝑡. Therefore, substitution 

of equation (4) for 𝜌 = 𝜌𝑀 and 𝑃 = 𝑃𝑀 into (10) yields 

the following expression of the time derivative of the 

surface mass, as a function of either the post shock 

density or post shock pressure in the spherical shell under 

consideration: 

 

𝑚
.

𝑠 = {

√
𝜎(𝛾 − 1)

2
𝑃𝑀

(𝛾+1) 𝛾⁄
[1 − (

𝑃𝑀

𝑃𝑐

)
2 3⁄ 𝛾

]

5 4⁄ 𝛾

, 𝑟 < 𝑅𝐵

√
𝜎(𝛾 − 1)

2
𝜌𝑀

𝛾+1
, 𝑟 ≥ 𝑅𝐵.

 (11) 

  

Following Refs. [14, 15], we introduce the dimensionless 

variable 

 

𝜀 ≡
𝑚

𝑚𝑠(𝑡)
 (12) 

 

 

and the following normalized macroscopic fluid 

variables in terms of 𝜀 

 

𝜌𝑁(𝜀) =
𝜌

𝜌𝑀

,  𝑃𝑁(𝜀) =
𝑃

𝑃𝑀

,  𝑢𝑁(𝜀) =
𝑢

𝑚
.

𝑠 𝜌𝑀⁄
 (13) 

under which the mass conservation and momentum 

conservation equations can be brought in dimensionless 

form. In specific, substituting the normalized parameters 

given in Eq. (13), under the appropriate relations for 𝑚
.

𝑠, 

𝜌𝑀, and 𝑃𝑀, obtained in Eqs. (4)-(11), into Eqs. (5) and 

(6) yields a pair of coupled ODE’s for each different 

region with respect to 𝑟. These are: 

 
𝑑𝑢𝑁(𝜀)

𝑑𝜀
−

𝜀

𝛾

1

𝑃𝑁(𝜀)(𝛾+1) 𝛾⁄

𝑑𝑃𝑁(𝜀)

𝑑𝜀
= 0,

𝜀 (
𝛾 − 1

2
)

𝑑𝑢𝑁(𝜀)

𝑑𝜀
−

𝑑𝑃𝑁(𝜀)

𝑑𝜀
= 0,

 (14) 

valid for  𝑟 < 𝑅𝐵, coupled through the normalized 

velocity and pressure, and 

 
𝑑𝑢𝑁(𝜀)

𝑑𝜀
−

𝜀

𝜌𝑁(𝜀)2

𝑑𝜌𝑁(𝜀)

𝑑𝜀
= 0,

𝜀(𝛾 − 1)

2𝛾

𝑑𝑢𝑁(𝜀)

𝑑𝜀
− 𝜌𝑁(𝜀)(𝛾−1)

𝑑𝜌𝑁(𝜀)

𝑑𝜀
= 0,

 (15) 

valid in the region 𝑟 ⩾ 𝑅𝐵, and coupled through the 

normalized velocity and density functions. For a well 

posed solution the above equations must be solved with 

appropriate boundary conditions; these are given by the 

Hugoniot relations at the shock front as 

 

𝜌𝑁(𝜀 = 1) = 1, 𝑢𝑁(𝜀 = 1) =
2

𝛾 − 1
. (16) 

Adiabat shaping relies on the solution of the above 

equations once the pressure and density profiles are 

determined. 

    In Ref. [15] an isentropic flow condition was 

considered; in the absence of shocks the energy equation 

reduces to 𝑃 = 𝑆(𝑚)𝜌𝛾, where 𝑆 is the adiabat shaping 

of the entropy for the specific process and which depends 

only on the coordinate 𝑚. We further consider the case 

𝑟 ⩾ 𝑅𝐵 assuming that 𝑃𝑁 = 𝜌𝛮
𝛾

. The schock wave 

launched by the strong pressure pulse sets the shocked 

material to a constant adiabat value, 𝑆(𝑚) =
𝑃

𝜌𝛾 =
𝑃𝑀

𝜌𝑀
𝛾 =

𝜎 = 𝑐𝑜𝑛𝑠𝑡., as follows from relations (4), 𝑃𝑀 = 𝜎𝜌𝑀
𝛾

. 

Thus, the post shock pressure and density through the 

solution of the pertinent system of differential equation 

(15) determine the shape of the adiabat, which we have 

found to be constant. However, such a state is ideal and 

impossible to achieve in ICF fusion related experiments, 

since for a constant adiabat value the applied pressure 

should not depend on time. Owing to the Hugoniot 

conditions, a simple integration of the momentum 

conservation equation yields 

 

𝑃(𝑚 = 0, 𝑡) = √
𝛾 − 1

2

𝑃0

(16𝜌0)𝛾 𝜌𝑀
(𝛾+1) 2⁄

∫ 𝑢𝑑𝜀

1

0

, (17) 

and in order to reach the appropriate conditions for 

ignition the relation 𝑃𝑀 < 𝑃𝑐 has to be satisfied. In this 

context, the pressure of the pulse should be applied 

continuously as it is a function of the physical initial 

conditions related with the fuel seed, i.e. for given initial 

density 𝜌0 = 0.25 𝑔 𝑐𝑚3⁄  and initial pressure 𝑃0 =
29.7𝑀𝑏, the above relation yields for the applied 

pressure the values 𝑃(𝑀𝑏) = 1.97, 3.087, 6.334, for 

post shock density equal to 𝜌𝑀(𝑔 𝑐𝑚3⁄ ) = 1, 1.4, and 

2.4, respectively. Since the determination of the power 

and time of the shock pulse are very important quantities 

related with the maximum possible energy gain, the 

applied pressure must be a function of the pulse time. 

Therefore, to shape the adiabat we employ the DS 

approximation. 
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3. ADIABAT SHAPING THROUGH THE DS 

METHOD 
The strong shock wave generated by the initial main 

pulse starts to decay after a certain time interval in which 

the pulse irradiates, and thus, the surface mass is an 

explicit function of the pulse irradiation time, 𝑚𝑠 =
𝑚𝑠(𝑡). Employing the DS method we expand both the 

density, pressure and the velocity in powers of 𝜀(𝑚𝑠(𝑡)), 
assuming the forms 

 

𝜌𝑁(𝜀) = 𝜀𝛿𝛷(𝜀),  𝑃𝑁(𝜀) = 𝛷𝛾(𝜀), 𝑢𝑁(𝜀) = 𝑈(𝜀). (18) 

Here 𝛷 and 𝑈consist of polynomial functions of 𝜀, while 

𝛿 is a constant the different values of which are 

determined from the solution of the equations of motion 

in Hugoniot conditions. In this case the adiabat 𝑆 varies  

with time, following a simple power law through 𝜀, as 

 

𝑆 =
𝑃𝑀

𝜌𝑀
𝛾 𝜀−𝛾𝛿 , (19) 

 

while the relation between 𝑚𝑠 and 𝜀 has the explicit form 

 

𝑚
.

𝑠 = √
𝛾 − 1

2
𝜌𝑀

𝛾+1
𝜀𝛿𝛾. (20) 

On account of the profiles (18) the system of ODE’s 

obtained in (14) reduce into the following one 

 
𝑑𝛷𝛾(𝜀)

𝑑𝜀
−

𝜀(𝛾 − 1)

2

𝑑𝑈(𝜀)

𝑑𝜀
= 0,

𝜀𝛿
𝑑𝑈(𝜀)

𝑑𝜀
−

1

𝛷2(𝜀)

𝑑𝛷(𝜀)

𝑑𝜀
−

𝛿

𝛷(𝜀)
= 0.

 (21) 

 

 

 

 

 

 

 

 

 

The above fina form of the corresponding ODE’s must 

be solved for the coupled functions 𝛷 and 𝑈 together with 

the Hugoniot boundary conditions, which are obtained 

from the ones given in Eq. (16) as 

 

𝛷(𝜀 = 1) = 1, 𝑈(𝜀 = 1) =
2

𝛾 − 1
. (22) 

In order to solve approximately the system (21) we 

employ the following power law solutions with respect to 

𝜀 

𝑈(𝜀) = ∑ 𝜃𝑖𝜀
𝑖

𝑘

𝑖=0

, 𝛷(𝜀) = ∑ 𝛥𝑖𝜀
𝑖

𝑘

𝑖=0

, (23) 

the coefficients 𝜃𝑖, and 𝛥𝑖 , of which are to be determined 

from pertinent boundary conditions for different 𝛿 

values. We have solved numerically the above system 

and calculated the values of the respective coefficients, 

up to the fourth order in 𝜀(𝑘 = 4), for five different 

assigned values of 𝛿, in the interval 0.2 ⩽ 𝛿 ⩽ 1.5, in 

order to fully determine the solutions (23). These are 

presented in Table 1. We note that values 𝛿 > 1.5 result  

to non physically plausible profiles of the pressure and 

density, and thus were not considered.  

The specified profiles of 𝛷 and 𝑈 as functions of 𝜀 are 

plotted in Fig. 4 for the different assigned values of 𝛿. It 

follows that the lower the value of 𝛿, approaching zero, 

the functions 𝛷, 𝑈, and as a result, the fluid density and 

velocity converge to a straight line curve, thus, fixing the 

adiabat parameter value. 

 

Table 1.  The calculated values of the coefficients 𝜟𝒊, 𝜽𝒊 of the approximate solutions (23) for 𝜱(𝜺) and 𝑼(𝜺) for 𝜹 = 𝟎. 𝟐 −
𝟏. 𝟓. 

 

𝛿 

𝛷(𝜀) 𝑈(𝜀) 

𝛥0 𝛥1 𝛥2 𝛥3 𝛥4 𝜃0 𝜃1 𝜃2 𝜃3 𝜃4 

0.2 1.025 -0.001 -0.026 0.005 0.003 3.27 -0.36 0.27 -0.27 0.1 

0.6 1.1 -0.027 0.098 -0.055 -0.024 4.26 -3.46 -6.27 -6.8 2.74 

1.0 1.2 -0.17 -0.13 -0.019 0.001 6.9 -18.6 46.1 -53.8 22.5 

1.2 1.28 -0.38 0.32 -0.36 0.14 10 -41.9 114.4 -137.7 58.6 

1.5 1.53 -1.81 4.39 -5.46 2.37 23.1 -164.7 506.4 -638.7 279 
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The trajectory of the shock for each δ is obtained by a 

means of integration of the shock velocity equation (10), 

as  

𝑚𝑠(𝑡) = {(
𝛿𝛾

2
+ 1) √

𝛾 − 1

2
𝜌𝑀

𝛾+1
𝑚𝛿𝛾 2⁄ 𝑡}

2

𝛿𝛾+2

 (24) 

leading to a respective relationship for the applied 

pressure, on account of the Hugoniot conditions, of the 

form 

𝑃(𝑚 = 0, 𝑡) = (
2

𝛿𝛾 + 2
)

𝛿𝛾 (𝛿𝛾+2)⁄

𝑡−𝛿𝛾 (𝛿𝛾+2)⁄ × 

 

× (√
𝛾 − 1

2
𝜌𝑀

𝛾+1
𝑚𝛿𝛾 2⁄ )

2

𝛿𝛾+2

∫ 𝑢𝑑𝜀

1

0

. 

(25) 

 

 

From Eq. (25) it follows that the applied pressure is 

proportional to 𝑡
−

𝛿𝛾

𝛿𝛾+2, and thus decays with time, this 

decay being enhanced as the value of the parameter 𝛿 

enlarges. Based on the DS method employed, a step by 

step decrease in the post shock pressure 𝑃𝑀 requires an 

increase in the pulse radiation time, once the intensity of 

the laser is lowered and thus, the applied pressure is 

decreased. The laser intensity, 𝐼𝐿(𝑃𝑊 𝑐𝑚2⁄ ), relates to 

the applied pressure, 𝑃(𝑀𝑏), through (steady ablation 

theory) 

𝑃 ≃ 40 (
𝐼𝐿

𝜆
)

2 3⁄

, (26) 

where 𝜆 denotes the wavelength. 

In order to shape the adiabat and calculate the adiabat 

parameter value, in respect to the most efficient process 

as concerns energy gaining and stability, related with the 

optimum laser power and radiation time, we solve 

numerically the system (21)-(22) to acquire the explicit 

expressions for 𝑈 and 𝛷in (23). Then, on account of these 

solutions we obtain the profiles of the pressure and 

 
                                                                    (a) 

 
                                                                                                     (b) 

                 Figure 4. The behavior of the function 𝛷(𝜀) (a) and 𝑈(𝜀) (b) for the different 𝛿 values assigned in Table 1. 
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density through (18) and (25), as well as the laser 

intensity required to induce the pressure though (26). 

We consider a fuel target of initial density 0.25 ≤ 𝜌0 ≤
0.6(𝑔 𝑐𝑚3⁄ ), thickness 𝑑 = 100𝜇𝑚, and inner thickness 

of the layer equal to 85𝜇𝑚, in which a pulse created by a 

short wavelength 𝜆 = 0.35𝜇𝑚 is applied, in order to 

estimate the adiabat shaping. We find that the value 𝛿 =
1.2 results to a nearly zero applied pressure, for which 

the laser intensity is negligible, and therefore, we reduce 

our analysis to values 𝛿 < 1.2. For 𝛿 = 1,0.6, and 0.2, 
we calculate the laser intensity needed to generate the 

pressure of 28, 24, 12, and 4 𝑀𝑏, respectively, for 

different prepulse irradiation time. In specific, for three 

different density and pressure states for the 

aforementioned fuel, in which 𝜌0 =
0.25, 0.35, 0.6 𝑔 𝑐𝑚3⁄ and the post shock pressure is 

decreased from 20 𝑀𝑏 to 15 𝑀𝑏 to 10 𝑀𝑏, we calculate 

the minimum adiabat parameter, as follows. 

First state: In this state the values of the initial and the 

post shock densities were assigned as 𝜌0 = 0.25 𝑔 𝑐𝑚3⁄  

and 𝜌𝑀 = 1 𝑔 𝑐𝑚3,⁄  respectively. Note that the post 

shock density is found from relation (8). The obtained 

intensity, radiation time and adiabat parameter values for 

each 𝛿, are presented in Table 2. 

In this state, the density is fitted as a polynomial of the 

order two of 𝜀: 
𝜌 = −0.22𝜀2 + 1.22𝜀 − 0.0018, (27) 

 

and the respective adiabat parameter for the different post 

shock pressures is shown in Fig. 5. It follows that the 

higher the value of the applied pressure and the exponent 

𝛿 is, the lower adiabat parameter; that is, the optimum 

adiabat parameter in this state is calculated 𝛼 = 1.9, for 

𝑃 = 4 𝑀𝑏 and 𝛿 = 1, achieved in time 𝑡 = 2.46 𝑝𝑠. 
Second state: In this state the initial density is increased 

to the value 𝜌0 = 0.35 𝑔 𝑐𝑚3⁄ , resulting to a post-shock 

density 𝜌𝑀 = 1.4 𝑔 𝑐𝑚3⁄ ; the calculated intensity, 

radiation time and adiabat parameter values for each 𝛿are 

shown in Table 3.   

Furthermore, the density dependence in powers of 𝜀 for 

the employed 𝛿 values are obtained as 

𝜌 = {
−0.31𝜀2 + 1.7𝜀 + 0.003, 𝛿 = 1

−0.95𝜀2 + 2.16𝜀 + 0.15, 𝛿 = 0.6

−1.21𝜀2 + 1.893𝜀 + 0.63, 𝛿 = 0.2,

 (28) 

and the corresponding adiabat parameter dependence in 

ε is shown in Fig. 6. We observe again that the lower 

adiabat parameter value is found for 𝛿 = 1 and applied 

pressure equal to 4 𝑀𝑏. In fact, reasonable values of 𝛼 

are obtained for 𝛿 = 0.6 and applied pressure up to 

12 𝑀𝑏, these values however are achieved for longer 

time periods. The optimum adiabat parameter in this state 

is 𝛼 = 1.1, achieved for 𝑡 = 3.66 𝑝𝑠. This value is lower 

from the respective one obtained for the first state. 

Third state: In this final state the values of the initial and 

post shock densities were further increased to 𝜌0 =
0.6 𝑔 𝑐𝑚3⁄  and 𝜌𝑀 = 2.4  𝑔 𝑐𝑚3⁄ , respectively, leading 

to the following density profiles with respect to 𝛿: 
 

𝜌 = {
−0.53𝜀2 + 2.97𝜀 + 0.0044, 𝛿 = 1

−1.64𝜀2 + 3.7𝜀 + 0.25, 𝛿 = 0.6

−2.07𝜀2 + 3.253𝜀 + 1.08, 𝛿 = 0.2.

 (29) 

Table 2.  Estimated values of applied pressure, laser 

intensity, time and adiabat parameter for the state 

𝝆𝑴 = 𝟏 𝒈 𝒄𝒎𝟑,⁄ 𝝆𝟎 = 𝟎. 𝟐𝟓 𝒈 𝒄𝒎𝟑⁄ . 

Applied pressure (𝑀𝑏) 4 12 24 28 

Laser intensity (𝑃𝑊 𝑐𝑚2⁄ ) 0.09 0.469 1.33 1.67 

Time (𝑝𝑠)for 𝛿 = 1 2.46 0.735 0.343 0.289 

Time (𝑝𝑠)for 𝛿 = 0.6 360 69.3 24.5 19.5 

Time (𝑝𝑠)for 𝛿 = 0.2 4.4105 9413 832 485 

Adiabat parameter for 𝛿 = 1 1.9 5.6 11.1 12.9 

Adiabat parameter for 𝛿 = 0.6 3 8.8 17.6 20.5 

Adiabat parameter for 𝛿 = 0.2 ∼ 100 ∼ 100 ∼ 100 ∼ 100 

 

Table 3.  Estimated values of applied pressure, laser intensity, 

time and adiabat parameter for the state 𝛒𝐌 =
𝟏. 𝟒 𝐠 𝐜𝐦𝟑,⁄ 𝛒𝟎 = 𝟎. 𝟑𝟓 𝐠 𝐜𝐦𝟑⁄ . 

Applied pressure (𝑀𝑏) 4 12 24 28 

Laser intensity (𝑃𝑊 𝑐𝑚2⁄ ) 0.09 0.469 1.33 1.67 

Time (𝑝𝑠)for 𝛿 = 1 3.66 1.36 0.636 0.536 

Time (𝑝𝑠)for 𝛿 = 0.6 835.7 160.8 56.9 45.1 

Time (𝑝𝑠)for 𝛿 = 0.2 3.13105 6.7104 5.9103 3.4103 

Adiabat parameter for 𝛿 = 1 1.1 3.2 6.3 7.4 

Adiabat parameter for 𝛿 = 0.6 1.7 5 10 11.3 

Adiabat parameter for 𝛿 = 0.2 ∼ 100 ∼ 100 ∼ 100 ∼ 100 

 

Table 4. Estimated values of pressure, laser intensity, time and 

adiabat parameter for 𝛒𝐌 = 𝟐. 𝟒 𝐠 𝐜𝐦𝟑,⁄ 𝛒𝟎 =
𝟎. 𝟔 𝐠 𝐜𝐦𝟑⁄ . 

Applied pressure (𝑀𝑏) 4 12 24 28 

Laser intensity (𝑃𝑊 𝑐𝑚2⁄ ) 0.09 0.469 1.33 1.67 

Time (𝑝𝑠)for 𝛿 = 1 12.25 3.66 1.7 1.44 

Time (𝑝𝑠)for 𝛿 = 0.6 3.2103 618.8 218.8 173.6 

Time (𝑝𝑠)for 𝛿 = 0.2 7.2107 1.5106 1.4105 8.01104 

Adiabat parameter for 𝛿 = 1 0.43 1.3 2.6 3 

Adiabat parameter for 𝛿 = 0.6 0.67 2 4 4.7 

Adiabat parameter for 𝛿 = 0.2 ∼ 100 ∼ 100 ∼ 100 ∼ 100 
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On account of the above equations we obtain the profile 

of the adiabat parameter shown in Fig. 7, for the values 

of applied pressure, laser intensity and radiation time 

calculated in table 4. We find that in this state the adiabat 

parameter is comparable to the one achieved in the 

previous state, but for a higher pressure; in specific, it is 

found that 12 𝑀𝑏 is needed to set 𝑎 = 1.3 for 𝑡 =
3.66 𝑝𝑠. Note that in this state the minimum adiabat 

parameter, found again for 𝑃 = 4 𝑀𝑏 and 𝛿 = 1, is 

significantly decreased to 𝛼 = 0.43 for 𝑡 = 12.25 𝑝𝑠. 
Thus, we conclude that the higher the initial density of 

the fuel is, the lower adiabat parameter. 

 

4 CONCLUSIONS 

Shaping the adiabat of the entropy during the implosions 

of ICF capsules plays an important role in the control and 

efficiency of the fuel targets in relation to a balance 

between energy gaining and stability. In the present paper 

we have considered the implosions of a two layer 

spherical shell, one of which consists of DT fuel and the 

other acts like a pusher, accelerated by the shock waves 

generated by a two-step pressure pulse. In specific, we 

have formulated the equations of motion together with 

the Hugoniot conditions for the related pressure and 

density profiles, and solved the resulting equations by 

employing the DS method since the applied pressure is a 

function of the time of the applied pulse. We investigated 

three different density for the target by increasing the 

initial density from 0.25 𝑔 𝑐𝑚3⁄  to 0.35 𝑔 𝑐𝑚3⁄  to 

0.6 𝑔 𝑐𝑚3⁄ ; in each of the states considered we 

numerically calculated the minimum adiabat parameter 

with respect to reasonable values for the applied pressure  

 
Figure 5. The adiabat parameter as a function of εfor the different post shock pressure values PM = 20Mb, 15Mband 10 Mb  

in the first considered state. 

 

 
Figure 6. The adiabat parameter as a function of 𝜀for the different post shock pressure values 𝑃𝑀 = 20 𝑀𝑏, 15 𝑀𝑏  

                 and 10 Mb related with the second state. 
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and the pulse radiation time. It follows that the lower the 

applied pressure and 𝛿is, the lower adiabat parameter, i.e. 

in all three states the minimum α was obtained for P = 4 

Mb and δ = 1. Also we have found that the larger is the 

initial density of the fuel target, 𝜌0, the lower the value of 

the minimum adiabat parameter. 

       In this respect we have found that the best adiabat 

parameter value obtained was 𝛼 = 0.43, acquired when 

the initial density of the fuel equals 𝜌0 = 0.6 𝑔 𝑐𝑚3⁄  and 

the post shock density is equal to 𝜌𝑀 = 2.4 𝑔 𝑐𝑚3⁄ , for 

which the for pulse radiation time 𝑡 = 12.25 𝑝𝑠. The 

obtained adiabat parameter values are found to be 

comparable with the ones calculated in previous 

theoretical models and were achieved for relatively fast 

radiation times and low laser intensity required, herein. 

We conjecture that this may be beneficial as concerns the 

reduction of the growth rates of the driven instabilities in 

related ICF implosions. 
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