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ABSTRACT

Let G be a transformation group in R%. Any two vectors x and y in R® are called G-equivalence vectors if there exist a
transformation ge G such that y = gx satisfies. In this paper the transformation group G will be considered as similarity
transformations group or its any subgroup. So if given two vectors x and y in R® are G-equivalence vectors then these
vectors x and y are called G-similar. i.e. rotational, reflectional, translational or scaling similarity. B-spline curves are used
basically in Computer Aided Design (CAD), Computer Aided Geometric Design (CAGD), Computer Aided Modeling
(CAM). In determining the invariants of spline curves and surfaces at any point, it is necessary to find the analytical
equation of each curve and surface and calculate its invariants such as curvature, torsion, principal curvatures, mean and
Gaussian curvatures at the desired point. However, it can be very difficult to find the curve or surface to be designed
analytically. For example, when a car is designed, the aerodynamic curves in the car will be different from the known
surface equation of the car. It is very difficult to write this equation exactly. For these curves and surfaces we designed, the
way to overcome this difficulty is to design them with spline curves and surfaces. In this paper the G- equivalence
conditions of given two open B-spline curves are studied in case G is similarity transformations group or its any subgroup.

Keywords: open B-spline curves, similarity groups, G-similar splines
R® de A¢ik B-Spline Egrilerinin G-Benzerlikleri

(074

G, R® de bir doniisiim grubu olsun. R® te herhangi iki x ve y vektorleri verildiginde eger bir ge G doniisiimii y = gx
sartin1 saglayacak sekilde bulunabilirse bu iki vektére G- denk vektorler denir. Bu ¢alismada G doniisiim grubu olarak
benzerlik déniisiimleri grubu ve bu grubun tiim altgruplari dikkate alinacaktir. Bdylece R® te herhangi iki x ve 'y vektorleri
G- denk vektorler ise bu vektorlere G-benzer denir. Dondiiriilme, yansitilma, 6telenme, ya da germe benzerligi gibi. B-
spline egrileri temelde Bilgisayar Destekli Tasarim (BDT), Bilgisayar Destekli Geometrik Tasarim (BDGT) ya da
Bilgisayar Destekli Modelleme (BDM) alanlarinda kullanilir. Herhangi bir noktada spline egri ve yiizeylerinin
invaryantlarini belirlemede egri ve ylizeyin analitik denklemini bulmak ve istenilen noktada egrilik torsiyon, asal egrilikler,
ortalama ve Gauss egriliklerini hesaplamak gerekmektedir Oysa ki tasarlanan egri ve yiizeyde bunu analitik olarak bulmak
olduk¢a zordur. Ornegin, bir ara¢ tasarlandiginda, onun aerodinamik yapisindan dolay1 yilizeyin ve onun iizerindeki
egrilerin analitik denklemini tam olarak bulmak oldukg¢a zordur. Tasarlanan bu egri ve yiizeyler i¢in bu zorlugun iistesinden

gelmenin yolu bunlart spline egri ve ylizeyleri ile tasarlamaktir. Bu ¢alismada G, benzerlik doniisiimleri grubu ve onun
altgruplari olmast durumunda verilen iki B-spline egrilerinin G- denklik kosullart verilmistir.

Anahtar Kelimeler: A¢ik B-spline curves, benzerlik gruplari, G-benzer splinelar

INTRODUCTION

Invariant rational functions under any transformation
have very important roles to determine any properties

In the 20th century Bridgman [5], Sedov [6], and
Langhaar [7] are some contributors in this area. In 1946,
Herman Weyl gave the complete invariant system of
points for real n dimensional orthogonal group O(n) in

which can formulated by these rational functions and are
independent from this transformation. If the generators
of invariant rational functions under any transformation
known then any properties which are invariant under this
transformation can be formulated by the generator
functions. So any invariant properties are the functions of
generators. Developments in invariant theory at the end
of the 19th century have affected different areas of
mathematics.

[8]. After him, Dj. Khadjiev and R. Aripov generalized
this invariants to all Euclidean motions in [9, 10].
Recently Sagiroglu [11-13], Oren [14-16, 21] Peksen [13,
16], Incesu and Gursoy [17-23] are some contributors in
this area. The best examples of points systems are Bézier
curves and Bézier surfaces. The invariants of these
curves and surfaces under an affine transformation have
the same meaning as the invariants of the control points
of these curves and surfaces [22]. Bézier and B-Spline
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curves has been studied in many different are of CAD
and CAM system. Some of these studies by G. Farin
[24], R. Farouki [25, 26], J. Hoschek [27], W. Tiller [28],
H. Potmann [29], Incesu and Gursoy [30, 34], Samanci et
al. [31, 33, 36, 37], Bulut and Caliskan [32], Erkan and
Yuce [35], Baydas and Karakas [38] can be given
exemplarily.

MATERIALS and METHODS
G-invariant Functions

Definition 1. Let (G,*) be a group and X be a nonempty
set. Let the transformation ¢: G x X —X be given. If
following conditions

1) ¢(91; ¢(92; X)) = (91 * go; X),V91;2€G and VxeX
ii)o(e; X) = x; for ¥x € X where e € G is identity
satisfies then the transformation ¢ is called Group action

of the group G on X.
This action is denoted by G : X and the image (g; Xx) is
stated as gx briefly. [19]

Definition 2. Let G be a group and the group action ¢ =
G : X and the subset H — X be given. the subset H is
called "G-invariant subset" if ¢(g; h) € H for every
heH and for every g € G satisfies [19].

Definition 3. Let G be a transformation group and the
action G:X be given. Then The vectors x,,x, € X are
called G-equivalent vectors if there exist any
transformation ge G such that x, = gx, satisfies. The
G-equivalent vectors x;,x, € X is denoted as x; E X,
[23].

Definition 4: Let the point sets {x;,x,..,x:} ,

{1, V2, ...V} < X and the action G: X be given.
Then These sets are called G-equivalent set sif there exist

any transformation ge G such that Y; = gX; satisfies
for every i=1,2,....k. These G-equivalent sets are denoted

G
as {xq, X3, o, Xi} ~ v, v2, oyt 23]

Definition 5: Let G be a group, f: X =0 be a

function and the action G: X be given. Then the

function fis called G- invariant function if f(x) = f(y)
G
satisfies when X ~X, satisfied or if f(gx) = f(x)

satisfies for rgeG and txeX .[23].
Definition 5: Let G be a group, H € G be a subgroup

and f, be a real valued function defined in R3. If there
exist a real valued function A:H —[] , such that for

VheH,A vVxeR?
f(hx) = A(h) f (X).

satisfies then the function ,f is called proportional G-
invariant function and the function A is called the factor
of the function f .[23]

Definition 6: Let f be a proportional invariant function.
The function f is called even O(3)-invariant function if

/I(g):l forevery g € O(3).
Open B-Spline Curves

Definition: The B- Spline basis functions of degree d,
denoted N;4(t), defined by the knot vectors to, ty, ..., ty
are defined recursively as follows

1, ift € [t,t
Ni,O(t) ={ [1 1-f—1)
0, otherwise
and
t— titd+1 — €
Nig(® = ———Nig_1(©) + ——————Ni;1 41 (V)
tiva — G titd+1 — ti+1

fori=0,1, 2, .., nand d > 1. If the knot vector contains a
sufficient number of repeated knot values, then a divi-

Nig-1() /t

sion of the form i — 6= /O(for some i)

may be encountered during the execution of the recur-

sion. Whenever this occurs, it is assumed that 0/0 = 0
[39].

Definition: The B-spline curve of degree d (or order d +
1) with control points by, ..., b, and knots tg, t;, is
defined on the interval [a, b] = [ty, tm-q] bY

B(t) = Xi—obiNia(t) (69)
where N; 4(t) are the B-spline basis functions of degree
d. [39]

Theorem 1: The B-spline basis functions N 4(t) satisfy
the following properties.

i) Positivity: N; 4(t) > 0 for t € (t;, tiyqs1)-
if) Local Support: N; 4(t) = 0 fort & (t;, tita+1)-
i) Piecewise Polynomial: N; 4 (t) are piecewise
polynomial functions of degree d.
iv) Partition of Unity: for t € [t,, t,;)
T

> N =1
i=r—d
[39].

Theorem 2: The B-spline curves defined as (1) satisfy
the following properties.

i) Local Control: Each segment is determined by d
+ 1 control points. If t € [t,, t.41) (d
<r<m-—d - 1), then

B® = ) biNia(®)

- i=r—d (5)
i) Convex Hull: Ift € [t,, t.4q)
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(d<r<m-d-1),then
B(t) € CH{b,_g, ..., b,}

iii) Invariance under Affine Transformations: Let T
be an affine transformation. Then

T( > bizvi,d(t)> = ) TN
Bol. o

In general, B-spline curves do not interpolate the first and
last control points b0 and bn. For curves of degree d, end
point interpolation and an endpoint tangent condition are
obtained by open B-splines for which the end knots
satisfy to =t; .. =tq and ty_q = tm—gs1 - = tm -

Theorem 3: Let the B-spline curves of degree d with
control points with control points by, ..., b, and t, =
ty . =tg s tmed = tneds1 - = tm. Be given Then,

B(td) = bO and B(tm—d) = bn
satisfy. [39].

Theorem 4: Let the B-spline curves of degree d with
control points with control points b, ..., b, and t, =

ty . =ty tmed = tm-d+1 - = tm- D€ given Then,
, d
B'(ty) = ——— (b1 — by)
ta+1 — g
and
, d
B'(tm_a) = _ (by — by1)
Lt — b
Satisfy [39].

The following chapter is cited from [19].

The Similarity Group G = S(3) and its all subgroups
in R®
Ortogonal Transformations' Group O(3)
This group is a group of all rotations and reections.
Ortogonal Transformations' group is the same of the
linear isometries’ group. For any g e O(3); the
determinant of g is equal =1. While the totating the
rotating frames {e;*,e,* e;*} and fixed frames
{e1,e;,e3} be given. The rotations are depend on the
angles 6;; between the axisses {ei*, ej}. So this group can
be stated as
0B3)={f:R*>R*f(x)=gx; g" =g~ ";Vx € R’}

={g € M3*3:detg = +1}

0 0 1 cosfy; cosB,; cosO3;
={<0 1 0>.<cost912 cos0,, cose32);9ij5R}

1 0 0 c0s0i3 c0sB,3 05033

Special Ortogonal Transformations' Group SO(3)

This group is a group of only all rotations. For any g
SO(3) the determinant of g is equal to +1. This group is
denoted also as O*(3). So this group can be stated as
S0B) ={f:R*>R*f(x) =gx; g" =g~ ";Vx € R*}
={geM3*3:.gT = g7t and detg = 1}
cos6;; cosO,; cosbs,
= {(cos@lz c0s6,, cosegz) : HijeR}
c0s6;3 cosO,3 cosbs3

Translations'Group Tr(3)
This group is a group of all translations.
Tr(3) ={f:R®* > R% f(x) =x+b; b€R3VxeR3}

Euclid Transformations' Group E(3)

This group is a group of all translations, rotations,
rotations and translations, reections, reections and
translations. this group is the same of all isometries'
group. Euclid transformations can be stated as a
compositition of a translation and an orthogonal
transformation. So this group can be stated as

ERB)={f:R®*>R3%f(x) =gx+b; beR?ge0B)}

Special Euclid Tranformations' Group SE(3)

This group is a group of all translations, rotations,
rotations and translations. Special Euclid transformations
can be stated as a compositition of a translation and a
special orthogonal transformation. So this group can be
stated as

SEGB)={f:R®*>R3f(x) =gx+b; beR3geS0(3)}

Linear Homotethies' Group LH(3)

This group is a group of all central dilations or radyal
transformations. Linear homotethies are the transfor-
mations that its center of homotethy are origin. So this
group can be stated as

LHB3) ={f:R® > R3% f(x) = x; 1€ R}

Homotethies' Group H(3)
The hometethy transformation can be defined as

f(x)=a+A(x—a) where a is called homotethy
center of f. This transformation can be stated also as
f)=Ax+b for 1#1 where the center of

homnotethy is a = % . So this group can be stataed
as
H@) = {f:R* > R%;f(x) = Ax +b; A€R*,bER’}

Linear Similarities' Group LS(3)

Linear similarity transformations can be stated as a
compositition of a linear homotethy transfor-mation and
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an orthogonal transformation. So linear similarity
transformations can be stated as

LS(3) ={f:R® > R3%f(x) =Agx; A€R*; ge0(3)}

Special Linear Similarities' Group SLS(3)

Special linear similarity transformations can be stated as
a compositition of a linear homotethy transformation and
a special orthogonal transfor-mation. So linear similarity
transformations can be stated as

SLS(3) = {f:R3 - R3; f(x) = Agx; A€ R*; g € SO(3)}

Special Similarities' Group SS(3)

Special similarity transformations can be stated as a
compositition of a special linear similarity transformation
and a translation. In other words a special similarity
transformation can be stated as a compositition of a
linear homotethy transformation, a special orthogonal
transformation, and a translation. So special similarity
transformations can be stated as

SS(3) ={f:R®*>R3f(x) =Agx+b; A€R*; g€ SO(3),b€R?}

All Similarities' Group S(3)

Similarity transformations can be stated as a
compositition of a linear similarity transformation and a
translation. In other words a similarity transformation can
be stated as a compositition of a linear homotethy trans-
formation, an orthogonal transformation, and a transla-
tion. So similarity transformations can be stated as

SB)={f:R*->R3f(x) =Agx+b; L€R*; g€ 0(3),b €R?}

The Generator Invariants of Points by the group G =
S(3) and its Some subgroups in R®
Let {x;,x,,..,x} € R® be given.

Theorem 5:Let G = 0(3) < S(3) be supposed. In this
case;

i) if k < 3 then the system
(xpx); Lj=1,...k i<j
generate the O(3)- invariant rational functions.
ii) if k>3 then the system
(xl-,x]-); ij=123; i<j
(X xp); 1j=1,2,3; p=4,5,...k
generate the O(3)- invariant rational functions. [22].

Theorem 6:Let G = SO(3) < S(3) be supposed. Then;

i) in case k < 3 the system
(xl-,xj); |,J :1,...,1(; i S_]
generate the SO(3)- invariant rational functions.
i) incase k =3 the system
det[x; x, x3];
(X x); 1J=1,2,3; i<j;i+]j<6;
(X, xp); 1j=1,2,3; p=45,...k
generate the SO(3)- invariant rational functions [1].

Theorem 7: Let G = LS(3) < S(3) be supposed. Then;
iyincase Kk <3 the system,
(xpXj);
(x1,%1)
generate the LS(3)- invariant rational functions.
ii) incase Kk > 3 the system

(xixj);

ij=1,...k i<j

. o
((xl'xlg 1j=123; i<
alli LY = . _
Ty 1,)=1,2,3; p=4,5,...k

generate the LS(3)- invariant rational functions [22].

Teorem 8 [22]: the set of generators of the field of G =
S(3) invariant rational functions for k vector variables are
1. ifk <4 then

{(xi_xlrxj_xl)
(x2—x1,X2—%x7)

ij =234 is;‘}

2.if k = 4 then

(Xi—xpxj—x1) . . . }
_— =2 4 < n
{<x2_x1vx2_x1> LJ ,3, t=J a d
=5..,

{(xl-—xl,xp—xl) . k}

(xz—xl,xz—xl)'l =234 p
Theorem 9: Let G = E(3) < S(3) be given. Then;
i) if k=1 then E(3)- invariant rational functions are
constant.
ii) if 2 <k <4 then the system
(X — X1, —x1) 1J=2,...k i <j
generate the E(3)- invariant rational functions.
iii) if k>4 then the system,
(g — 2,25 —x1); 1j=12,3;, i<
(X, — x1,X, — x1); 1,j=1,23; p=45,...k
generate the E(3)- invariant rational functions. [1]

Theorem 10:Let G = SE(3) < S(3) be given. Then;

i) if k=1 then SE(3)- invariant rational functions are
constant.
ii)if 2 <k <4 thenthe system
(i —x1, % —x1); ij=l..k i<j
generate the SE(3)- invariant rational functions.
iii) if k >4 then the system
det[x, — X1 X3 — X1 X4 — Xq];
(x; —x1,%;—x1); 1j=234; i<ji+j<8;
(x; — x1,%, — x1); 1j=1,23; p=5,...k
generate the SE(3)- invariant rational functions. [1]

MAIN RESULTS
The Generator Invariants of Points by the other
subgroups of G = S(3) in R®

Theorem 11: Let G = Tr(3) < S(3) be given. Then
any g €Tr(3)- invariant rational function for k vector
variables can be written as

g(x1; ---;xk) = f(xZ = X1y s X T xl)
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where x; # x;, and f is a linear function.

Proof: since gisa Tr(3)- invariant,

9Cer +p, ., x +p) = g(xq, ., Xi)

must be satisfied. So

g, +p, ., x +p) =
= (e + ) = (X1 + ), o, (X + D) — (%1 + D))
= f(xZ = Xqy s X T xl) = g(xl' ""xk)

satisfies.

Theorem 12:Let G = LH(3) < S(3) be given. Then;

The LH(3)- invariant rational function can be written as
the proportion of the polynomial functions whose terms
have the same degre [1].

Example: For the vector = (x,y.z) € R? the function

2 + 2,,2 . ) R
fx,y,2) = % isa LH(3)-invariant. Because;
_ k%x%kykz+k?x%k2y?
f(kx, ky, kz) = k2y2kzkx+k2y2k2z2

_ k*(xPyz)+k*(x%y?) _ xPyz+x?y?
k*(y2zx)+k*(y?z2)  y2zx+y?z?

= f(x,y,2)
satisfies. Example 2: For these vectors X,Y,Z,W € R3
. __det[lxyz] . )
the function f(X,Y,2) = Tetx Y W] isa LH(3)
invariant.

Theorem 13:Let G = SLS(3) < S(3) be given. Then;
i) if k<3 then the system

Caxgh P
e =Lk i<j
generate the SLS(3)- invariant rational functions.
ii) if k = 3 then the system
det[x; xj xk]; i<j<k
det[xq xp x3]
(xpxj);

(x1,X1)

ij=123; i<j ;i+]j<6;

(xi,Xp) . |,J :1’2’3; p= 4,5,...,k

(x1,%1)”
generate the SLS(3)- invariant rational functions.

Proof: since the LS(3)-invariant functions are both O(3)-
invariant and LH(3)- invariant, it is stated as Theorem 7.
Similarly Because the SLS(3)-invariant rational functions
will be both SO(3)-invariant and LH(3)-invariant, the
proof is completed similarly as Theorem 7.

Teorem 14: The set of G = SS(3) invariant rational
functions for k vector variables

1. Contains only one element “1* which is identity of
the field if k = 1. Indeed in this case G = SS(3)
invariant rational functions are constant.

2. Contains the system

(—x1xj—x1) .. .
_ = . <
oy rprgry ) 234, i<

if2<k<4
3. Contains the system

det[x;—x1 Xj —X1 Xg—%1]

; i<j<k
det[xy;—x1 x3—%1 X4—x1]

(e—x1,xj—x1) .. L.

———— 1j=234, i <j; +]<8;

(xz—xl,xz—xl) J t J J
(xi—x1,Xp—x1) .
(xp—x1,%2—%7)’

i=2,34; p=5,...k

if k>4.

Proof: As the proof of the Theorem 8 with the help of
proofs of Theorem 7 and Theorem 11, this theorem can
be proved from theorem 13 and theorem 11 similarly.

The G- Equivalence Conditions of Points Systems for
G=S(3) and its all subgroups in R®

Fist of all these propositions can be given for G= S(3)
and its all subgroups in R®

Proposition 1: Let {x;,%5, ..., xx.}, V1, Y25 0» Y&} € R3
be given and G c S(3) be a linear transformation’s
subgroup (may be O(3), SO(3), LH(3), LS(3),SLS(3) ).
Then

1. Ifx;,=0andy, #0 (or vice versa) then these

vectors is not G-equivalent. i.e. {x;} i {y:}

2. Ifx,=0and y; =0 then these vectors is

always G-equivalent. i.e. {x;} E {y.} and the

G-equivalent conditions of two point systems with
k vectors {xq,%5,...,x} and {yi,va, ..., Vi} IS
reduced to G-equivalent conditions of two point
systems with k-1 wvectors  {x,,..,x,} and
{y2, ..., ¥ }. (The same theorem can be expressed
by subtracting the i th vectors.)

Proof: 1. Let x;, =0 be given. Then for any

transformation g in S(3) or its any subgroup G , the

vector gx; is equal to zero. So if {x;} E {y.} then

y1 # 0 must be satisfied. So this is a contradiction. Thus
incase x; = 0 and y; # 0 these vectors must be not G-

equivalent. i.e. {x;} i {y1}. The Other case can be

proved similarly.
2. Let x;, =0 and y, =0 be given. Then for any
transformation € G , Suppose that gx; = 0 satisfies. So

{x} E {y.} be proved. Now, {x;,x,,..,%} and

{yi,v2, ..,vx} be given and x;, =0 and y;, =0 be
supposed. In this case it must be proved that the G-
equivalent conditions of two point systems with k vectors
{x1, x5, 0, %} and {y;,y5, ..., yi} is reduced to G-
equivalent conditions of k-1 vectors except x;, and y,.
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Let {x1, x5, .o, X} E {y1, ¥2, -, Vi } be supposed. Then
there exist a transformation g € G such that y; = gx; is
written for i=1,..,k. So 1y, = gx; satisfies for

, G
i=2,..,k.Thus {x,, ..., x;} ~ o s Vi)

Conversely  {x,, ..., x;} E {y5, ...y} be supposed.
Then there exist a transformation g € G such that
y; = gx; is written for i = 2,...,k. Since x; =0 and
vy, =0, gx; =y, issatisfied (g0 = 0) so y; = gx; is
written for i=1,..,k. And then

O} C (2, i} is Obtained,

Theorem 15:
{x1, %5, ., %} and {y1,¥2,...,Vx} be given. Then

G . .
{x1, x5, 0o, X1} ~ {y1, y2, .., v} ifand only if
if k<3 then (xi,x]-) = <yl,y}) i S], |,J = 1,..,k
if k>3 then (x;,x;) =(y,y;):i<j;ij=123; and
(X, %p) = (Vi ¥p) 1 1=123 | p=4,..k
satisfies for G = 0(3) < S(3).
Proof: see [10].
Theorem 16:
{x1, x5, ..., x,} and {yi,¥y,,..,¥x} be given. Then

G . .
{x1, x5, oo, X3} ~ {y1,v2, ., v} ifand only if
|f k <3 then (xi,x]-) = (yl'y]> y i S], |,J = l,..,k
if k>3 then
(x) =(yiy;) i<j;i+j<6;ij=123 and
(X3, %) = Vi, ¥p) 12123 ; p=4,...k
det[x; x, x3] = det[y; y, ys]
satisfies for G = SO(3) < S(3).
Proof: see [10].

Theorem 17:

{x1, x5, ., %} and {y1,¥2,...,Vx} be given. Then
G . .

{x1, x5, 0o, X1} ~ {y1, y2, .., v} if and only if

if k = 1 then always {x; } E {y,} satisfies.

if 2<k<4 then
(i =21, = x0) =y yp) s L < J 1= 2K
if k>4 then
(x; — X1, Xj — x1) = (yi — yuYi — i)
i<j;i+j<8;1ij=234 and
(i = x1,%p = X1) = YVi = Y1, ¥p — V1) ;
i=234 ; p=5,...k
det[x, —x; X3 —Xx; X4 — %1 | =
=detly, —y1 Y3 —y1Ya — V1]
satisfies for G = SE(3) < S(3).
Proof: see [10].

Theorem 18:

{x1, x5, 0, %} and  {y1, ¥y, ..,yx} be given. Then
G . .
{21, x5, e, X3} ~ {v1,¥2, ., i} if and only if

if k = 1 then always {x;} f {y.} satisfies.
if 2<k <4 then

(g —xp,% =) = (Vi =YY — Y1) i<
if k>4 then

(x; — X1, X; — x1) =y —Yu Y -

i<j;i,j=234 and
(X —x0,%p — X)) =Vi = Y01, Yp — V11
i=234; p=5,..k

satisfies for G = E(3) c S(3).
Proof: see [10].

Theorem 19:

{x1, x5, ., X} and {y, v, ..., Vi } be given.

the ranks of matrices of these vectors systems

[x1, X3, ..., %] @nd [yy, ¥, ..., ¥i] should be same in order

to be equivalent:

if the ranks of these matrices, (let denoted it by r ), then;
i) incase r=3

G . .

{x1, x5, oo, X3} ~ {v1,¥2, -, yi } if and only if

pxj) VY L. e

N L isfies.(for k <

(x1,X1) vy’ t=J satis ES( or k - 3)
or

(epxp)  Vuyj) . L

— = == i< jij=1,2,3an
(x1,x1) (y1y1) ' E=JN ' ’3 and

Gap) _ Oudnd g3

(X1,%1) Y1)’ I 1>273,p 4,...,1{
satisfies ( for k > 3)
ii)incaser =2

G . .

{x1, x5, oo, X3} ~ {v1,¥2, -, i} if and only if

Crixj) _ uyj) < iiz

(x1x1) (Y1)’ P<jih=l2
satisfies.( for k < 2)

or

Geixp) _ Ye¥p) Lo i g g

(xpx1)  (yay1)’ ES s p=3, 0k
satisfies ( for k > 2)

iii) incaser=1

G . .
{1, x5, oo, X3} ~ {y1, V2, ..., ¥} if and only if

eax) oy .

(x1x1) 1y’ =2,k
satisfies for G = LS(3) < S(3).
Proof: see [22].

Theorem 20:

{x1, x5, ..., %} and {y4, v, ..., ¥i} be given.

the ranks of matrices of these vectors systems [x, —
Xy, X3 = Xq, 0, X — X1] AN [yo = Y1, Y3 = Y1, e, Vi —
y1] should be same in order to be equivalent:

if the ranks of matrices, (let denoted it by r as above),
then;
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i) incase r=3

G . .

{x1, x5, 0o, X3} ~ {y1, V2, ..., v, } if and only if
(xi—x1,%j=%x1) _ (Yi-y1.yj—-v1)
(¥Y2=y1.¥2-¥1)

i 1< satisfies.( for
(X2—x1,%2—x1) t=J (

k<4)or
(Xi=X1,%j=%1)

(X2—x1,X2-%1)

= DY L < i j=2,3,4 and
(Y2=y1,Y2—Y1)

(Xi—%1,%p—X1) _ (YVi—Y1,Yp—¥1) L 1=2,3,4;p=5,...k
(X2=x1,%2=%1)  {Y2=Y1.Y2=Y1)
satisfies ( for k > 4)
iijincaser =2

G . .
e 20, } . 0, Y2, - v} ifand only if
(xi—x1.xj-x1) _ (Vi=Y1.yj—v1) . . < iiz
(62=x1,02-%1)  (V2—y1.v2-v1)’ i<ji1j=23
satisfies. (for k < 3) or
<Xi—X1.Xp—x1) (i~ Y1.Vp— V1) 1 23 = 4 k

] (9_C2—x1'xz—x1) (Y2=y1.y2-v1)’
satisfies ( for k > 4)

iii) incaser=1
G . .
{x1, x5, 0o, X1} ~ {y1, y2, .., v} ifand only if
(XZ—JC1.XJ'—X1) — (3’2‘3’10’]'—311) : j=3,...,k
(x2=x1,X2—x1)  (Y2—Y1,Y2—Y1)
satisfies for G = S(3) < S(3).
Proof: It can be easily proved like theorem 2.2 in [18].

Theorem 21:

{x1, x5, ..., %} and {y1, v, ..., ¥} be given.

the ranks of matrices of these vectors systems
[x1, x5, .., X ] @nd [yq, ¥5, ..., V& ] should be same in order
to be equivalent:

if the ranks of these matrices, (let denoted it by r ), then;

G . .
{x1, x5, 0o, X1} ~ {y1, y2, .., v} if and only if
(xixj) _ (Yiy;) i<
(xpx1)  (yuy1)
arbitrary kand r=1,2

or

satisfies for k < 2 or for

(xixj) vy |

(x1,x1) - (y1.y1)

(i xp) _ (Yiyp) .

(x1,%1) - oy’

det|x; x; xm| _ det[y; y; ym] e L _

det[x, x5 x3] - det[y, vy, ¥3] >0 <)J<m; 1j)m= L.k

satisfies for k > 3, r =3 for the group G = SLS(3) c
S(3).

Proof: := Let {x,x;, ..., %}

i<j;i,j=123andi+j <6

=123;p=4..,k

G

~ {1, y2, - ¥k} be
given. Then there exist a transformation g € G such that
iyp) _ Agxidgxy)
(yiy1)  (Agx1,Agx1)

for every i, y; = Agx; satisfies. So

(o2 j)
= = ’) is written for every i and j. In addition for r =3 ,
X1,X1
det det|Agx; Agxj Agx. det|x;xj x . g
[J’LYJJ’m] — [g iAgxj Ag m] — [ iXj m] satisfies.
det[y1y2 y3]  det[Agxy Agxz Agx3]  det[x1 xz x3]

&: Let k > 3, r =3 be supposed and

(i, x;) _ Vi, ;) )

= si<ji,j=123andi+j <6
(x1,%1) (Yo 1) P=an amdit)
<xirxp>_<yilyp) . i=123: p_4 k
(1, %) (Y1)’ Y

| det[xi Xj xm] _ det[yi Yj J/m] .
det[x; x, x3]  det[y, y, y3]
be given. Then, (y;,y;) = 22

. . {xxy)
This equations can be rewritten as

(yuyj) = <Axir/1xj) 1)

if :“ “; is denoted by A. Since r = 3 then there are three
X1,X1

linear independent vectors in each systems. So, without
anything in general, these vectors let be choosen as
X1 X, x5 and y; y, y5. In this case for every i,j,m
Xi = Ap Xy T AipXp + Aj3X3
Xj = Qj1 X1 + AjpXp + Aj3X3 2
Xm = Am1X1 T AmaXz + Ay Xs3

(x;,x;) can be written.

and
Yi = Buy1 + Bizy2 + Bizys3
Vi = Bjyr + Bj2y2 + Bjzys (3)
m = BmiY1 + Bm2Y2 + BmsYs
can be written. After this the proof can be completed as
the proof of theorem 19 in [22]. So,
yi = Agx; 4
is obtained. However, the thing to note here is that the
transformation g satisfying the condition (4) may be
from SLS(3) or it may be from reflections whose
determinant is -1. The way to ensure that this is from
SLS(3) is to satisfy that the third condition, determinant
ratios are equal and possitive. Now let it be proved. From
(2) and (3)
det[y; y; ym]
det[xi Xj xm]

_ detB.detly, y, y3]
"~ detA.det[x; x, x5]

is obtained where
Qi QA a3 Ba Bz Bi
A= <“j1 Qjz A3 ) andB=| Bi1 Bz Bjs
Xm1 Amz  Om3 Bmi Bmz Pms
As can be seen in the proof of theorem 19 in [22], A and
B are equal. So detA = detB is written. Then,
detly, y, y3] _ det[Agx, Agx; Agx;] 3
= = Adetg
det[x; x; x3] det[x; x, x3]
is obtained. Since 4 >0 , the signal of proportion
getlys 3, a1 depend on the signal of g. So it must be

det[xq x5 x3]
detg =1 and from (4)

possitive.  Then
(X0, Xy ooy X} g (Y1, V9, -, v} is obtained for the

group G = SLS(3).
In case r = 2 or r = 1, since the determinant of the
matrices of any three vectors must be zero. i.e.
det[x; x, x3] = det[y, ¥y, y3] =0
and the proportion of determinant is undefined, the
conditions in the first are sufficient. This means that every
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two lines (or two planes) passing through origine can be
rotated to transform one into the other. So the first
conditions are sufficient.

Theorem 22:

{x1, %5, .., x 3 and {yq, v, ..., Vi } be given.
the ranks of matrices of these vectors systems [(x, —
x1) (3 = %) e (g — %)) and (V2 —y1) (s —
v1) . (Vx —y1)] should be same in order to be
equivalent:
if the ranks of matrices, (let denoted it by r as above),
then; {x1, %5, %} C 1, Y, ., yic} if and only if
(ej—xq1,xj-x1) _ Vi—Y1,Yj=V1)
(x2=x1.X02=%1)  (Y2=Y1.¥2-1)
or for arbitrary k and r =1,2
( (x; — %1, % — X41) _ Y —yuY; — Y1) il —234mditi<
(2 — %1, %5 — X1) (}’2_}’14’2_3’1)'!_1' Y SIS
(x; — X1, Xp — Xp) _ (yi — YuYp — Y1)
(X2 = x4, — X1) - V2 = Yo Y2 — Y1)
det[xi Xy Xj T Xq Xy — x1] _ dﬁb’i V1Y = V1V — 3’1]
det[xy — x; x3— %y X4 — X,] det[yz Y1 Y3~ V1 Ya— Y1]
i<j<m ijm=2.,k

satisfies ( for k = 4) for G = SS(3) < S(3).

; 1 < j satisfies for k < 3

;i =234 p=5..k

> 0;

Proof: Since SS(3)- invariant rational function is both
SLS(3)- invariant and Tr(3)- invariant, , this theorem can
easily proved from Theorem 11 and Theorem 21.

The G- Equivalence Conditions of Open B-Spline
Curves for G= S(3) and its all subgroups in R®

One of the most important properties of bezier and b-
spline curves, even their surfaces, is the Invariance under
Affine Transformations property expressed in theorem 2.
According to this property, when we want to transform a
bezier or b-spline curve with any affine transformation, it
is sufficient to transform only control points instead of
transforming each point of the curve. In other words,
when we transform a B-spline curve B(t) of degree d
with control points b; by an affine transformation T, the
curve we will obtain is also a B-spline curve of degree d
whose control points are T (b;).

So these theorems can be stated as follows:

Theorem 23:Let B, B, are open B-spline curves of
degree d with control points by, by, ..., b, and ¢y, ¢y, ..., Cp,

respectively and knot vektors  t,=1t; = =ty;
tavvtatz - tm-a-1;  tm-a = lm-a41 =" = l; be
given. Then

B, ¢ B, if and only if
(bi, bp) = (ci, cp); i=012; p=3,..,n
satisfies for G = 0(3) < S(3).

Proof: This theorem is a result of theorem 15.

Theorem 24:Let B,, B, are open B-spline curves of
degree d with control points by, by, ..., b,, and cg, ¢4, ...,
respectively and knot vektors

tari taszs - tmea=1;  tm-qa = lp-gs1 = = = tm  be
given. Then

o=t = =1g

8, O B, ifand only if

(bubj) =(c,c;)); i<j;ij=012%i+j<4

(b,b,) =(c,c,);i=1012; p=3,..,n

satisfies for G = SO(3) < S(3).
Proof: This theorem is a result of theorem 16.
Theorem 25:Let B;, B, are open B-spline curves of
degree d with control points by, by, ..., b, and cy, ¢y, ..., €,
respectively and knot vektors to =1t ==ty

tari taszs o tmea—1;  tm-a = tp-gs1 = = tm bE
given. Then

B, O 8, if and only if

(b, = bo,b; = by) ={c;—coc;—co); i<jiij =123 i+j<6
(bi—bo,bp—bo):(ci—co,cp—co); i=123; p=4..,n
det[b1 — by by, — by by —bo] = det[c1 — o €3 — € C3 —co]

satisfies for G = SE(3) < S(3).
Proof: This theorem is a result of theorem 17.
Theorem 26:Let B;, B, are open B-spline curves of

degree d with control points by, by, ..., b, and ¢y, ¢y, ..., ¢,
respectively and knot vektors

tari taszs o tmea=1;  tm-a = tp-qs1 = = =tm bE
given. Then

o=t = =ty

B, O 8, if and only if
(b, — bo, b, — bo) ={c; —coc;—co); i<j;ij = 123 i+j<6
(b; — by, b, —by) = (ci—co,cp—co); i=123;p=4..,n
satisfies for G = E(3) c S(3).
Proof: This theorem is a result of theorem 18.

Theorem 27:Let B;, B, are open B-spline curves of
degree d with control points by, by, ..., b, and cy, ¢y, ..., Cp,
respectively and knot vektors to =1t = =ty

tavv tavz - tin-a-1;  tn-a = ltm-g+1 = " = lm be
given and rank[by b, ... b, ] =rank[cy ¢; .. cp ] =T
be supposed. Then

B, f B, if and only if
(bil b]) _ (Ci;cj) ‘ ls]‘ l’] _ 0‘1’2‘
(bo' bo) (Co;Co)
(bif bp) (Cif Cp) 3
= ;1 =012; p=3,..,n

t(bo: bo) - (Co: Co) ’
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satisfies for r = 3 or
(bi' bp) _ (Ci' Cp) .

(bo;bo) B (Co;co) ’
satisfies for r = 2 or

(bo, by (cory)

(bg, bo) B {(co, Co) ’
satisfies forr = 1
for G = LS(3) c S(3).

Proof: This theorem is a result of theorem 19.

i=01;p=2,..,n

Theorem 28:Let B;, B, are open B-spline curves of
degree d with control points by, by, ..., b, and ¢y, ¢y, ..., ¢y,

respectively and knot vektors to =1t = =ty
tari tasz - tm-a-1;  tm-a = bn-g+1 =" =l be
given and rank[b; — by ... b, — by ] = rank[c; —

Co - Cn — Co | = 7 be supposed. Then
B, ¢ B, if and only if
( ?bi —bob;—by) (e — - ¢p)
(bl—bo,bl—bo)=(c1— —c)
(bi — by, bp - bo) (Ci —Cop Gy Co) .

jibj = 123

= ;i=123; p=4,..,n
k(b1 — by by — bo) {c; — Cp €1~ co)

satisfies for r = 3 or

(b; — b, by — by) _ {c;—co,cp —Co) .
= s i=12; p=3,..,
(by — by, by — by)  {c1 — o, €1 — Co) : p n
satisfies for r = 2 or
{(by — by, b, —by) _{c; — o, €, — o)
= rp=1,..,
{by — by, by — by)  {c; — ¢o, €1 — Cp) p n
satisfies for r = 1
for G = S(3) < S(3).

Proof: This theorem is a result of theorem 20.

Theorem 29:Let B, B, are open B-spline curves of

degree d with control points by, by, ..., b, and ¢y, ¢y, ..., ¢y,

respectively and knot vektors to =1t = =ty

tarn tarz - tm-a-1;  tm-a = tm-g+1 = =ty Dbe

given and rank[by by ... b, ] =rank[cy ¢; ... cp, ] =T
be supposed. Then

B, O B, if and only if

(bi:bj) _ (Ci,Cj) .

(bo,bo)  {co,Co)’

(bi,b,) {cicp) |

= ;1=012; p=3,..,

(Bosbo) ~ Scarco) P "

det[bi b; bm] _ det[ci G cm]

det[by by b, ] detlc, ¢; ¢,

i<j;L,j=012i+j<4

>0,i<j<mi,jm=0,..,n

satisfies for r = 3 or
(bi' bp) _ (Ci' Cp) i
(bo,bo)  {co,Co)
satisfies for r = 2 or
(bO'bp) _ (CO'Cp) .

(bg, bo) B (co, Co) ’
satisfies forr = 1

for G = SLS(3) = S(3).
Proof: This theorem is a result of theorem 21.

Theorem 30:Let B;, B, are open B-spline curves of
degree d with control points by, by, ..., b, and ¢y, ¢y, ..., €,

respectively and knot vektors to =1t = =ty
tarv tavzr - tin-a-1;  tn-a = tm-g+1 = = lm be
given and rank[b; — by ... b, — by ] = rank[c; —

Co - Cn — €y | = 7 be supposed. Then
B, O 8, if and only if

- (bi — by, b/' - bo) (ci —Co € — C0>

(bl — by by — b0> - (cl - CO, ¢ — Co)

(b, — by, b, — bo)  {c;i— )

(bl_bo'bl_b) <C1 C)

det[b; — by b; — by b,, — by ] B det[ci ¢/ = Co Cn— Co ]

det[b; — by b, — b, b3—b0]_det[cl—c0 Cy—Cy C3— CO]
i<j<mijm=1,..,n

;U< j5 L) = 123

;i =123; p=4,..,n

satisfies for r = 3 ,or

(b; — by, b, —by) _ {c;—cocp —Co) .
= s i=12; p=3,..,
(b; — by, by — bo) (c; — Cp,C1 — Co) . p n
satisfies for r = 2, or
(by — b, by, — by) (C1 Co, Cp — Co) ip= 1,.
{by — by, by — by) (C1 —Cp, €1 — Co)
satisfies forr = 1
for G = SS(3) < S(3).

Proof: This theorem is a result of theorem 22.

Example:

Let y be a cubic B-spline curve of degree 3 with control

points by = (4,2,2), b, =(214), b,=(341),
b; =355 andty=t;..=t3 =0;..;t, =tg = =
t; = 1. be given.
The spline basis functions:

1, t€[0,1]

Noo = 0, Ny = 0, Ny = 0, N3 = {
Nyo =0, Nsg=0, Ngop=0

0, other case’

1—t, t€[0,1]

Noy =0, Nyy =0, Ny = { 0, other case

" _{ t, t€[0,1]
31700, other case’
(1-1)? te[01]
Ny, = , N;, = Ny, =0
0.2 12 { 0, other case +2
{Zt(l —t), te[01] N ={ t?, t€[0,1]
0, other case 32 0, other case

41_0 N51_0

N {(1 —t)3, te[0,1] N.. = {3t(1 —-t)?, te[0,1]
03— 0, other case 13 0, other case '
Now = {3t2(1 —t), t€[01] N ={ t3, te€[0,1]
23 0, other case 33 0, other case

Then

¥(t) = No3bg + Ny3by + Ny3b, + N33bs

_ {(1 —t)3bg + 3t(1 — t)?by + 3t*(1 — t)b, + t3b5, t €[0,1]
0, other case

This means: for ¢t € [0,1]
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y(t) = (-4t + 9t* — 6t + 4, —6t® +12¢% = 3t + 2,

12¢6% — 15¢% + 6t + 2)

can be written.

Let these transformations be choosen as element of S(3)

and its subgroubs:

For x € R3,

g1 €ETr(3) = g,(x) =x + (2,3,5)
0 0 1

0 1 o)
A%
gse50(3):>g3=§<1 1 o)
0 0 V2

ga € SE(3) = g4(x) = g3(x) + (2,3,5)

g2 €0Q) =g, =

gs € E(3) = gs(x) 3= 902(950) + (2,3,5)
ge ELH@)=gs=(0 3 0

" Ao
g7ESLS(3):>g7=3Z—ﬁ<1 1 o)
0 0 V2
00 3
ggeLS(S):>98=<0 3 O>
300

Jo € SS(3) = go(x) = g;(x) + (2,3,5)

1o € S(3) = g10(x) = gs(x) + (2,3,5)

Let the images of the curve y under the transformations
g; be denoted by y; respectively.

If we denote the subgroup of S(3) containing the

transformation g; with G; theny Cil yi . (see Fig.1)

(i) 0)

Figure 1: The G;- Equivalent open B-spline Curves:
G G G G

@Y vy 0y Zva, ©y Jyvsn Ay va

©@r T s @ v v @v Ty, 0y oy

. :G . zG
0y 2 ver Oy "
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