
Research Article
Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 17-23
DOI: 10.38016/jista.808458

* Corresponding Author. Recieved :09 Oct. 2020

E-mail: aliozturk2002@gmail.com Revision :22 Dec. 2020

Accepted :22 Dec. 2020

Recognition of Sign Language Letters Using Image Processing

and Deep Learning Methods

Ali Öztürk 1* , Melih Karatekin 2 , İsa Alperen Saylar 3 , Nazım Bahadır Bardakcı4

1,2,3,4 KTO Karatay University, Faculty of Engineering, Department of Computer Engineering, KONYA/Turkey

aliozturk2002@gmail.com, sefamelihkaratekin@gmail.com, alpisa1907@gmail.com, nazimbahadirbardakci@gmail.com

Abstract
In order for people to be able to communicate with each other, they must be able to agree mutually. Communication is quite di fficult
for individuals with hearing problems. Such individuals make their lives much more difficult by isolating themselves from society.
The people living with hearing loss can understand the contact person with often lip-reading method, but it is quite difficult for them
to express themselves to the people. Since the use of sign language has not become widespread around the world, the number of
people who know sign language is very low, except for individuals with hearing disabilities. In this study, it was achieved to
dynamically recognize the movements of the sign language finger alphabet via image processing using deep learning methods and to

translate it into writing. Accordingly, it is aimed to facilitate communication between people who do not know the sign language in
daily life and people with hearing loss. The input given to the system is an image of the hand showing any letter from the alphabet.
The image of the hand is interpreted by deep learning methods in the system, and it is compared to one of the letters in the alphabet
and an output with the similarity ratio to this letter is displayed on the screen. The system has been tested with a total of 1300 images.
The overall accuracy rate of the system was calculated as 88% where true positive rate was 87% and false negative rate was 13%.

Keywords: Sign Language, Image Processing, Deep Learning, Image Analysis, Object Detection.

Görüntü İşleme ve Derin Öğrenme Yöntemleri Kullanılarak İşaret Dili

Harflerinin Tanınması
Öz

İnsanların birbirleriyle iletişim kurabilmeleri için karşılıklı olarak anlaşabilmesi gerekmektedir. İşitme problemi yaşayan bireyler için
iletişim kurmak oldukça zordur. Bu tür bireyler kendilerini toplumdan soyutlayarak yaşamlarını çok daha zor hale getirmektedir. İşitme
kaybı yaşayan insanlar iletişimde bulunurken karşısındaki kişiyi genellikle dudak okuma yöntemi ile anlayabilmektedir fakat
karşılarındaki insanlara kendilerini ifade etmekte oldukça zorlanmaktadır. İşaret dili kullanımının dünya genelinde yeterince
yaygınlaşmamış olması sebebiyle, işitme engelli bireyler dışında işaret dilini bilen kişi sayısı oldukça azdır. Bu çalışmada, işaret dili
parmak alfabesine ait hareketlerin, derin öğrenme yöntemleri kullanılarak görüntü işleme ile tanınması ve yazıya çevrilmesi dinamik

olarak sağlanmıştır. Bu doğrultuda, gündelik yaşamda işaret dilini bilmeyen insanlar ile işitme kaybı olan insanlar arasındaki iletişimi
kolaylaştırmak hedeflenmiştir. Sisteme verilen girdi, alfabeden herhangi bir harfi gösteren elin görüntüsüdür. Elin görüntüsü,
sistemde derin öğrenme yöntemleriyle yorumlanarak, alfabedeki harflerden biriyle eşleştirilmekte ve bu harfe benzerlik oranı ile
birlikte ekrana yazdırılmaktadır. Geliştirilen sistem, 1300 resim ile test edilmiştir. Sistemin doğruluk oranı %88, gerçek pozitif oranı
%87 ve yanlış negatif oranı %17 olarak bulunmuştur.

Anahtar kelimeler: İşaret Dili, Görüntü İşleme, Derin Öğrenme, Görüntü Analizi, Nesne Tespiti

1. Introduction

Creatures use the signals transmitted through

various channels when communicating. These

communication channels are audible, visual, chemical

etc. Sign language; is a silent, visual language created

by the handicapped and speech impaired people by

using hand gestures, facial expressions and body

language as a whole to communicate with each other.
This non-universal language varies from country to

mailto:alpisa1907@gmail.com
https://orcid.org/0000-0002-1797-2039
https://orcid.org/0000-0001-5794-6233
https://orcid.org/0000-0003-4557-5329
https://orcid.org/0000-0002-3912-8621

Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 17-23 18

country. In this sense, there are more than 200 sign

languages in the world. American, British, German,

French, Italian, Indian and Turkish sign languages are

some of them. In this article, it is aimed to recognize

the Turkish sign language and some English sign

language letters (Q, W, X) with image processing using

deep learning methods and translate it into writing.

Many studies have been done on this subject. As a

result of our researches, approximately 4000 image

dataset which were specifically created for the Turkish
Sign Language alphabet were selected. From this

dataset, approximately 1600 photographs were edited

and tagged and used in the system training phase. The

system was developed with the Python programming

language. TensorFlow and OpenCV libraries were used

as image processing tools. Image Labeling and Object

Detection methods were applied. Thus, the labeling,

training and testing of the dataset were achieved.

Faster-R-CNN (Convolutional Neural Network) was

determined as the deep learning model. In addition, the

accuracy rates and performance analysis of the
obtained results were performed. As the output of the

study, a dynamic and high performance system was

developed to facilitate communication between people

who do not know sign language and people with

hearing impairment.

1.1. Literature Survey

In their paper, Ashish and Aarti (2016) proposed a

system hand gesture recognition system where image

color analysis and image segmentation methods are
used. The proposed system prepared by Sandhya and

Ananya (2018) aimed to recognize American Sign

Language and convert it into text. The input given to

the system was a hand image showing the required

alphabet. The histogram of the input image was

calculated and checked for similarity to the histograms

of previously saved images using the Bhattacharyya

Distance Metric. OpenCV was used in the proposed

system. The CNN, Machine Learning (ML) methods

and depth-sensing technology were used in the study

which was performed by Gaikwad et al. (2019). They
used a pre-trained GoogleNet architecture. In the study

of Tamura and Kawasaki (1988), a 3D dictionary was

created from hand shapes. According to this dictionary,

2-dimensional images were interpreted and classified

according to their features.

Kumarage et al. (2011) proposed to subdivide the

transactions for recognition via parallel processing and

mapping the motion data to static data representations,

Also, the issue of matching sign language gestures with

linear / nonlinear equations was mentioned. In the

paper which emerged as a result of the research of Tan
et al. (2020), a CNN with spatial pyramid pooling for

vision-based hand gesture recognition was introduced.

The performance of the proposed method was

evaluated on American sign language datasets and

hand gesture dataset. Pramada et al (2013) designed an

intelligent system using the concepts of image

processing, machine learning and artificial intelligence

where sign language alphabet was digitally encoded by

filtering. In their research Shivashankara and Srinath

(2018), proposed a framework where the 24 static

alphabets of the American Sign Language (letter J and

letter Z not included) were translated into English text.

They achieved an average recognition rate of 98.21%.

In their study, Vargas et al (2011) presented an image
pattern recognition system using neural network for the

identification of sign language. The system had several

stored images that showed the specific symbol in a

kind of language which was employed to train a

multilayer neural network using a backpropagation

algorithm. They enabled the definition of the sign

language by using image processing with various

filtering methods and algorithms. They also stated that

different features can be added to improve the accuracy

of the system.

In the work of Unutmaz et al. (2019), the Turkish

sign language recognition was investigated by hand

gestures made in front of Kinect device and converted

into writing. Convolutional Artificial Networks (CNN),

Support Vector Machines (SVM), k-Nearest

Neighbours (kNN) and Decision Trees (DT) were used

for recognition and their performances were compared.

When the manually extracted video frames were used

via data augmentation, the accuracy rate reached to

%99. However, when the sequential video frames were

used to imitate real-time recognition behaviour, the
maximum accuracy rate decreased to %81.

Çelik and Odabaş (2020) suggested a system that

automatically detects Turkish sign language for 29

letters in the Turkish alphabet and 10 numbers by hand

gestures made in front of the camera. This method has

been developed with CNN modeling for sign detection

using frames of videos. Different success rates have

been achieved by manually processing the frames of

videos. It has been reached a 53.8% accuracy rate

without preprocessing of hand images using only CNN.

By means of manual hand image extraction, %91
accuracy rate has been achieved. When more than one

CNNs have been used with LSTM to manually capture

the hand movements in the video frames, the accuracy

rate has increased to 97%.

2. Materials and Methods

Python 3.7 was preferred as programming language

in this project for image processing. Among the deep
learning libraries, TensorFlow was chosen as the most

suitable one for our system. The training and

determination of the dataset were carried out via the

TensorFlow library. The video card was one of the

main parts of the overall system. The OpenCV libraries

on the other hand, enabled the camera to be controlled,

Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 17-23 19

the data to be tagged and the images to be filtered. In

addition, it showed which class the detected object

belongs to in a rectangle, with a percentage of

accuracy.

Any of the drivers prepared by the video card

manufacturers for deep learning was required to be able

to train the system. These drivers have been developed

to make training more efficient, fast and successful.

The equipment which was used during training was the
Nvidia Ge-Force GTX 1060 graphics card with a

capacity of 3 GB, and the CUDA core was 1280.

To apply deep learning methods on this video card,

CUDA and cuDNN drivers were downloaded from the

video card manufacturer's official page. The most

suitable versions of the drivers for the system are

CUDA 8.0 and cuDNN 7.1.4. After installing the

drivers and assigning their paths to the system

variables, a virtual environment was created on the

Anaconda IDE. Since the system had a complex
structure in itself, it was important to download all

libraries completely to the virtual environment.

The algorithm model to be used in training has been

determined as Faster R-CNN. As a result of our

research, we observed that the most appropriate

algorithm model in terms of hardware and object

classification time was Faster-R-CNN. Faster R-CNN

applies CNN method on to the images. In CNN, a mask

filter navigates on the image, the filter converts each

mask into a pixel and calculates on the point where it is
located, then stores the results in the output matrix.

This last reached output matrix is called "feature map".

Feature Map makes predictions based on image

tagging. Faster RCNN architecture is a combination of

region proposal network (RPN) which proposes

regions and Fast RCNN detector which uses these

proposed regions to give final bounding boxes of the

object. An RPN takes feature map as input and outputs

a set of rectangular object proposals, each with an

objectness score. The objectness measures score

between object and background. Faster RCNN uses

anchor boxes of 3 aspect ratios and 3 scales. Thus for
each pixel in the feature map, there are 9 anchor boxes.

The region proposal time with selective search is 2 sec

per image, whereas with RPN it’s just 10ms (Shaoqing

et al., 2017).

3. The Proposed System

The main steps of the proposed system is shown in

Figure 1.

Figure 1. The main steps of the proposed system

3.1. Preparing The Dataset

In this step, dataset research was carried out for the

system to detect the entire communication of the

individual, who tries to show a letter from the sign
language alphabet by coming across the camera by

hand in real-time with high accuracy ratio. The

"Turkish Sign Language Dataset" on the Kaggle

website has been used in the project for training our

system. The dataset contains images of 26 letters that

were taken from different angles and made by different

individuals. While there were approximately 4000

images, approximately 1600 of them were used for

training. Since some images were not of sufficient

quality for training, approximately 100 photographs

taken by ourselves have been added to the dataset.

Some of the sample images in our dataset are given in
Figure 2.

Figure 2. Some images from dataset

Then, the editing or extraction of data that was not
sufficient for training and deemed unnecessary in the

selected dataset was done. Upon completion of the

necessary procedures, approximately 4000 images were

reduced to approximately 1600 images. In addition, in

the parts that do not seem sufficient, the images we

took (approximately 100) were added to the dataset.

Thus, the dataset has been prepared for the training.

After this stage, the photos were labeled before feeding

to the deep learning model for training.

Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 17-23 20

3.2. Data Labelling

In order to detect objects in real time in front of the

camera, the data must first be introduced to the

computer. The photos in the edited dataset were tagged

and introduced to the computer to which class it

belongs to. This process was done using OpenCV

library. After this process, the XML file of each photo
was created. However, the computer cannot read XML

file during training. Therefore, each XML file has been

converted into a single CSV file. This was done using a

Python script. Each line in the CSV file contains XML

information for a different photo. As a result, the

dataset becomes ready for training.

3.3. Training

For this step, the libraries required for the training

of the system were installed by creating a virtual
environment in Anaconda IDE. Among the libraries to

be used, the most important for the training of the

system is the TensorFlow library. Tensorflow is an

open source deep learning library. Being open source

allows the problems encountered to be solved easily

via customizing the code. One of the biggest

advantages of the library; with the APIs it offers, the

platform allows us to use one or more CPUs and GPUs

independently. In addition, the library's development

with Python maximizes its compatibility for our

system. Tensorflow contains many configuration files

and allows these files to be manipulated for training the
system. In this way, the configuration files were

prepared in accordance with our system and made

ready for training. Tensorflow offers weight files based

on the number of data in the system and the training

conditions (speed, accuracy rate, etc.). After the weight

files were integrated into the system, the number of

letters and symbols to be used in the project were also

introduced to the system. After this process, the

configuration file was edited and the number of output

classes was written. This number is 26 in our project.

After then, the training of the system began. The

training period lasted approximately 10 hours and the

prediction time was less than 2 seconds. Tensorflow

displays the loss function after each transaction,

informs about the stage of the training and makes it

easier for us to make a decision to stop it.

In addition, Tensorflow shows all stages of training

on the graph in a web interface running on localhost.

Training continues until you achieve the lowest loss

rate. When the lowest loss rate is obtained, the training

is stopped and the “frozen inference” graphic formed as
a result of the training is exported for the operation of

the system. The default name of the file is

“frozen_inference_graph.pb”. By means of this file, the

performance of the training and the accuracy rates were

observed.

3.4. Testing

After the training, it is very important to test and

check the accuracy of the system. If error ratio is high

in real time detection, the system may need to be re-

trained and the model may be re-generated. In this step,

image quality and resolution are one of the factors that

increase the accuracy rate. Two different cameras were
used during the test. In addition, the performance of the

system was measured by testing hand movements of

different people. The effect of complex or empty

background during hand movement have been

observed on the performance of the system. All 26

letters are statically and dynamically tested. The

system has been tested using photos prepared for

testing beforehand. Then, real-time tests were carried

out using the camera. Figure 3 shows some of the real-

time test results.

Figure 3. Some of the real-time test results

The statistical analysis was made according to the

estimation results produced by the system. There are

two cases, the system either shows the correct letter or

the wrong letter. While TP (True Positive) shows the

result that the model predicts the positive class

correctly, FN (False Negative) shows the result where

the model incorrectly predicts the negative class.
Precision shows how many of the values we predict

positively are actually positive. Recall shows how

many of the trades we should have predicted positively.

Precision and recall values do not give a meaningful

comparison when calculated separately. Therefore, it

would be more correct to evaluate these two values

together. For this, we need to calculate the F-Score

value. F-Score is the harmonic mean of precision and

recall values.

Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 17-23 21

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Table 1 shows the accuracy, the F-Score, true

positive and false negative values for each letter that
was introduced to the trained system during testing.

The results were obtained by showing 50 signs from

each letter in front of the camera.
 Table 1. Test Results Analysis Table

Sign TP FN Accuracy F-Score

A 98% 2% 98% 98%
B
C
D
E
F
G

H
I
J
K
L
M
N
O

P
Q
R
S
T
U
V
W

X
Y
Z

80%
94%
80%
88%
92%
74%

86%
90%
80%
80%
94%
76%
76%
80%

88%
74%
92%
94%
90%
88%
88%
86%

96%
88%
92%

20%
6%

20%
12%
8%

26%

14%
10%
20%
20%
6%

24%
24%
20%

12%
26%
18%
16%
10%
12%
12%
14%

4%
12%
8%

80%
94%
80%
88%
92%
74%

86%
90%
80%
80%
94%
76%
76%
80%

88%
74%
92%
94%
90%
88%
88%
86%

96%
88%

 92%

88%
96%
88%
93%
95%
85%

92%
94%
88%
88%
96%
86%
86%
88%

93%
85%
95%
96%
94%
93%
93%
92%

97%
93%
95%

The system has been tested in real-time with a total

of 1300 images. According to the results, the overall

accuracy rate of the system was calculated as 88%. The

TP rate was 87% and the FN rate was 13%. During the

test, it was observed that the delay time of the camera
was 28 milliseconds. This indicates that there will be

no freezing or noticeable delay when using the system.

Thus, users will be able to communicate between them

fluently and smoothly.

4. Performance Measurement

To analyze the performance of the system, the

infographics presented by TensorFlow in the local
environment were examined after the training phase.

Looking at the graphs given in Figure 4, as the

iterations increase, accuracy approaches 1 while the

loss function approaches 0. This shows that the more

iterations there are, the higher the accuracy rate of

training. While the calculated accuracy rate is 88%, the

total loss is 0.1.

Figure 4. Accuracy and Total Loss Graph

The distributon charts of bias and weight are given

in Figure 5. The X axis indicates time, the Y axis

indicates values. These charts are a top view of

histogram charts. It would be more accurate to examine

the histogram graphs for interpretation.

Figure 5. Biases and Weights Distribution View

Histogram graphs are shown in Figure 6. There are

three axes in the histogram. According to the figure, X-

axis values (depth), Y-axis time, Z-axis shows the

intensity (frequency) of values represented on the Y-

axis. Histograms become darker as the depth in the X-

axis increases. Taking a higher value on the Z axis

means the vector produces a value closer to the

specified value.

Figure 6. Biases and Weights Histogram

The results in Table 2 were obtained when the

methods in the other 2 articles for the recognition of

Turkish sign language by image processing were

compared.

speak sign language and individuals with hearing

disabilities. Thus, people with hearing impairments

Table 2. Comparison Table with Other Studies

Dataset Image
Processing

Models Accuracy

Çelik

and
Odabaş
(2020)

Images

from 200
videos

Non-real

time

CNN without

preprocessing
CNN with

preprocessing
CNN+LSTM with

preprocesing

53%

91%

97%

Unutmaz
et al.

(2019)

Our

proposed
method

4320
images
from

videos

1700

images

Real time

Non-real
time

Real time

CNN
SVM
KNN

DT

CNN
SVM
KNN
DT

Faster-R-CNN

81%
71%
61%

54%

93%
82%
80%
75%

88%

In Table 2, the accuracy values for the

methods used in Unutmaz et al. (2019) were given for

the session in which the training was performed with

the %5 portion of the whole data set. Because, real

time performances of those methods were also

evaluated using the the same portion value for the
training data set. Çelik and Odabaş (2020) used the

manually separated hand gesture frames from videos

for recognition using CNN model which was a non-real

time process. The accuracy of the CNN model

increased when they applied preprocessing to extract

the hand objects from the frames. However, our

method achieved %88 accuracy rate in real time

without any preprocessing.

5. Conclusions

As a conclusion, we proposed a system that

converts 23 letters in the Turkish Sign Language

Alphabet and 3 letters (Q, W, X) in English Sign

Language into text using image processing and deep

learning methods. Our system which performs this

process in real time used the Faster R-CNN

architecture unlike other systems in the literature. In

addition, the development of the system with Python

increases its comprehensibility, while the use of open
source libraries facilitates its accessibility. While the

system takes the hand image that mimics the sign

language alphabet as input, it shows the letter that

looks like the hand image as output with its accuracy

rate. When we look at performance measures such as

Accuracy rate, F-Score and Loss value, our system

seems to be successful. The developed system will

facilitate communication between people who do not

will be prevented from isolating themselves from

society and their self-confidence will be increased.

Acknowledgment

The dataset used for training in this study is available

at https://www.kaggle.com/feronial/turkish-sign-
languagefinger-spelling.

References

Ashish S. N., Aarti G. A., 2016. Sign language

recognition using image based hand gesture

recognition techniques. 2016 Online International

Conference on Green Engineering and Technologies
(IC-GET), 19 November 2016, Coimbatore, India,

pp.1-5.

Çelik Ö., Odabaş A., 2020. Sign2Text: Konvolüsyonel

Sinir Ağları Kullanarak Türk İşaret Dili Tanıma.

European Journal of Science and Technology, 19, 923-

934.

Gaikwad, S., Shetty, A., Satam, A., Rathod, M., Shah,

P., 2019. Recognition of American Sign Language

using image processing and machine learning.

International Journal of Computer Science and Mobile
Computing, 8(3), 352-357.

Kumarage, D., Fernando, S., Fernando, P.,

Madushanka, D., Samarasinghe, R., 2011. Real-time

sign language gesture recognition using still-image

comparison & motion recognition. 6th International

Conference on Industrial and Information Systems, 10

October 2011, Kandy/Sri Lanka, pp.169-174.

Pramada S., Saylee D., Pranita N., Samiksha N.,

Vaidya S., 2013. Intelligent sign language recognition
using image processing. IOSR Journal of Engineering

(IOSRJEN), 3(2), 45-51.

Sandhya, A., Ananya R., 2018. Recognition of sign

language using image processing. International Journal

of Business Intelligence and Data Mining, 13(1-3),163-

168.

Shaoqing R., Kaiming H., Ross G., Jian S., 2017.

Faster R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 39(6),
1137-1149.

Shivashankara S., Srinath S., 2018. An American sign

language recognition system using bounding box and

palm features extraction techniques. International

Journal of Recent Technology and Engineering

(IJRTE), 7(4s), 492-505.

Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 17-23 22

Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 17-23 23

Tamura, S., Kawasaki, S., 1988. Recognition of sign

language motion images. Pattern Recognition, 21(4),

343-357.

Tan Y.S., Lim K.M., Tee C., Lee C., 2020.

Convolutional neural network with spatial pyramid

pooling for hand gesture recognition. Neural

Computing and Applications, Published online: 15

September 2020.

Unutmaz B., Karaca A.C., Güllü M.K., 2019. Turkish

Sign Language Recognition Using Kinect Skeleton and

Convolutional Neural Network. 27th IEEE Signal

Processing and Communication Applications

Conference, April 2019, Sivas, Turkey, pp.1-4.

Vargas L.P., Barba L., Torres C.O., Mattos L., 2011.

Sign Language Recognition System using Neural

Network for Digital Hardware Implementation. Journal

of Physics: Conference Series, 274 (2011) 012051, 1-7.

