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Abstract. In this work, Adaptive Extended Kalman Filter (AEKF) is introduced 

and its use for oscillation of an object connected to the end of a spring is shown. As 

a new approach, an AEKF is used as a nonlinear estimation tool for online 

estimation of the states and parameters of an oscillating object attached to the end 

of a spring model. Parameter states that do not change with time were examined. 

The simulation results revealed that with proper selection of initial values of AEKF, 

AEKF is a very useful tool for this particular application. 
 

1. Introduction 

The optimum linear filtering and estimation methods were introduced by Kalman 

[1]. The Kalman filter (KF) solves the problem of estimating instantaneous states of 

a linear dynamic system that is distorted by Gaussian white noise using 

measurements that are linear functions of system state but distorted by additional 

white noise. KF is widely used in many areas of signal processing, control and 

optimization [2-10]. The KF essentially represents a recursive solution to Gauss's 

original least squares problem [11-15]. Discrete-time state-space models have been 

developed during the 1960s for applications such as tracking and controlling the 

location of satellites, guided missiles, space vehicles and targets which have 

mobility. Moreover, the state-space models have several fields of application for 

modelling the physical, neurological, physiological and economic processes. The 

parameter estimation problem is encountered in different areas. The problem of 

mailto:ozturk@science.ankara.edu.tr


 

KALMAN FILTER APPLICATION ON OSCILLATION OF  
 AN OBJECT TIED TO THE END OF SPRING  

 

81 

estimating a model parameter, which occurs as the coefficient of a dynamic system 

state variable, is an important problem to be solved in system identification. When 

the problem of estimating the parameters in a linear system is solved simultaneously 

with the problem of estimating the state variable, the linear model becomes 

nonlinear [10]. EKF is very sensitive to initiation and tends to filter bias if system 

matrices are not properly selected. There are several research papers that address 

these issues and analyze the stability and robustness of the filter [19–20]. 
 

2. Discrete-Time State-Space Model And Adaptive KF 
 

Discrete-time linear state space models have been employed in 1960’s mostly in 

controlling and signaling processes in defence industry. The extension and 

application of such models in other fields have taken place in the beginning of 1990s.  

A general state space model takes the following form: 

 x x G wk k k k k+ +1 =                                 (1) 

 y H x vk k k k= +           (2) 

Here,xk

n  represents the state vector while yk

m  represents the observation 

vector. k  is the nxn  system transition matrix, Hk  is the mxn  observation matrix. 

wk

n  and vk

m  are white noises with zero mean, for which the following 

assumptions can be made for each k j,   values: 

 E vk = 0           (3) 

 E wk = 0              (4) 

 E v v Rk j k kj =            (5) 

 E w w Qk j k kj =            (6) 

 E v wk j = 0            (7) 

 E x x0 0=             (8) 

 E x x x x P( )( )0 0 0 0 0− −  =          (9) 

 E x wk0 0 =                         (10) 

 E x vk0 0 =                                (11) 

Moreover, for k = 0 1 2, , ,...k , Hk , Gk , Qk  and Rk  are assumed to be known. As 

introduced in [3], the filtering problem is to estimate the state vector xk , given the 

observation vector  Y y y yk k= 0 1, ,..., , which can be denoted as:  
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with the covariance matrix: 

  P E x x x x Y
k k k k k k k k k= − − (  )(  )  

Let the observation matrix take the form:  Y y y yk k− −=1 0 1 1, ,..., , then estimating 

the state vector xk  will be as     , ,...,x E x y y y E x Y
k k k k k k− − −= =

1 0 1 1 1  with 

the covariance matrix 

  P E x x x x Y
k k k k k k k k k− − − −= − − 

1 1 1 1(  )(  )  

In this case, the Kalman Filter, depending on the starting values 

  P P
0 1 0−

=  

  x x
0 1 0−

=  

is characterized by the following algorithms: 

  x x
k k k k k− − − −

=
1 1 1 1

                                   (12) 

    x x K y H x
k k k k k k k k k

= + −
− −1 1

                             (13) 

 K P H H P H Rk k k k k k k k k=   +
− −

−

1 1

1

                             (14) 

 P I K H P
k k k k k k
= −

−1
                              (15) 

 P P G Q G
k k k k k k k k k− − − − − − − −=  + 

1 1 1 1 1 1 1 1                             (16) 

As described in [4-5], equation (14) is also known as the “Kalman Gain”.  

 

2.1 Non-Linear State Space Models and EKF 

 

A non-linear state space model takes the form of 

 x f x H xk k k k k k+ = +1 ( ) ( )                           (17) 

 y g xk k k k= +( )         (18) 

Here, f k  and gk  are vector-valued functions, while k  and k  represent white noise 

processes with the covariance matrices, Qk  and Rk , respectively. The starting values 

for the EKF algorithm are: 

 P x0 0= cov( ) 

 )(ˆ
00 xEx =  

As mentioned in [5-9], for k = 1 2, ,...  
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represent the EKF updating equations. 

 

In order to apply EKF, the matrices in the state space model above should be written 

as the functions, which depend on the unknown parameter vector, . That is, let the 

matrices be represented as k ( ) , Gk ( ) , Hk ( ) . Furthermore, let   be a random 

walk process. In this case the following equations,  

 x x G wk k k k k k k+ +1 = ( ) ( )                               (24) 

 y H x vk k k k k= ( ) +                    (25) 

and the parameter vector 

   k k k+ = +1                     (26) 

form the new state space model: 

 







+






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=








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+

k

kkk

k
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k wGxx




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1

1
                         (27)  

   k

k

k

kkk v
x

Hy +









 0)(=                           (28) 

The above model is non-linear for which EKF can be readily applied. k  in equation 

(26) shows the white noise process for which the covariance matrix is assumed to be 

cov( )k kS S= =  0 . In the particular case where S = 0 , the parameter vector is 

assumed to be time-invariant, where EKF cannot be operative. If EKF algorithm is 

applied to equations (27)-(28), depending on the following starting values 
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for k = 1 2, ,...  we get: 
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In order to eliminate divergence in the KF, adaptive methods are used [16-17] 

forgetting factor is proposed by Özbek and Aliev [17]. 

 

 
( )' '

1 1 1 1 11 1 1t t t t tt t t t
P F P F G Q G − − − − −− − −

= +
      (34) 

 
3. Oscillation Of An Object Tied To The End Of Spring 

 

According to the Hook's Law [14], the amount of changes in the length of a spring is 

proportional with the size of the affecting force. Proportion coefficient is called “spring 

constant”. Let an object with  mass be tied to the other end of an L -long vertical spring 

of which one end is fixed and the spring stretched as l . Based on our experiences, the 

object oscillates (resonance) when pulled slightly and released afterwards. There may be 

friction with surrounding environment (air, water) and forces which affect the object 

temporally. When the spring which is L l+  long during the time 0t =  is pulled and 

m
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released as y0 , it starts oscillating. Oscillation continues depending on the friction with 

the surroundings and external forces.   

  

 

 
 

     Figure 1. Diagram of the model. 

 

Let the size of friction force be presumed as proportional with velocity, which is 

   
 For the forces which affect the object at a certain time , 

 
could be written (Figure 1).  

  is the gravitational force which affects the object,  

 is the force affected by the spring to the object, 

 is the friction force, and 

 is the external force which affects the object. 

 

Considering that the directions of the forces 
yF  and 

sF  are backwards the direction of 

movement, differential equation 

. ( )sF s v t=

t

y s dF P F F F= + + +

P

yF

sF

dF

  

-(L+l)                            -                           
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could be generated (for the size of these forces) on an y- axis of which the initial point is 

the same as the point and direction on which the mass is hanging, the sense is the same as 

the gravitational force. Considering that  

  
 the model 

  

  ,    

is obtained. Here, s  is the friction coefficient regarding the environment, k  is the spring 

constant, 
dF  is the external force affecting the object, y0  is the position of the object at 

starting time and v0  is the magnitude of the velocity of the object at starting time. The 

model given as differential equation being 
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State-space model: 
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is obtained. The purpose of a system, depending on the observed outputs, may be to 

determine the system’s parameters in cases where these parameters are unknown, to check 

the system by giving appropriate inputs and to estimate the future behavior of the system. 

Let us consider the movement of the object tied to the spring. In mks measurement system, 

let 1, 1, 1m s k= = = , external force  

( ) 0dF t = , t  0 

position of the object at starting moment  

 
 and the velocity  

  
Given that the differential equation expressing the movement of the object is 

  

  
the solution is 

                            (38) 

The diagram of the solution for [0,10]t  is on the left in Figure 2. Given that the 

continuous-time state space model is 

 

                 (39) 

                   (40) 

                   (41) 

the discrete-time state space model obtained for 0.1t = , for 

             (42) 

                 (43) 
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1,2,...,100k =  ( [0,10]t ). 

 

The diagram of the numerical solution obtained from the reduction relation in the discrete-

time state space model, which means the diagram of ( )y k  in return for k   is Figure 3.  In 

Figure 4, given that (0,0.02)kv N  the diagram of noisy observations ( ) ky k v+  in 

return for k  is seen. 

 

Let us consider the model 

 

              (45) 

                 (46) 

   
in which friction coefficient is unknown and regarded as the third state variable; and there 

are noises for state and observation variables. The state equation in this model is a 

nonlinear equation according to the state variables. Let the purpose be to estimation of the 

friction coefficient with EKF by observing the ( )y k  position of the oscillating mass.  

 
4. Simulation Study 

 

A simulation may be generated to evaluate the operability of the AKF. Given that the 

variable ( )y k  which was observed as the system’s output is a noise-added total of the first 

state variable. The actual values and estimated values of the first state variable 1( )x k  

during the simulation have been obtained as in Figure 5. AEKF could track the state 

variable closely. Friction coefficient which is the unknown parameter of the system is 

given as the third state variable in the model, and the estimation obtained with AEKF 

shown in Figure 6. The estimation improves as time progresses with new observations and 

achieves steady state.   
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Figure 2. Solution of differential equation. 

 

          
Figure 3. Numerical solution of the state-space model. 
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Figure 4. Observation+noise. 

 

               
Figure 5. EKF result. 

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Observation+Noise

k

y
(k

)+
v
(k

)

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
EKF estimation of x(1)

k

x
1
(k

)

 

 

Real

Estimation



 

KALMAN FILTER APPLICATION ON OSCILLATION OF  
 AN OBJECT TIED TO THE END OF SPRING  

 

91 

          
                                           Figure 6. Parameter estimation of friction. 

 
5. Conclusions 

 

In this work, EKF is introduced and its use for oscillating an object connected to the 

end of a spring is shown. As a new approach, an adaptive AEKF is used as a 

nonlinear estimation tool for online estimation of states and parameters at the same 

time as the oscillation of an object attached to the end of an arc pattern. Parameter 

states that do not change with time were examined. The simulation results show that, 

with proper selection of the initial value of EKF, AEKF is a very useful tool for this 

particular application. For the time-varying parameters in the state-space model, 

some adjustments can be made in AEKF to make the estimation even more powerful. 

Studies on AEKF are still up-to-date and ongoing. 
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