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Abstract
In this paper, we proposed an adaptive robust variable selection procedure for the logistic
regression model. The proposed method is robust to outliers and considers the goodness-of-
fit of the regression model. Furthermore, we apply an MM algorithm to solve the proposed
optimization problem. Monte Carlo studies are evaluated the finite-sample performance
of the proposed method. The results show that when there are outliers in the dataset
or the distribution of covariate variable deviates from the normal distribution, the finite-
sample performance of the proposed method is better than that of other existing methods.
Finally, the proposed methodology is applied to the data analysis of Parkinson’s disease.
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1. Introduction
Since the logistic regression model can be used to classify samples, it has been widely

applied in biomedicine and other fields, and has almost become the most commonly used
analysis tool in epidemiology and medicine [17, 23, 30]. For a logistic regression model,
the most commonly used method is maximum likelihood estimation (MLE). However, the
MLE method is very sensitive to outliers [1,6,7,12,15,25,31], therefore, it will be seriously
affected, and lead to a large deviation in the prediction of classification probability. In
practical applications, many covariates are introduced in the initial stage of modeling.
However, models that include all the covariates are difficult to interpret since irrelevant
variables may increase variance. Therefore, the selection of significant covariates is one of
the most important statistical problems.

For the logistic regression model, Vinterbo and Ohno-Machado [29] proposed a variable
selection method via genetic algorithm. Zellner et al. [33] proposed a bootstrap method
to select variables from a complete logistic regression model. This method simplifies the
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regression by using resampling process, and shows better performance when there is cor-
relation between the predictor variables. Bursac et al. [3] proposed a purposeful and
automatic logistic variable selection method, which started from a single variable. Dur-
ing the iteration of variable selection, the variables that have no significant influence are
deleted from the model. Meier et al. [22] extended the group lasso method of linear
model to logistic model based on the theory of block co-ordinate gradient descent min-
imization, and proposed a variable selection algorithm which is particularly suitable for
high-dimensional case. Zhang et al. [34] proposed a new variable selection method via
the variational Bayesian model. This method can make the corresponding logistic model
adaptively determine the optimal value of the super parameters, thus can achieve effec-
tive sparsity. However, it is important to note that the above proposed methods are very
sensitive to outliers in the dataset.

In many practical applications, the dataset contains a nonnormally distributed response
variable and/or many covariates that potentially exist multiple high leverage points. This
often causes some serious problems for the classical variable selection when the dataset
exist outliers. In fact, there also exist many robust variable selection methods for the
logistic regression model in the literature. For example, Stefanski et al. [28] put forward
to use bounded influence function and leverage process to achieve the effect of robust
variable selection in the presence of outliers, so as to fit out a reasonable and effective
logistic regression model. By studying the prior distribution of logistic regression model,
Chen et al. [4] proposed a new variable selection method which was very robust under
various prior parameters, and this method can show higher superior performance in the
logistic regression model with moderate dimensions. Kinney and Dunson [18] proposed
a new variable selection method of fixed and random effect in binary response model.
Compared with the early fixed models, it has higher effectiveness and stronger robustness.
Guns and Vanacker [11] proposed a logistic regression method based on rare events with
repetition, and overcame some limitations of traditional methods through robust variable
selection. Li and Liu [19] proposed a robust variable selection via an adaptive forward
backward SODA method, which did not need the joint normal hypothesis of predictors.

The above proposed robust variable selection methods only consider the treatment of
outliers, and ignore the goodness-of-fit of the regression model. In this paper, we propose
an adaptive variable selection procedure that is robust and considers the goodness-of-fit
of the regression model. In addition, the minorization-maximization (MM) algorithm [14]
is used to solve the proposed optimization problem. The Monte Carlo studies results
illustrate that the finite sample performance of proposed method is better than that of
some existing methods when there are outliers in the dataset.

The rest of this paper is organized as follows. In Section 2, we review some classical
methods, and introduce the proposed robust variable selection procedure and its corre-
sponding algorithm. In Section 3, numerical simulations are conducted to evaluate the
finite-sample performance of the proposed method. In Section 4, the proposed method is
compared with the existing methods through the analysis of a real dataset. A discussion
is given in Section 5.

2. Methodology and main results
2.1. Review some classical methods

Assume that {(yi, xi), i = 1, . . . , n} is a random sample from some population and
satisfies a following logistic regression model

P (Yi = 1|xi) = π(xi), P (Yi = 0|xi) = 1 − π(xi),

π(xi) = exp(xT
i β)

1 + exp(xT
i β)

,
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where yi is a random response variable with either 0 or 1, and xi is a p-dimensional
predictor variable, β is a p-dimensional unknown parameter vector, Yi is a random variable
and follows a following Bernoulli distribution

f(yi|xi, β) = [π(xi)]yi [1 − π(xi)]1−yi , yi = 0, 1 (2.1)
According to Equation (2.1), the log-likelihood function for β is given as follows:

l(β) =
n∑

i=1
[yi log(π(xi)) + (1 − yi) log(1 − π(xi))]

=
n∑

i=1
[yixT

i β − log(1 + exp(xT
i β))].

In order to simultaneously achieve variable selection and parameter estimation, β can
be estimated by maximizing the following penalized log-likelihood function lp(β):

lp(β) =
n∑

i=1
[yixT

i β − log(1 + exp(xT
i β))] − n

p∑
j=1

pλj
(|βj |), (2.2)

where pλj
(·) is a penalty function and λj is a penalized parameter for the j-th parameter

component. We can find from Equation (2.2) that lp(β) is based on the maximum likeli-
hood method, which is very sensitive to outliers. To obtain robust variable selection, Park
and Konishi [24] proposed a weighted penalized log-likelihood function

lRp (β) =
n∑

i=1
Rp

i [yixT
i β − log(1 + exp(xT

i β))] −
p∑

j=1
λ

(1
2

αβ2
j + (1 − α) |βj |

)
, (2.3)

where 0 ≤ α ≤ 1, λ > 0, and

Rp
i =

min{
√

k/R.MDpc
i , 1}∑n

i=1 min{
√

k/R.MDpc
i , 1}

.

Here, k is the 95% quantile of χ2 distribution with degrees of freedom p, and

R.MDpc
i =

√
(xi − Tpc)T (Cpc)−1 (xi − Tpc)

is a robust Mahalanobis distance, where mean Tpc and covariance matrix Cpc are given
by minimum volume ellipsoid(MVE) [27].

2.2. Adaptive robust variable selection procedure
Davies [8] pointed out that the MVE has a slow n−1/3 rate of convergence and it

is very difficult to compute in high dimensions. Meanwhile, the above robust variable
selection procedure is assigned a weight in advance, which can correctly reflect the outlying
information among all covariates. However, according to [32], the robustness of the method
based on the pre-assigned weights will be also deteriorated significantly due to a high
percentage of outliers. In addition, this method does not consider the goodness-of-fit of
the regression model.

Next, we propose a novel adaptive robust variable selection procedure, which is robust
to outliers and considers the goodness-of-fit of the regression model. Let β̃n be an initial
robust estimator for β, µ̃, and Σ̃ be an initial robust location and scatter estimators of
covariates (xT

1 , . . . , xT
n )T based on the minimum covariance determinant (MCD) estimators

[26], respectively. Then, the square of robust Mahalanobis distance for xi is defined as

m2
i = (xi − µ̃)T

(
Σ̃

)−1
(xi − µ̃) , i = 1, . . . , n.



Robust variable selection in the logistic regression model 1575

Let Fn be the empirical distribution function for {m2
1, . . . , m2

n}. When the covariate
X follows a multivariate normal distribtion, Fn should converge to the chi-square distri-
bution with degrees of freedom p. Let m2

(1) 6 . . . 6 m2
(n) denote the order statistics for

{m2
1, . . . , m2

n}. According to [9], the statistic of the goodness-of-fit of the data can be
defined as

η̃ = sup
s>F −1

χ2
p

(1−δ)

{
Fχ2

p
(s) − Fn(s)

}
+

= max
i>i0

{
Fχ2

p
(m2

(i)) − i − 1
n

}
+

,

where {·}+ denotes the positive function, i0 = min
{

i : m2
(i) > F −1

χ2
p

(1 − δ)
}

, and δ is a
constant that determines the length of the tails [9, 10]. According to [1, 5, 6], we set
δ = 0.025. Advocated by [16], the adaptive weighted function for observation data is
given as follows:

w (xi, yi) = φ
(
η̃

∥∥∥(
yi − l(1)

(
xT

i β̃n

))
xi

∥∥∥)
, (2.4)

where l(1)(·) is the first order differential of l(·), φ(·) is a non-increasing function [16].
According to [9], φ(·) has the following three forms: Hard-rejection: φ(x) = I{0 < x 6
1}; Huber: φ(x) = min{1, 1/x}; Gaussian: φ(x) = exp(0.5 − 0.5x). In this paper, we
take Hard-rejection function. Based on above adaptive weighted function, we propose a
following adaptive robust variable selection procedure

β̂n = arg max
β

[lwp (β)], (2.5)

where

lwp (β) =
n∑

i=1
w (xi, yi) [yixT

i β − log(1 + exp(xT
i β))] − n

p∑
j=1

pλj
(|βj |).

Remark 2.1. In Equation (2.4), η̃ > 0 can indicate the quality of data. When η̃ is very
close to 0, it illustrates that there are almost no outliers in the sample data, and the data
quality is good. On the contrary, if η̃ is too large, it means that there are contaminated
data, and the quality of the sample is poor. Since the MLE satisfies the estimating equation∑ (

yi − l(1)
(
xT

i β
))

xi = 0, the leverage points can have any great influence on the MLE.
Therefore, the MLE can result in the non-robustness of the regression model. The statistic
η̃ can improve the robustness of regression estimator by decreasing the weights of leverage
points and larger

∥∥∥(
yi − l(1)

(
xT

i β̃n

))
xi

∥∥∥ at the same time [16].
Furthermore, according to Equation (2.4), the non-increasing function φ(·) is used to

measure the deviation of (xi, yi) in the model. It controls the influence of the potential
outliers on the regression effect by giving a weight to (xi, yi). With the help of non-
increasing weight function, for all (x1, y1) , . . . , (xn, yn), the larger the deviation from the
normal value is, the smaller the corresponding adaptive weight is, so as to effectively reduce
the potential impact of outliers on regression estimator and improve the robustness of the
proposed method.

To implement Equation (2.5), we need an initial robust estimator β̃n and penalty func-
tion pλj

(βj). In this paper, β̃n is obtained from the estimation method proposed by [2].
The penalty function pλj

(βj) take an adaptive lasso, e.g., pλj
(βj) = λ

|βj |
|β̃nj | , where λ is a

tuning parameter, and β̃nj is the j-th component of β̃n.

2.3. Algorithm
In this subsection, we apply an MM algorithm proposed by [14] to solve Equation (2.5).

Hunter and Lange [14] pointed out that MM algorithm possessed a descent property,
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which lended its remarkable numerical stability. Computer code for implementing MM
algorithm is available from the authors upon request. First, according to [13], we construct
a following surrogate function for the penalty function

Q2(βj |β̂(k)
nj ) = λ

β2
j

2|β̃nj |(|β̂(k)
nj |)

+ λ

2|β̃nj |
(|β̂(k)

nj |), (2.6)

where β̂
(k)
nj is the k-th approximation of β̂n. Denote

h(β) =
n∑

i=1
w (xi, yi) [yixT

i β − log(1 + exp(xT
i β))],

X =
(
xT

1 , xT
2 , . . . , xT

n

)T
,

Y = (y1, y2, . . . , yn)T ,

W = diag {w (x1, y1) , . . . , w (xn, yn)} ,

M = −1
4

XT WX.

By using [14], we construct a following surrogate function for h(β)

Q1(β|β̂(k)
n ) = h

(
β̂

(k)
n

)
+

[
∇h

(
β̂

(k)
n

)]T (
β − β̂

(k)
n

)
+ 1

2

(
β − β̂

(k)
n

)T

M
(

β − β̂
(k)
n

)
, (2.7)

where ∇h (β) denotes the gradient function of h (β). Therefore, by Equation (2.6) and
Equation (2.7), we obtain a surrogate function for lwp (β) as follows:

Q

(
β|β̂(k)

n

)
= Q1(β|β̂(k)

n ) − n
p∑

j=1
Q2(βj |β̂(k)

nj ) (2.8)

It is easy to show that Q(β|β̂(k)
n ) minorizes lwp (β) in the sense that

Q

(
β|β̂(k)

n

)
≤ lwp (β), ∀ β ∈ Rp and Q

(
β̂

(k)
n |β̂(k)

n

)
= lwp (β̂(k)

n ).

Given the k-th approximation β̂
(k)
n , the MM iteration updates

β̂
(k+1)
n = arg max

β
Q

(
β|β̂(k)

n

)
.

Denote

P(k) = diag
{

nλ

2|β̃n1|(|β̂(k)
n1 |)

, . . . ,
nλ

2|β̃np|(|β̂(k)
np |)

}
.

Then, we have

β̂
(k+1)
n =

(
M − 2P(k)

)−1
[
Mβ̂

(k)
n − ∇h

(
β̂

(k)
n

)]
.

2.4. Tuning parameter selection
In order to put the above proposed algorithm into effect, an appropriate tuning param-

eter λ should be selected in the process of calculation. The selection of tuning parameter
plays a significant part in the variable selection procedure. Normally, there are lots of
methods to select tuning parameters, such as cross-validation (CV), generalized cross-
validation (GCV), Akaike information criterion(AIC), and Bayesian information criterion
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(BIC). Since BIC can obtain the consistent model selection, we apply this criterion to
select the tuning parameter λ.

BIC(λ) = − 1
n

n∑
i=1

w (xi, yi) [yixT
i β̂n − log(1 + exp(xT

i β̂n))] + log(n)
n

df, (2.9)

where df denotes the number of non-zero components for β̂n. 150 tuning parameters λ
are generated by using the default setting of R package glmnet and then we obtain the
optimal tuning parameter by minimizing BIC(λ).

3. Simulation
In this section, we illustrate the performance of the proposed method via numerical

simulations. We simulate 200 data sets from the logistic regression model with sample
sizes of n = 300, 500, 1000. In this simulation, we select β = (β1, . . . , β20)T , where β1 =
β4 = 1.5, β2 = 0.5, β3 = β5 = 1, and βj = 0, j ∈ {6, 7, . . . , 20}. The uncontaminated
covariates X follows a 20-dimensional standard normal distribution (denoted as D0), the
response vector Y follows the Bernoulli distribution.

In order to study robustness of the proposed method, we consider the following two
contaminated distributions, where α denotes the contaminated rate:

D1: Using Maronna’s contamination distribution [21] as

x̃i = ηi + klev√
aT Σ−1a

a, i = 1, . . . , m,

where m = ⌊αn⌋, ηi ∼ Np
(
020, 0.12I20×20

)
, a = ã− 1

20 ãT 120, and ãj in ã follows U(−1, 1),
j = 1, . . . , 20. The parameter klev denotes the control of the distance in the direction that
has the most influence for the estimator. We set klev = 2000 in this simulation.

D2: Referring to the contamination distribution proposed by [6], we define

xij ∼
{

S · N(5, 0.2), j = 1, 2, 3, 4, 5
S · N(0, 0.2), j ̸= 1, 2, 3, 4, 5 , i = 1, . . . , m,

where m = ⌊αn⌋, P (S = 1) = P (S = −1) = 0.5. We set α = 0.1 and α = 0.2 to compare
our proposed method (ARVSP) with the method (WRVSP) proposed by [24] and the
penalized maximum likelihood (PML) method.

To examine the finite sample performance of the proposed method, we calculate the
following three measures:

NCZ = #
{

j : βj = 0 ∧ β̂nj = 0
}

, NIZ = #
{

j : βj ̸= 0 ∧ β̂nj = 0
}

, and MSE = ∥β − β̂n∥2
2,

where # {A} denotes the number of elements within A. NCZ (number of correct zeros)
indicates the number of the zero component in the true value of the parameter to be still
correctly estimated as zero. NIZ (number of incorrect zeros) indicates the number of the
non-zero component in the true value of the parameter to be incorrectly estimated as zero.
MSE denotes the mean square error. Clearly, MSE and NIZ should be as small as possible
while NCZ should be as large as possible. The corresponding simulation results are shown
in Table 1.

From Table 1, we have the following findings:
(1) Under D0, three methods have similar performance. Meanwhile, the finite sample

performance of proposed method is the same as those of PML method.
(2) Under D1, and D2, our proposed ARVSP method has the lowest NIZ and NCZ

is close to the true value 15. In addition, MSE of proposed method is smaller
than that of WRVSP method and PWL method. Therefore, the finite-sample
performance of the proposed method is better than that of other existing methods
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when there are outliers in the dataset, although its performance is slightly worse
as the contamination ratio increases.

(3) MSE of all three methods decreases as sample size n increase.

Table 1. Simulation results for ARVSP, WRVSP and PML.

Distribution α n
ARVSP PML WRVSP

NCZ NIZ MSE NCZ NIZ MSE NCZ NIZ MSE
300 14.8005 0.3300 0.6138 14.8005 0.3300 0.6138 14.7900 0.3350 0.6156

D0 0 500 14.8650 0.1700 0.3336 14.8650 0.1700 0.3336 14.8695 0.1800 0.3367
1000 14.9145 0.0100 0.1262 14.9145 0.0100 0.1262 14.9205 0.0150 0.1277

D1

300 14.7255 0.3800 0.6844 14.3100 0.8100 1.7613 14.4555 0.5750 1.3354
0.1 500 14.8095 0.1650 0.3613 14.0400 0.4900 1.2652 14.2155 0.3850 0.9968

1000 14.9100 0.0300 0.1568 13.5300 0.3050 1.0643 13.5195 0.1450 0.7822
300 14.6805 0.5500 0.9537 14.2200 0.9650 1.9749 14.3205 1.0100 2.0541

0.2 500 14.7705 0.2250 0.4210 14.1105 0.5650 1.4114 14.1345 0.5600 1.3900
1000 14.8650 0.0400 0.2249 13.4250 0.4100 1.1438 13.4895 0.4150 1.1256

D2

300 14.7555 0.4400 0.9049 14.9850 2.2850 5.0819 14.9550 1.3100 3.5730
0.1 500 14.8995 0.3800 0.5928 15.0000 1.6000 4.8031 14.9805 0.6400 3.0193

1000 14.9505 0.1950 0.3320 15.0000 0.5450 4.3149 15.0000 0.4000 2.6675
300 14.0445 0.8400 1.6127 15.0000 4.5100 6.5886 15.0000 4.4500 6.4830

0.2 500 14.2200 0.4250 0.8371 15.0000 4.3950 6.5441 14.9955 4.0950 6.3489
1000 14.6700 0.2700 0.4063 14.9955 3.1950 6.2721 14.9850 2.4200 5.8598

4. Real data analysis
In this section, the proposed method will be applied to analyze a Parkinsons dataset

[20], which can be downloaded from
https://archive.ics.uci.edu/ml/datasets/Parkinsons.

MDVP.Fo.Hz. MDVP.Jitter... MDVP.RAP Jitter.DDP Shimmer.APQ3 Shimmer.DDA HNR DFA spread2 PPE

−
2

0
2

4
6

Figure 1. Boxplot of 22 attributes of a Parkinsons dataset.
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This dataset consists of a series of biomedical voice measurements from 31 people, 23
of whom have Parkinson’s disease (PD). The dataset contains 195 voice records and 23
attributes, one of which is the health status of the subjects, with “0" for health and “1"
for Parkinson’s disease patient. The remaining 22 attributes are numerical, including:
Average vocal fundamental frequency (MDVP:Fo(Hz)), maximum vocal fundamental fre-
quency (MDVP:Fhi(Hz)), minimum vocal fundamental frequency (MDVP:Flo(Hz)), five
measures of variation in fundamental frequency (MDVP: Jitter(%), MDVP: Jitter(Abs),
MDVP: RAP, MDVP: PPQ, Jitter: DDP), six measures of variation in amplitude (MDVP:
Shimmer, MDVP: Shimmer(dB), Shimmer: APQ3, Shimmer: APQ5, MDVP: APQ, Shim-
mer: DDA), two measures of ratio of noise to tonal components in the voice (NHR, HNR),
two nonlinear dynamical complexity measures(RPDE, D2), signal fractal scaling exponent
(DFA), three nonlinear measures of fundamental frequency variation (spread1, spread2,
PPE). In this section, the predictors are scaled to have mean zero and unit variance with
Z-score, and then the boxplot is drawn. The results are shown in Figure 1. From Figure
1, we can find that there are outliers in the dataset.

Next, we apply ARVSP method, WRVSP method and PWL method to analyze this
biological voice measurement dataset. The results are given in Table 2.

Table 2. Variable selection results of a Parkinsons dataset.

Variables ARVSP PML WRVSP
Intercept 6.0751 2.5091 1.7067
MDVP:Fo(Hz) 0 0 0
MDVP:Fhi(Hz) -0.6783 -0.0087 0
MDVP:Flo(Hz) 0 0 0
MDVP:Jitter(%) -7.6771 -2.0984 0
MDVP:Jitter(Abs) 0 0 0
MDVP:RAP 0 0 0
MDVP:PPQ 0 0 0
Jitter:DDP 7.0520 1.9057 0
MDVP:Shimmer 0 0 0
MDVP:Shimmer(dB) 0 0 0
Shimmer:APQ3 0 0 0.2904
Shimmer:APQ5 -0.8083 0 0
MDVP:APQ 9.0565 2.9141 0.2596
Shimmer:DDA -5.3202 -1.2894 0.0080
NHR 0 0 0
HNR 0 0 0
RPDE -0.5139 0 0
DFA 0 0.0126 0
spread1 0 0 0
spread2 0.1921 0.2778 0
D2 0 0 0
PPE 5.4077 1.8878 1.5435

From Table 2, we find that the proposed ARVSP method, WRVSP method and PWL
method selects 9 variables, 8 variables, and 4 variables, respectively. To further compare
among the different methods, we calculate the confusion matrix representing the accuracy
of classification results for the above methods and random forest. The corresponding
results are shown in Tables 3-6.

From Tables 3-6, we find that the proposed ARVSP method possesses the smallest false
positive and false negative percentages. Meanwhile, the correct classification rate for the
proposed method is 91.79%, which is the highest for all four methods.
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Table 3. Classification results of ARVSP method.

Actual status Predicted results
0 1 error rate

0 35 13 0.2708
1 3 144 0.0204

Table 4. Classification results of PML method.

Actual status Predicted results
0 1 error rate

0 34 14 0.2917
1 11 136 0.0748

Table 5. Classification results of WRVSP method.

Actual status Predicted results
0 1 error rate

0 27 21 0.4375
1 11 136 0.0748

Table 6. Classification results of random forest.

Actual status Predicted results
0 1 error rate

0 35 13 0.2708
1 5 142 0.0340

5. Discussion
In this paper, we proposed an adaptive robust variable selection procedure for the

logistic regression model. Meanwhile, an MM algorithm is used to solve the proposed
optimization problem. Furthermore, the merits of our proposed methodology were illus-
trated through some simulations and a real data analysis. Numerical simulation results
show that when there are outliers in the dataset, the performance of our proposed method
is better than that of some existing methods. By analyzing a Parkinsons dataset, our
proposed method had the smallest false positive and false negative percentages and the
highest correct classification rate. Finally, we will study the large sample properties of the
proposed ARVSP method as future work.
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