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Heun equations and combinatorial identities
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ABSTRACT. Heun functions are important for many applications in mathematics, physics and in thus in interdisci-
plinary phenomena modelling. They satisfy second order differential equations and are usually represented by power
series. Closed forms and simpler polynomial representations are useful. Therefore, we study and derive closed forms
for several families of Heun functions related to classical entropies. By comparing two expressions of the same Heun
function, we get several combinatorial identities generalizing some classical ones.
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1. INTRODUCTION

Consider the general Heun equation (see, e.g., [15], [8], [9] and the references therein)

(1.1) u′′(x) +

(
γ

x
+

δ

x− 1
+

ε

x− a

)
u′(x) +

αβx− q
x(x− 1)(x− a)

u(x) = 0,

where a /∈ {0, 1}, γ /∈ {0,−1,−2, . . . } and α+β+ 1 = γ+ δ+ ε. Its solution u(x) normalized by
the condition u(0) = 1 is called the (local) Heun function and is denoted by Hl(a, q;α, β; γ, δ;x).

The confluent Heun equation is

(1.2) u′′(x) +

(
4p+

γ

x
+

δ

x− 1

)
u′(x) +

4pαx− σ
x(x− 1)

u(x) = 0,

where p 6= 0. The solution u(x) normalized by u(0) = 1 is called the confluent Heun function and
is denoted by HC(p, γ, δ, α, σ;x).

It was proved in [14] that

(1.3) Hl

(
1

2
,−n;−2n, 1; 1, 1;x

)
=

n∑
k=0

((
n

k

)
xk(1− x)n−k

)2

,

(1.4) Hl

(
1

2
, n; 2n, 1; 1, 1;−x

)
=

∞∑
k=0

((
n+ k − 1

k

)
xk(1 + x)−n−k

)2

,

(1.5) HC

(
n, 1, 0,

1

2
, 2n;x

)
=

∞∑
k=0

(
e−nx

(nx)k

k!

)2

.
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More general results, providing closed forms of the functions
Hl
(
1
2 ,−2nθ;−2n, 2θ; γ, γ;x

)
and Hl

(
1
2 , 2nθ; 2n, 2θ; γ, γ;x

)
, and explicit expressions for some

confluent Heun functions can be found in [4].
In this paper, we give closed forms for several families of Heun functions and confluent

Heun functions, extending (1.3), (1.4) and (1.5). Basic tools will be the results of [7] and [16]
concerning the derivatives of Heun functions, respectively confluent Heun functions; see also
[13] and [4].

By comparing two expressions of the same Heun function, we get several combinatorial
identities; very particular forms of them can be traced in the classical book [5]. Recently, Ul-
rich Abel and Georg Arends gave in [1] purely combinatorial proofs of some similar identities
presented in [2].

It is well known that the Heun functions and the Heun equations have important applica-
tions in Physics; see, e.g., [6]. Let us mention that the families of (confluent) Heun functions
investigated in this paper are naturally related to some classical entropies: see [13], [14], [4],
[3], [12].

Throughout the paper, we shall use the notation

(x)0 := 1, (x)k := x(x+ 1) . . . (x+ k − 1), k ≥ 1,

anj := 4−n
(

2j

j

)(
2n− 2j

n− j

)
,(1.6)

rnj :=

(
n

j

)−1
anj .(1.7)

2. HEUN FUNCTIONS

Let αβ 6= 0. As a consequence of the results of [7], we have (see [4, Prop. 1] and [4, (14)]):

Hl

(
1

2
,

1

2
(α+ 2)(β + 2);α+ 2, β + 2; γ + 1, γ + 1;x

)
=

γ

αβ
(1−2x)−1

d

dx
Hl

(
1

2
,

1

2
αβ;α, β; γ, γ;x

)
.

From [4, (6)], [4, (22)] and (1.6), we obtain

(2.8) Hl

(
1

2
,−n;−2n, 1; 1, 1;x

)
=

n∑
j=0

anj(1− 2x)2j .

Theorem 2.1. Let 0 ≤ m ≤ n. Then

Hl

(
1

2
, (2m+ 1)(m− n); 2(m− n), 2m+ 1;m+ 1,m+ 1;x

)
(2.9)

=4m
(
n

m

)−1(
2m

m

)−1 n−m∑
j=0

(
m+ j

m

)
an,m+j(1− 2x)2j

=

n−m∑
j=0

4j
(
n−m
j

)
(m+ 1/2)j
(m+ 1)j

(x2 − x)j .
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Proof. We shall prove the first equality by induction with respect to m. For m = 0, it follows
from (2.8). Suppose that it is valid for a certain m < n. Then, (2) implies

Hl

(
1

2
,

1

2
(2m+ 3)(m+ 1− n); 2(m+ 1− n), 2m+ 3;m+ 2,m+ 2;x

)
=

(m+ 1)(1− 2x)−1

2(m− n)(2m+ 1)

d

dx
Hl

(
1

2
, (2m+ 1)(m− n); 2(m− n), 2m+ 1;m+ 1,m+ 1;x

)
=

(m+ 1)(1− 2x)−1

2(m− n)(2m+ 1)
4m
(
n

m

)−1(
2m

m

)−1 n−m∑
i=1

(
m+ i

m

)
an,m+i(−4i)(1− 2x)2i−1

=4m+1

(
n

m+ 1

)−1(
2m+ 2

m+ 1

)−1 n−m−1∑
j=0

(
m+ 1 + j

m+ 1

)
an,m+1+j(1− 2x)2j ,

and so the desired equality is true for m+ 1; this finishes the proof by induction.
In order to prove that the first member and the last member of (2.9) are equal, it suffices to
use [4, Th. 1] with γ = m+ 1, θ = m+ 1

2 , and n replaced by n−m. �

Corollary 2.1. Let 0 ≤ i ≤ n−m, 0 ≤ j ≤ n−m. Then

(2.10)
n−m∑
j=i

(−1)j−i
(
n−m
j

)
(m+ 1/2)j
(m+ 1)j

(
j

i

)
= 4m

(
n

m

)−1(
2m

m

)−1(
m+ i

m

)
an,m+i

and
n−m∑
i=j

(
m+ i

m

)(
i

j

)
an,m+i = 4−m

(
n

m

)(
2m

m

)
(m+ 1/2)j
(m+ 1)j

(
n−m
j

)
.(2.11)

Proof. It suffices to combine the last equality in (2.9) with

(x2 − x)j = 4−j
(
(1− 2x)2 − 1

)j
,

respectively with

(1− 2x)2j =
(
1 + 4(x2 − x)

)j
.

�

Example 2.1. For i = m = 0, (2.10) reduces to

(2.12)
n∑
j=0

(
−1

4

)j (
n

j

)(
2j

j

)
= 4−n

(
2n

n

)
,

which is (3.85) in [5].
For j = m = 0, (2.11) becomes

(2.13)
n∑
i=0

(
2i

i

)(
2n− 2i

n− i

)
= 4n,

which is (3.90) in [5].
From [4, (7)], [4, (23)] and (1.6), we know that

(2.14) Hl

(
1

2
, n+ 1; 2n+ 2, 1; 1, 1;x

)
=

n∑
j=0

anj(1− 2x)2j−2n−1.
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Theorem 2.2. For m ≥ 0, we have

Hl

(
1

2
, (2m+ 1)(m+ n+ 1); 2(m+ n+ 1), 2m+ 1;m+ 1,m+ 1;x

)
=

(
n+m

n

)−1 n∑
j=0

(
2n+ 2m− 2j

2m

)(
n+m− j

m

)−1
anj(1− 2x)2j−2n−2m−1

=(1− 2x)−2n−2m−1
n∑
j=0

4j
(
n

j

)
(1/2)j

(m+ 1)j
(x2 − x)j .

Proof. As in the proof of Theorem 2.1, the first equality can be proved by induction with respect
to m, if we use (2.14) and (2). The equality of the first member and the last member follows
from [4, Cor. 2] by choosing γ = m+ 1, θ = m+ 1/2, and replacing n by n+m+ 1. �

Corollary 2.2. Let 0 ≤ i ≤ n, 0 ≤ j ≤ n. Then
n∑
j=i

(−1)j−i
(
n

j

)
(1/2)j

(m+ 1)j

(
j

i

)
=

(
2n+ 2m− 2i

2m

)(
n+m

n

)−1(
n+m− i

m

)−1
ani(2.15)

and

(2.16)
n∑
i=j

(
2n+ 2m− 2i

2m

)(
n+m− i

m

)−1(
i

j

)
ani =

(
n+m

n

)(
n

j

)
(1/2)j

(m+ 1)j
.

The proof is similar to the proof of Corollary 2.1.
For i = m = 0, (2.15) reduces to (2.12), i.e., (3.85) in [5].
For j = m = 0, (2.16) reduces to (2.13), i.e., (3.90) in [5].

Let again αβ 6= 0. According to the results of [7] (see [4, Prop. 1] and [4, (15)]), we have

Hl

(
1

2
,

1

2
(2γ − α)(2γ − β); 2γ − α, 2γ − β; γ + 1, γ + 1;x

)
=
γ

αβ
(1− 2x)α+β+1−2γ d

dx
Hl

(
1

2
,

1

2
αβ;α, β; γ, γ;x

)
.(2.17)

Using (2.8), (2.17) and the above methods of proof, we obtain the following identities:

Hl

(
1

2
, (2k + 1)(k − n); 2(k − n), 2k + 1; 2k + 1, 2k + 1;x

)
=4k

(
n+ k

n

)−1(
n

k

)−1 n−k∑
i=0

(
2n− 2i

2k

)(
n

i

)
rn,k+i(1− 2x)2i

=

n−k∑
j=0

4j
(
n− k
j

)
(k + 1/2)j
(2k + 1)j

(x2 − x)j , 0 ≤ k ≤ n.(2.18)

As a consequence of (2.18), one gets
n−k∑
j=i

(−1)j−i
(
n− k
j

)
(k + 1/2)j
(2k + 1)j

(
j

i

)
(2.19)

=4k
(
n+ k

n

)−1(
n

k

)−1(
2n− 2i

2k

)(
n

i

)
rn,k+i, 0 ≤ i ≤ n− k
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and

n−k∑
i=j

(
2n− 2i

2k

)(
n

i

)(
i

j

)
rn,k+i(2.20)

=4−k
(
n+ k

n

)(
n

k

)(
n− k
j

)
(k + 1/2)j
(2k + 1)j

, 0 ≤ j ≤ n− k.

For i = k = 0, (2.19) reduces to (2.12); for j = k = 0, (2.20) becomes (2.13).
Moreover,

Hl

(
1

2
, (2k − 1)(k + n); 2(k + n), 2k − 1; 2k, 2k;x

)
=22k−1

(
n+ k − 1

k − 1

)−1(
n− 1

k − 1

)−1 n−k∑
i=0

(
2n− 2i− 2

2k − 2

)(
n− 1

i

)
rn,k+i(1− 2x)1−2n+2i

=(1− 2x)1−2n
n−k∑
j=0

4j
(
n− k
j

)
(k + 1/2)j

(2k)j
(x2 − x)j , 1 ≤ k ≤ n.(2.21)

From (2.21), we derive

n−k∑
j=i

(−1)j−i
(
n− k
j

)
(k + 1/2)j

(2k)j

(
j

i

)
(2.22)

=22k−1
(
n+ k − 1

k − 1

)−1(
n− 1

k − 1

)−1(
2n− 2i− 2

2k − 2

)(
n− 1

i

)
rn,k+i, 0 ≤ i ≤ n− k,

n−k∑
i=j

(
2n− 2i− 2

2k − 2

)(
n− 1

i

)(
i

j

)
rn,k+i(2.23)

=21−2k
(
n+ k − 1

k − 1

)(
n− 1

k − 1

)(
n− k
j

)
(k + 1/2)j

(2k)j
, 0 ≤ j ≤ n− k.

For i = 0, k = 1 and replacing n by n+ 1, from (2.22), we obtain

(2.24)
n∑
j=0

(
−1

4

)j (
n

j

)(
2j + 1

j

)
=

1

(n+ 1)4n

(
2n

n

)
.

With j = 0, k = 1 and replacing n by n+ 1, (2.23) yields

(2.25)
n∑
i=0

(i+ 1)

(
2i+ 2

i+ 1

)(
2n− 2i

n− i

)
=
n+ 1

2
4n+1.

It is a pleasant calculation to prove (2.24) and (2.25) directly.
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Using (2.14) and (2.17), we get

Hl

(
1

2
, (2k + 1)(k + n+ 1); 2(k + n+ 1), 2k + 1; 2k + 1, 2k + 1;x

)
=4k

(
n+ k

n

)−1(
n

k

)−1 n−k∑
j=0

(
2k + 2j

2j

)(
n

k + j

)
rnj(1− 2x)−2k−1−2j

=(1− 2x)−2n−1
n−k∑
j=0

4j
(
n− k
j

)
(k + 1/2)j
(2k + 1)j

(x2 − x)j , 0 ≤ k ≤ n.(2.26)

Taking into account that rn,n−j = rnj , from (2.26), we derive (2.19) and (2.20).
Moreover,

Hl

(
1

2
, (2k + 1)(k − n); 2(k − n), 2k + 1; 2k + 2, 2k + 2;x

)
=4k

2k + 1

n+ 1

(
n+ k + 1

n

)−1(
n

k

)−1 n−k∑
j=0

(
2k + 2j + 2

2j

)(
n+ 1

k + j + 1

)
rnj(1− 2x)2n−2k−2j

=

n−k∑
j=0

4j
(
n− k
j

)
(k + 1/2)j
(2k + 2)j

(x2 − x)j , 0 ≤ k ≤ n.(2.27)

From (2.27), we derive
n−k∑
j=i

(−1)j−i
(
n− k
j

)
(k + 1/2)j
(2k + 2)j

(
j

i

)
, 0 ≤ i ≤ n− k(2.28)

=4k
2k + 1

n+ 1

(
n+ k + 1

n

)−1(
n

k

)−1(
2n− 2i+ 2

2k + 2

)(
n+ 1

i

)
rn,k+i

and
n−k∑
i=j

(
2n− 2i+ 2

2k + 2

)(
n+ 1

i

)(
i

j

)
rn,k+i, 0 ≤ j ≤ n− k(2.29)

=4−k
n+ 1

2k + 1

(
n+ k + 1

n

)(
n

k

)(
n− k
j

)
(k + 1/2)j
(2k + 2)j

.

For i = k = 0, (2.28) becomes

(2.30)
n∑
j=0

(
−1

4

)j (
n+ 1

j + 1

)(
2j

j

)
=

2n+ 1

4n

(
2n

n

)
.

Let us recall the formula (7.6) in [5]:

(2.31)
n∑
j=0

(
−1

4

)j (
n

j

)(
2j

j

)(
j + h

h

)−1
=

1

4n

(
2n+ 2h

n+ h

)(
2h

h

)−1
.

For h = 1, (2.31) reduces to (2.30). For j = k = 0, (2.29) becomes

(2.32)
n∑
i=0

(2n− 2i+ 1)

(
2i

i

)(
2n− 2i

n− i

)
= (n+ 1)4n,

which can be proved also directly.
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3. CONFLUENT HEUN FUNCTIONS

The hypergeometric function v(t) = 1F1(α; γ; t) satisfies (see [10, p. 336], [11, 13.2.1]) v(0) =
1 and

(3.33) tv′′(t) + (γ − t)v′(t)− αv(t) = 0.

Moreover (see [10, p. 338, 5.6], [11, 13.3.15]),

(3.34) 1F1(α+ 1; γ + 1; t) =
γ

α

d

dt
1F1(α; γ; t).

With the above notation, we have:

Theorem 3.3. For αp 6= 0, the confluent Heun function HC(p, γ, 0, α, 4pα;x) satisfies

(3.35) HC(p, γ, 0, α, 4pα;x) = 1F1(α; γ;−4px),

(3.36) HC(p, γ + 1, 0, α+ 1, 4p(α+ 1);x) = − γ

4pα

d

dx
HC(p, γ, 0, α, 4pα;x),

(3.37) HC(p, γ + j, 0, α+ j, 4p(α+ j);x) =
(−1)j(γ)j
(4p)j(α)j

dj

dxj
HC(p, γ, 0, α, 4pα;x),

for all integers j ≥ 0 with (α)j 6= 0.

Proof. According to (1.2), the function u(x) = HC(p, γ, 0, α, 4pα;x) satisfies u(0) = 1 and

(3.38) xu′′(x) + (4px+ γ)u′(x) + 4pαu(x) = 0.

From (3.33) and (3.38), it is easy to deduce that u(x) = v(−4px), and this entails (3.35).
Now, (3.36) is a consequence of (3.35) and (3.34); (3.37) can be proved by induction with respect
to j. Let us remark that (3.36) coincides with (30) in [4]. �

Corollary 3.3. Let Kn(x) := HC
(
n, 1, 0, 12 , 2n;x

)
be the function given by (1.5). Then

(3.39) Kn(x) = 1F1

(
1

2
; 1;−4nx

)
and

(3.40) Kn(x) =
1

π

∫ 1

−1
e−2nx(1+t)

dt√
1− t2

.

Proof. (3.39) follows from (3.35) with α = 1/2, γ = 1 and p = n. By using (3.39) and [10, p. 338,
5.9], [11, 13.4(i)], we get (3.40). Let us remark that (3.40) coincides with (69) in [14]. �

Using (3.37) with p = n, γ = 1, α = 1/2, we get

(3.41) HC

(
n, j + 1, 0, j +

1

2
, 2n(2j + 1);x

)
=

(−1)j

nj

(
2j

j

)−1
K(j)
n (x), j ≥ 0.

From (3.41) and [4, (34)], we obtain

(3.42) K(j)
n (0) = (−n)j

(
2j

j

)
,
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which is (35) in [4].
On the other hand, (3.40) implies (with t = sinϕ)

K(j)
n (0) =

(−2n)j

π

j∑
k=0

(
j

k

)∫ π/2

−π/2
sink ϕdϕ

=(−2n)j
[j/2]∑
i=0

(
j

2i

)(
2i

i

)
4−i.

Combined with (3.42), this produces
[j/2]∑
i=0

(
j

2i

)(
2i

i

)
4−i = 2−j

(
2j

j

)
,

which is (3.99) in [5].
Finally, we give closed forms for some families of confluent Heun functions.

Theorem 3.4. (i) For 0 ≤ j ≤ n, we have

(3.43) HC

(
p, j +

1

2
, 0, j − n, 4p(j − n);x

)
=

(2j)!

j!

n−j∑
k=0

(
n− j
k

)
(n− k)!

(2n− 2k)!
(16px)n−j−k.

(ii) More generally, for 0 ≤ j ≤ n and λ > −1,

HC (p, j + 1 + λ, 0, j − n, 4p(j − n);x)(3.44)

=
(λ+ 1)jΓ(λ+ 1)

Γ(n+ λ+ 1)

n−j∑
k=0

(λ+ n+ 1− k)k

(
n− j
k

)
(4px)n−j−k.

Proof. By using the relation between the function 1F1 and the Hermite polynomials (see [10, p.
340, 5.16], [10, p. 235, (4.51)], [11, 13.6.16]), we have

(3.45) 1F1

(
−n;

1

2
;x

)
= n!

n∑
k=0

1

k!(2n− 2k)!
(−4x)n−k.

From (3.35) and (3.45), it follows that

(3.46) HC

(
p,

1

2
, 0,−n,−4pn;x

)
= n!

n∑
k=0

(16px)n−k

k!(2n− 2k)!
.

Now, (3.43) is a consequence of (3.46) and (3.37).
In order to prove (3.44), we need the relation between 1F1 and the Laguerre polynomials (see
[10, p. 340, 5.14], [11, 13.6.19]):

(3.47) 1F1(−n;λ+ 1;x) =
n!Γ(λ+ 1)

Γ(n+ λ+ 1)
Lλn(x), λ > −1,

where (see [10, p. 245, (4.61)], [11, 18.5.12])

(3.48) Lλn(x) =

n∑
k=0

(−1)k
(λ+ k + 1)n−k
k!(n− k)!

xk.

From (3.35), (3.47) and (3.48), we get

(3.49) HC (p, λ+ 1, 0,−n,−4pn;x) =
n!Γ(λ+ 1)

Γ(n+ λ+ 1)
Lλn(−4px).
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Combined with (3.37), (3.49) produces(3.44), and this concludes the proof. �

4. OTHER COMBINATORIAL IDENTITIES

Let us return to (2.10). Since

(4.50)
(m+ 1/2)j
(m+ 1)j

= 4−j
(

2m+ 2j

m+ j

)(
2m

m

)−1
,

it becomes
n−m∑
j=i

(−1)j−i4−j
(
n−m
j

)(
2m+ 2j

m+ j

)(
j

i

)

=4m−n
(
n

m

)−1(
m+ i

m

)(
2m+ 2i

m+ i

)(
2n− 2m− 2i

n−m− i

)
.

Set i+m = r, j = r −m+ k, and replace n by n+ r; we get
n∑
k=0

(
−1

4

)k (
n+ r −m
n− k

)(
2r + 2k

r + k

)(
r −m+ k

k

)
(4.51)

=4−n
(
n+ r

m

)−1(
r

m

)(
2r

r

)(
2n

n

)
, n ≥ 0, r ≥ m ≥ 0.

Here are some particular cases of (4.51).

r = m = n :

n∑
k=0

(
−1

4

)k (
n

k

)(
2n+ 2k

n+ k

)
= 4−n

(
2n

n

)
.

r = m :

n∑
k=0

(
−1

4

)k (
n

k

)(
2r + 2k

r + k

)
= 4−n

(
n+ r

r

)−1(
2r

r

)(
2n

n

)
.

m = 0 :

n∑
k=0

(
−1

4

)k (
n+ r

n− k

)(
2r + 2k

r + k

)(
r + k

k

)
= 4−n

(
2r

r

)(
2n

n

)
.

r = n :

n∑
k=0

(
−1

4

)k (
2n−m
n− k

)(
2n+ 2k

n+ k

)(
n−m+ k

k

)
= 4−n

(
2n

m

)−1(
n

m

)(
2n

n

)2

.

m = n :

n∑
k=0

(
−1

4

)k (
r

n− k

)(
2r + 2k

r + k

)(
r − n+ k

k

)
= 4−n

(
n+ r

r

)−1(
r

n

)(
2r

r

)(
2n

n

)
.

Now, let us return to (2.11); use (4.50), set j +m = r, i = r −m+ k, and replace n by n+ r. We
get

n∑
k=0

(
r + k

m

)(
r + k −m

k

)(
2r + 2k

r + k

)(
2n− 2k

n− k

)
(4.52)

=4n
(
n+ r

m

)(
2r

r

)(
n+ r −m

n

)
, n ≥ 0, r ≥ m ≥ 0.

For r = m = n, (4.52) reduces to
n∑
k=0

(
n+ k

n

)(
2n+ 2k

n+ k

)(
2n− 2k

n− k

)
= 4n

(
2n

n

)2

.
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Clearly, there are many other particular cases of (4.52).
Several other particular combinatorial identities can be obtained starting with other general
formulas from the preceding sections, but we omit the details.
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