

Turkish Comp Theo Chem (TC&TC)

Volume(Issue): 4(2) – Year: 2020 – Pages: 88-97

e-ISSN: 2602-3237

https://doi.org/10.33435/tcandtc.811494

 Received:
 16.10.2020
 Accepted:
 30.11.2020
 Research Article

 Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl)piperazine (mCPP) Molecule
 Research Molecule

Yavuz Ekincioğlu^a, Hamdi Şükür Kılıç^{a,b,c 1},Ömer Dereli^d,

^a University of Selçuk, Faculty of Science, Department of Physics, Konya, Turkey ^b University of Selçuk, Directorate of High Technology Research and Application Center, 42031, Konya,

Turkey

^cUniversity of Selçuk, Directorate of Laser Induced Proton Therapy Application and Research Center,

42031, Konya, Turkey

^dUniversity of Konya Necmettin Erbakan, Faculty of Ahmet Keleşoğlu Education, Department of Physics,

Abstract: In this study, the experimentally obtained IR spectrum of the meta-Chlorophenylpiperazine (C10H13ClN2) molecule, which is used in the testing phase of antimigren drugs in the literature, was obtained theoretically and the structural properties obtained for ortho and para derivatives of the title molecule were compared. moreover, the optimized molecular structure, conformational analysis, Nonlinear optics properties, HOMO-LUMO and Chemical reactivity descriptors that is the ionization potential, The electron affinity the chemical hardness, softness and the electronegativity, Molecular electrostatic potential, Natural Bonding Orbital and Raman spectrum were calculated using density functional theory method with B3LYP functional with 6-311++G (d, p) basis set in ground state. The results introduce that molecular modelling are valuable for obtainment insight into molecular structure and electronic properties of the mCPP molecule

Keywords: meta-Chlorophenylpiperazine, DFT, NLO, NBO, MEP, IR, Raman, HOMO-LUMO

1. Introduction

Piperazines have been one of the chemical groups with pharmaceutical features. Because Piperazines and their derivatives are presented in many marketed drugs for example antipsychotic, antidepressant and antitumor activity against colon, prostate, breast and lung tumors [1] These and their derivatives are now one of the cornerstones of the pharmaceutical industry. Chlorophenylpiperazine is one of piperazine components. According to the location of Cl atom in the phenyl ring of this component, three isomers can be generated as ortho-, meta- and parachlorophenylpiperazine. Spectroscopic and quantum chemical calculations of various piperazine based components were performed and reported in literature [2, 3]. Theoretical calculation for chlorophenylpiperazine derivatives were carried out by running density functional theory (DFT). In these studies, spectral measurements, molecular electrostatic potential (MEP), Highest Occupied Molecular Orbitals (HOMO), Lowest Unoccupied Molecular Orbitals (LUMO) and natural bond orbital (NBO) analysis for orthochlorophenylpiperazines were calculated [4] and spectral measurements and HOMO-LUMO energy values for para-chlorophenylpiperazine were reported recently [5] using DFT method with B3LYP functional, with 6-311++G (d, p) basis set and 6-311++G(d, 2d) basis set.

Meta-chlorophenylpiperazine (mCPP) isomer of piperazines derivatives is a psycho-active drug. This drug causes headaches in humans and is used in the testing phase of antimigren drugs [6]. Because of anorectic effects of MCPP, the treatment of obesity has been helped the

¹ Corresponding Authors

e-mail: hamdisukurkilic@gmail.com, hamdisukurkilic@selcuk.edu.tr

development of selective 5-HT2C receptor agonists [7, 8]. In contrast to ortho and para chlorophenylpiperazine, the mCPP isomer has yet been studied neither theoretical nor experimentally. A number of studies made, only, were performed to investigate this molecular isomer, such as The Synthesis Of 4-(3-chlorophenyl)-1-(3chloropropyl) piperazin-1-ium chloride and two salts of a piperazine derivative 4(C17H20ClN2)+ 2(C4H5O4)-(C4H4O4)-2 H2O and 2(C17H20ClN2)+C6Cl2O4-·3(H2O) [9, 10]. The difference between parametaand chlorphenylpiperazine isomers was investigated using spectrophotometric spectroscopy [11]. The IR absorption spectroscopy was studied by Inoue et al. is in HCl of the mCPP molecule [12]. In this study, structural properties of the mCPP molecule have been investigated theoretically using the basic properties of the calculation technique known as density functional theory.

2. Details Of Computation Procedure

Conformation analysis of mCPP molecule was investigated by running SPARTAN 08 package program [13]. It has been carried out using Merck Molecular Force Field (MMFF) in molecular mechanic method. This analysis is defined in a detailed manner in another study [14]. The optimized structure of mCPP molecule was calculated using GAUSSIAN-09 package program [15] with density functional theory [16] with Becke parameter Lee-Yang-Parr three exchange correlation functional (B3LYP) [17] and 6-311++G(d,p) basis set [18]. The natural bonding analysis (NBO), Nonlinear optical (NLO) properties, HOMO-LUMO, Chemical reactivity descriptors, molecular electrostatic potential (MEP), IR and Raman spectrum were calculated at the same levels.

3. Results and discussion

3.1. Molecular conformation and geometrical structure analysis

The conformation analysis of mCPP molecule was determined using Spartan 08 package program with MMFF in molecular mechanic method. As a result of this analysis, a conformer was obtained. The energy value for this structure has been found as 1598.2741 kJ/mol. And then, the molecule structure optimization approached was calculated

using B3LYP/6-311++G (d, p) basis set and the most stable structure of the molecule was obtained and was shown in figure 1. Geometric parameters of title molecule have been presented in Table.1

Figure 1. Optimized structure of mCPP molecule Using B3LYP/6-311++G (d, p) basis set.

Bond lengths of N19-C1, N19-C4, C2-N20, N20-C3, C3-C4, N19-C5, C5-C6, C6-C7 and N20-H13 for oCPP molecule in literature have been calculated as 1.46 Å, 1.48 Å, 1.46 Å, 1.46 Å, 1.52 Å, 1.41 Å, 1.41 Å, 1.39 Å and 1.01 Å, respectively [4, 19]. These bound lengths in our study were calculated to be 1.462 Å, 1.462 Å, 1.469 Å, 1.469 Å, 1.526 Å, 1.382 Å, 1.413 Å, 1.388 Å and 1.011 Å, respectively. Bond angles of C2-C1-N19, N20-C2-C1, H13-N20-C2, N20-C3-C4, H21-C4-N19, C10-C5-C6 and C5-C6-C7 were determined to be 109.679°, 113.833°, 110.719°, 110.833°, 111.774°, 117.627° and 120.702°, respectively. These bond angles in literature were calculated as 109.79°, 108.99° , 110.86° , 109.21° , 110.04° , 116.47° and 121.98°, respectively, [4]. Dihedral angles of C5-C6-C7-C8 and N19-C5-C10-C9 were calculated as 0.38° and 179.59°, respectively, these dihedral angles in literature were calculated to be 0° and 177.66°, respectively, [4, 19]. We can say that oCPP and pCPP molecules are quite compatible with the geometric parameters gathered in literature.

3.2. Nonlinear optical (NLO) properties

Nonlinear optical (NLO) properties are very important for science and technology due to the development of the wide range of applications in electronic devices [20]. The NLO properties of a molecule can be foretell using dipole moment (μ), polarizability (α) and hyperpolarizibility (β) values. Total dipole moment (μ_{tot}) for a molecule is defined as in equation 1

$$\mu_{tot} = \left(\mu_x + \mu_y + \mu_z\right)^{1/2}$$
(1)

Turkish Comp Theo Chem (TC&TC), 4(2), (2020), 88-97

Yavuz Ekincioğlu, Hamdi Şükür Kılıç, Ömer Dereli,

Bond len	oth (Å)	Rond and	e (°)	Dihedral and	ale (°)
<u>C1-C2</u>	1 5319	H15-C4-N19	109.0626	H14-C3-C4-H15	58 7628
C1-H11	1,0936	H15-C4-H21	107,0020	H14-C3-C4-N19	178 0373
C1-N19	1,0530	N19-C4-H21	111 7742	H14-C3-C4-H21	-58 1786
C1-H24	1,4022	C6-C5-C10	117 6277	N20-C3-C4-H15	179.065
C2-H12	1,1012	C6-C5-N19	121 3977	N20-C3-C4-N19	-61 6605
C2-N20	1,0520	C10-C5-N19	121,5777	N20-C3-C4-H21	62 1236
C2-H23	1,4075	C5-C6-C7	120,7740	H22-C3-C4-H15	-57 3623
C3-C4	1,002	C5-C6-H16	120,7022	H22-C3-C4-N19	61 9122
C3-H14	1,0945	C7-C6-H16	118 9758	H22-C3-C4-H21	-174 3038
C3 N20	1,0045	C6 C7 C8	121 7605	$C_{1}C_{2}C_{2}C_{3}C_{4}C_{1}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$	31 6870
C3-H22	1,4099	C6-C7-H17	119 0166	C4-C3-N20-H13	156 7837
C4 H15	1,1007	C8 C7 H17	119,0100	$H_{14} C_3 N_{20} C_2$	151 5080
C4 N10	1,0922	C7 C8CC9	117,2182	H14 C3 N20 H13	83 3053
C4 H21	1,4020	C7 C8 H18	121 7785	H22 C3 N20 C2	80 1057
C5 C6	1,1003	C) C8 H18	121,7783	H22-C3-N20-C2	-69,1957
C5-C0	1,4134	C9-C0-1110	120,3332	$C_{2} C_{4} N_{10} C_{11}$	20.8568
C5-C10	1,4129	C8 C0 C125	122,7307	C3-C4-N19-C1	29,0300
C5-N19	1,3022	C10 C0 C125	119,0031	U3-U4-IN19-U3	-132,3717
C_{0}	1,3009	C10-C9-C123	110,2017	HIJ-C4-NI9-CI	22 9690
C7-C8	1,0015	C5 C10-C9	119,9479	H13-C4-N19-C3	-33,8089
C7 U17	1,3941	$C_{0} = C_{10} = H_{20}$	121,1330	H21-C4-N19-C1	-92,0201
C^{2}	1,0840	С9-С10-П20	116,6723	Π_{21}^{-} C4-N19-C3	04,7454
C8-C9	1,3894	CI-N19-C4 C1 N10 C5	110,9332	C10-C5-C0-C7	-0,0239
C8-H18	1,0812	CI-N19-C5	121,4382	V10-C5-C0-H10	170,0405
C9-C10	1,3873	C4-N19-C5	121,5828	N19-C5-C0-C7	1/9,9495
C9-CI25	1,/654	C2-N20-C3	113,8574	N19-C5-C6-H16	-1,6302
C10-H20	1,0798	C2-N20-H15	110,7192	C_{0} - C_{5} - C_{10} - C_{9}	-0,455
H13-N20	1,0117	C3-IN20-III 5	110,2029	<u></u> <u>U0-U3-U10-П20</u>	170,5014
D J	-1- (0)	D ⁴ b · · b · · b	-l. (0)	N19-C5-C10-C9	1/9,5914
Bond an	lgle (°)	Dinedral an	<u>gle (°)</u>	N19-C5-C10-H26	-2,2074
C2-CI-HII	108,6518	H11-C1-C2-H12	61,4785	C6-C5-N19-C1	-15,1606
C2-CI-N19	109,6793	H11-C1-C2-N20	-1/6,1956	C6-C5-N19-C4	16/,3//1
C2-CI-H24	110,346	HII-CI-C2-H23	-54,4605	C10-C5-N19-C1	164,812
HII-CI-NI9	109,1854	N19-C1-C2-H12	-179,2415	C10-C5-N19-C4	-12,6503
H11-C1-H24	107,3081	N19-C1-C2-N20	-56,9157	C5-C6-C7-C8	0,3899
N19-C1-H24	111,5916	N19-C1-C2-H23	64,8195	C5-C6-C7-H17	179,5943
CI-C2-H12	109,4379	H24-C1-C2-H12	-55,9127	HI6-C6-C7-C8	-1/8,0511
CI-C2-N20	113,8337	H24-C1-C2-N20	66,4132	HI6-C6-C7-HI7	1,1533
CI-C2-H23	108,253	H24-CI-C2-H23	-1/1,851/	C6-C7-C8-C9	-0,2797
H12-C2-N20	109,0734	C2-C1-N19-C4	26,1325	C6-C7-C8-H18	179,5919
H12-C2-H23	106,7081	C2-C1-N19-C5	-151,4427	HI7-C7-C8-C9	-179,4825
N20-C2-H23	109,2908	H11-C1-N19-C4	145,0841	HI7-C7-C8-H18	0,3891
C4-C3-H14	108,7489	H11-C1-N19-C5	-32,4911	C/-C8C9-C10	-0,1982
C4-C3-N20	110,8331	H24-C1-N19-C4	-96,46	C/-C8-C9-Cl25	-179,4074
C4-C3-H22	107,8879	H24-CI-N19-C5	85,9647	H18-C8-C9-C10	179,9291
H14-C3-N20	109,4046	C1-C2-N20-C3	25,9064	H18-C8-C9-Cl25	0,7199
H14-C3-H22	107,3427	C1-C2-N20-C13	-98,9138	C8-C9-C10-C5	0,5612
N20-C3-H22	112,4958	H12-C2-N20-C3	148,4327	C8-C9-C10-H26	-177,6809
C3-C4-H15	108,121	H12-C2-N20-H13	23,6124	CI25-C9-C10-C5	179,776
C3-C4-N19	110,4728	H23-C2-N20-C3	-95,2519	Cl25-C9-C10-H26	1,5339
C3-C4-H21	109,8811	H23-C2-N20-H13	139,9278		

Table. 1 Calculated bond length (A°), bond angle (°) and Dihedral angle (°) of mCPP using B3LYP/6-311++G (d,p) basis set.

Total polarizability (α_{tot}) for a molecule can be evaluated by equation 2

$$\alpha_{tot} = \frac{1}{3} \left(\alpha_{xx} + \alpha_{yy} + \alpha_{zz} \right)^{1/2}$$
(2)

The total first hyperpolarizability (β_{tot}) can be calculated by equation 3

$$\beta_{tot} = \left(\beta_x^2 + \beta_y^2 + \beta_z^2\right)^{1/2}$$
(3)
Here β_x, β_y and β_z

$$\beta_x = \left(\beta_{xxx} + \beta_{xyy} + \beta_{xzz}\right) \tag{4}$$

$$\beta_{y} = \left(\beta_{yyy} + \beta_{yzz} + \beta_{yxx}\right) \tag{5}$$

$$\beta_z = \left(\beta_{zzz} + \beta_{zxx} + \beta_{zyy}\right) \tag{6}$$

Total first hyperpolarizability from Gaussian 09 output is given in equation 7.

$$\beta_{tot} = \left[\left(\beta_{xxx} + \beta_{xyy} + \beta_{xzz} \right)^2 + \left(\beta_{yyy} + \beta_{yzz} + \beta_{yxx} \right)^2 + \left(\beta_{zzz} + \beta_{zxx} + \beta_{zyy} \right)^2 \right]^{1/2}$$
(7)

Because these β and α values of Gaussian 09 program are given in atomic units (a.u), the calculated β_{tot} and α_{tot} values were converted into electrostatic units (esu) [1 a.u. = 8.6393 x 10⁻³³ esu] and [1 a.u. = 0.1482×10⁻²⁴ esu], respectively, [21, 22]. The nonlinear properties of mCPP molecule were calculated using DFT/B3LYP method with 6-311++G (d,p) basis set and was given in Table 2.

Table.2 Calculated Dipole moment (μ) in Debye, polarizability (α) and hyperpolarizability (β) of mCPP by B3LYP/6-311++G (d,p) method.

Parameters	Values
Dipole moment (Debye)	
μ_x	-3.4994
μ_{y}	1.5306
μ_z	-0.8915
μ_{tot}	3.9221
Polarizability (a.u)	
α_{xx}	201.934
α_{yy}	150.023
α_{zz}	97.630
α_{tot} (a.u)	149.8623
α_{tot} (esu)	22.209 x10 ⁻²⁴
Hyperpolarizability (a.u)	
β_{xxx}	546.381
β_{xxy}	233.413
β_{xyy}	-67.300
β_{yyy}	-69.443
β_{xxz}	-159.808
β_{xyz}	158.966
$\beta_{\nu\nu z}$	-54.229
β_{xzz}	150.626
β_{vzz}	-72.531
β_{zzz}	-196.221
β_{tot} (a.u)	757.102
β_{tot} (esu)	6540.83 x10 ⁻³³

3.3. HOMO-LUMO and Chemical reactivity descriptors studies

Molecular orbitals are very important for quantum chemistry. The most important molecules orbitals in a molecule are the highest occupied molecular orbital (HOMO) and the lowest unoccupied (LUMO) orbitals. Molecular interactions and chemical reactivity can be examined by interpreting HOMO and LUMO values. Also, chemical reactivity descriptors such as the ionization potential (I), the electron affinity (A), the chemical

hardness (η), softness (S) and electronegativity (χ) can be calculated. HOMO, LUMO and HOMO-LUMO gap energy values have been shown in Figure 2 and Table 3. These values were calculated

using DFT/B3LYP method with 6-311++G (d, p) basis set.

Figure 2. HOMO-LUMO energy gap of mCPP molecule Using B3LYP/6-311++G (d, p) basis set.

Ionization potential is the energy required to remove an electron from the molecule and it is calculated with I = - E_{HOMO} [23]. The electron affinity is the energy that increases when the molecule gains an electron and it is determined by A = - E_{LUMO} [23]. The chemical hardness and softness are calculated by $\eta = \frac{1}{2}[E_{LUMO} - E_{HOMO}]$ and S = $\frac{1}{2\eta}$. The electronegativity is determined by $\chi = -\frac{1}{2}[E_{HOMO} + E_{LUMO}]$ [24]. The obtained chemical reactivity descriptors have been given in Table 3.

3.4. Molecular electrostatic potential surface (MEPS) analysis

The chemical stability and reactivity of a molecule are examined with the help of molecular electrostatic potential surface (MEP). The different colors in MEP are corresponding to the different electrostatic potential. Red and yellow colors on MEP correspond to negative electrostatic potential regions while blue color corresponds to positive electrostatic potential region. The MEP surface of mCPP molecule were calculated using the DFT/B3LYP method with 6-311++G (d, p) basis set and has been shown in figure 3. The color code of this map ranges from -3.876e-2 and +3.876e-2 a.u. The positive electrostatic potential areas are on the hydrogen atoms. But the negative electrostatic potential areas are on the nitrogen and the chlorine atoms.

Figure 3. Molecular electrostatic potential surface of mCPP molecule Using B3LYP/6-311++G (d, p) basis set.

3.5. Natural Bonding Orbital (NBO) analysis

The natural bond orbital (NBO) analysis is an effective method to examine intermolecular bonding and interaction among bonds. Also, it provides an useful method to investigate charge transfer and conjugative interactions in a molecule [25]. Some electron donor orbital, acceptor orbital and the interacting stabilization energy resulting from the second-order micro disturbance theory was reported [26, 27]. The second-order Fock matrix has been calculated to evaluate the donor and acceptor from the NBO analysis of mCPP molecule [25, 28]. The interaction result is losse occupier turn the localized NBO of electrons in the Lewis structure into the empty non-Lewis structure. The stabilization energy E (2) associated with the delocalization donor (i) \rightarrow acceptor (j) can be calculated by equation 8 [29, 30].

$$E_2 = \Delta E_{ij} = q_i \frac{F(i,j)^2}{\epsilon_j - \epsilon_i} \qquad (8)$$

The stabilization energy E (2) values in table 4 have been presented for values only 5 and greater than 5. The bonding C8-C9, N19 and C5-C10 interacts with anti-bonding C6-C7, C5-C10 and C8-C9, and stabilization energy values are 273.14, 43.12 and 25, 89 kcal/mol, respectively. Also, these values show that interaction is taken place between C8-C9 and C6-C7 antibonding of charge transfer causing stabilization of molecule

3.6. FT-IR and Raman measurements

The mCPP molecule has 72 normal modes of vibrations because it has 26 atoms. The experimental IR spectra of mCPP molecule have been obtained between 1500 and 1680 cm cm-1 [31]. The theoretical vibrational calculations were done in the B3LYP/6-311++G (d,p) level.

Parameters	Values (eV)	
НОМО	-5.557	
LUMO	-0.603	
HOMO-LUMO gap	4.954	
Ι	5.557	
Α	0.603	
η	2.477	
S	0.201	
χ	3.08	

Table. 3 Calculated HOMO, LUMO, HOMO-LUMO gap and chemical reactivity descriptors of mCPP by B3LYP/6-311++G (d, p) method

Table. 4 Second Order perturbation theory analysis of Fock matrix in NBO basis for mCPP by B3LYP/6-311++G (d,p) method.

Donor (i)	ED (i)	Acceptor (j)	ED (j)	E(2) (kcal/mol)	E(j)-E(i) (a.u)	F(i,j) (a.u)
C8-C9	0,42578	C6-C7	0,34675	273,14	0,01	0,084
N19	1,73437	C5-C10	0,42782	43,12	0,27	0,1
C5-C10	1,62882	C8-C9	0,42578	25,89	0,27	0,076
C6-C7	1,72177	C5-C10	0,42782	21,77	0,28	0,072
C8-C9	1,69498	C6-C7	0,34675	21,59	0,29	0,072
C6-C7	1,72177	C8-C9	0,42578	16,2	0,27	0,062
C8-C9	1,69498	C5-C10	0,42782	15,9	0,29	0,062
C5-C10	1,62882	C6-C7	0,34675	15,58	0,28	0,06
C125	1,93329	C8-C9	0,42578	12,02	0,33	0,062
N19	1,73437	C4-H21	0,03072	8,21	0,63	0,068
N19	1,73437	C1-H24	0,03025	8,2	0,63	0,068
N20	1,92294	C3-H22	0,02841	6,16	0,67	0,058
C7-C8	1,96965	C9-Cl25	0,03341	5,6	0,84	0,061
N20	1,92294	C1-C2	0,02399	5,5	0,66	0,054

3.6. FT-IR and Raman measurements

The mCPP molecule has 72 normal modes of vibrations because it has 26 atoms. The experimental IR spectra of mCPP molecule have been obtained between 1500 and 1680 cm cm-1 [31]. The theoretical vibrational calculations were done in the B3LYP/6-311++G (d,p) level.

The calculated FT-IR and FT- Raman frequencies for 72 modes of vibrations are presented in table 5. The DFT/B3LYP functional tends to overestimate the fundamental modes; therefore scaling factors have to be used for obtaining a very agreement with experimental results. The scaling factor used in the study is 0.9668 for B3LYP/6-311++G(d, p) [14, 32] The calculated FT-IR and FT- Raman frequencies for 72 modes of vibrations are presented in table 5. The DFT/B3LYP functional tends to overestimate the fundamental modes; therefore scaling factors have to be used for obtaining a very agreement with experimental results. The scaling factor used in the study is 0.9668 for B3LYP/6-311++G(d, p) [14, 32] The IR spectra as a result of theoretical calculation and IR spectra obtained experimentally were compared to a region between 1500 and 1680 cm-1. The experimentally obtained IR spectra with our theoretically calculations are quite in coherence. The theoretical and experimental IR spectra are show in Figure 4 and Figure 5. Experimental IR spectra of mCPP molecule have shown peaks in the region about 1562 and 1597 cm-1. Theoretical IR spectra of mCPP molecule were show in the region 1538 and 1582 cm-1. The C-C stretches in this region are actually gives rise to two IR active peaks. In the literature, C-C ring stretching vibrations usually occur between 1600 and 740 cm-1 [33, 34]. The Raman spectrum of the mCPP molecule was calculated between 0-3560 cm-1 using the B3LYP/6 311++G (d, p) basis set and the theoretical Raman spectra was showed in Figure 6. In this Raman spectrum, the most intense band was observed at 2960.14 cm-1. In this region is a found Vibrational frequency of the C-H stretching. The C-C stretching vibrations are occurring in the 1279,

1321, 1466, 1509 and 1590 cm-1. These values are compatible with the values given in the literature for the aromatic C–C stretching vibration [35]. The

N-H stretching vibration of title molecule was calculated as band at 3559 cm-1.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mode	Frequency	Scaled Freg	Infrared	Raman Activity
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	36.38	35.17	0.1849	1.1964
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	66.54	64.33	0.9962	1.1041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	90.60	87.59	6.8938	0.5849
5191.12184.77 0.9559 0.9954 6213.01205.94 0.1502 1.5714 7260.84252.18 1.5193 3.3818 8279.91270.61 0.5215 1.1273 9294.99285.20 5.1018 1.9256 10322.44 311.74 0.0146 3.2285 11402.15388.80 7.1054 5.7669 12449.11434.20 4.0004 0.2578 13480.19464.25 4.2043 0.3249 14487.61 471.42 8.7074 1.5439 15525.61508.1612.9654 2.1252 16587.37567.87 0.3376 0.5967 17613.93593.55 4.0339 0.5097 18684.30661.5810.00888.103119693.73670.7019.2026 1.0646 20715.74691.9896.6482 1.0711 21765.21739.8038.5553 1.8426 22780.73754.8122.6198 1.6395 23837.49809.6819.4438 0.5995 24856.74828.30 0.3412 1.1844 25867.79838.98 3.8110 3.0559 26891.75862.15 6.5749 4.0973 27931.91900.97 3.3574 2.3735 28969.45937.2649.0598 8.2854 29970.15 <t< td=""><td>4</td><td>121.55</td><td>117.51</td><td>0.6552</td><td>1.3065</td></t<>	4	121.55	117.51	0.6552	1.3065
6213.01205.940.15021.57147260.84252.181.51933.38188279.91270.610.52151.12739294.99285.205.10181.925610322.44311.740.01463.228511402.15388.807.10545.766912449.11434.204.00040.257813480.19464.254.20430.324914487.61471.428.70741.543915525.61508.1612.96542.125216587.37567.870.33760.596717613.93593.554.03390.509718684.30661.5810.00888.103119693.73670.7019.20261.064620715.74691.9896.64821.071121765.21739.8038.55531.842622780.73754.8122.61981.639523837.49809.6819.44380.599524856.74828.300.34121.184425867.79838.983.81103.055926891.75862.156.57494.097327931.91900.973.35742.373528969.45937.2649.05988.285429970.15937.9418.53485.7986311042.961008.335.27744.4998321069.03 <td>5</td> <td>191.12</td> <td>184.77</td> <td>0.9559</td> <td>0.9954</td>	5	191.12	184.77	0.9559	0.9954
7260.84252.18 1.5193 3.3818 8279.91270.61 0.5215 1.1273 9294.99285.20 5.1018 1.9256 10 322.44 311.74 0.0146 3.2285 11 402.15 388.80 7.1054 5.7669 12 449.11 434.20 4.0004 0.2578 13 480.19 464.25 4.2043 0.3249 14 487.61 471.42 8.7074 1.5439 15 525.61 508.16 12.9654 2.1252 16 587.37 567.87 0.3376 0.5967 17 613.93 593.55 4.0339 0.5097 18 684.30 661.58 10.0088 8.1031 19 693.73 670.70 19.2026 1.0646 20 715.74 691.98 96.6482 1.0711 21 765.21 739.80 38.5553 1.8426 22 780.73 754.81 22.6198 1.6395 23 837.49 809.68 19.4438 0.5995 24 856.74 828.30 0.3412 1.1844 25 867.79 838.98 3.8110 3.0559 26 891.75 862.15 657.49 4.0973 27 931.91 900.97 3.3574 2.3735 28 969.45 937.26 49.0598 8.2854 29 970.15 937.94 18.5348 57.067 31	6	213.01	205.94	0.1502	1.5714
8279.91270.61 0.5215 1.1273 9294.99285.20 5.1018 1.9256 10322.44311.74 0.0146 3.2285 11402.15388.80 7.1054 5.7669 12449.11434.20 4.0004 0.2578 13480.19464.25 4.2043 0.3249 14487.61471.42 8.7074 1.5439 15525.61508.16 12.9654 2.1252 16587.37567.87 0.3376 0.5967 17613.93593.55 4.0339 0.5097 18684.30661.5810.0088 8.1031 19693.73670.7019.2026 1.0646 20715.74691.9896.6482 1.0711 21765.21739.8038.5553 1.8426 22780.73754.8122.6198 1.6395 23837.49809.6819.4438 0.5995 24856.74828.30 0.3412 1.1844 25867.79838.98 3.8110 30559 26891.75862.15 6.5749 4.0973 27931.91900.97 3.3574 2.3735 28969.45937.26 49.0598 8.2854 30997.01963.91 48.8286 55.1687 311042.961008.33 5.2774 4.4998 321069.031035.44 6.4126 10.7060331087	7	260.84	252.18	1.5193	3.3818
9294.99285.205.10181.925610322.44311.740.01463.228511402.15388.807.10545.766912449.11434.204.00040.257813480.19464.254.20430.324914487.61471.428.70741.543915525.61508.1612.96542.125216587.37567.870.33760.596717613.93593.554.03390.509718684.30661.5810.00888.103119693.73670.7019.20261.064620715.74691.9896.64821.071121765.21739.8038.55531.842622780.73754.8122.61981.639523837.49809.6819.44380.599524856.74828.300.34121.184425867.79838.983.81103.055926891.75862.156.57494.097327931.91900.973.35742.373528969.45937.2649.05988.285429970.15937.9418.53485.798630997.01963.9148.828655.1687311042.961008.335.27744.4998321069.031033.546.412610.7060331087.491051.391.01673.2482341	8	279.91	270.61	0.5215	1.1273
10322.44311.740.01463.228511402.15388.807.10545.766912449.11434.204.00040.257813480.19464.254.20430.324914487.61471.428.70741.543915525.61508.1612.96542.125216587.37567.870.33760.599718684.30661.5810.00888.103119693.73670.7019.20261.064620715.74691.9896.64821.071121765.21739.8038.55531.842622780.73754.8122.61981.639523837.49809.6819.44380.599524856.74828.300.34121.184425867.79838.983.81103.055926891.75862.156.57494.097327931.91900.973.35742.373528969.45937.2649.05988.285429970.15937.9418.53485.798630997.01963.9148.828655.1687311042.961008.335.27744.4998321069.031033.546.412610.7060331087.491051.391.01673.2482341100.601064.0617.035717.7761351112.641075.709.45861.870736 <td>9</td> <td>294.99</td> <td>285.20</td> <td>5.1018</td> <td>1.9256</td>	9	294.99	285.20	5.1018	1.9256
11402.15388.807.10545.766912449.11434.204.00040.257813480.19464.254.20430.324914487.61471.42 8.7074 1.543915525.61508.1612.96542.125216587.37567.870.33760.596717613.93593.554.03390.509718684.30661.5810.00888.103119693.73670.7019.20261.064620715.74691.9896.64821.071121765.21739.8038.55531.842622780.73754.8122.61981.639523837.49809.6819.44380.599524856.74828.300.34121.184425867.79838.983.81103055926891.75862.156.57494.097327931.9190.973.35742.373528969.45937.2649.05988.285429970.15937.9418.53485.798630997.01963.9148.828655.1687311042.961008.335.27744.4998321069.031033.546.412610.7060331087.491051.391.01673.2482341100.601064.0617.035717.7761351112.641075.709.45861.870736 <td>10</td> <td>322.44</td> <td>311.74</td> <td>0.0146</td> <td>3.2285</td>	10	322.44	311.74	0.0146	3.2285
12449.11434.204.00040.257813480.19464.254.20430.324914487.61471.428.70741.543915525.61508.1612.96542.125216587.37567.870.33760.596717613.93593.554.03390.509718684.30661.5810.00888.103119693.73670.7019.20261.064620715.74691.9896.64821.071121765.21739.8038.55531.842622780.73754.8122.61981.639523837.49809.6819.44380.599524856.74828.300.34121.184425867.79838.983.81103.055926891.75862.156.57494.097327931.91900.973.35742.373528969.45937.2649.05988.285429970.1593.9148.828655.1687311042.961008.335.27744.4998321069.031033.546.412610.7060331087.491051.391.01673.2482341100.601064.0617.035717.7761351112.641075.709.45861.8707361119.151081.9918.42124.3243371167.151128.4036.54382.20833	11	402.15	388.80	7.1054	5.7669
13480.19464.254.20430.324914487.61471.428.70741.543915525.61508.1612.96542.125216587.37567.870.33760.596717613.93593.554.03390.509718684.30661.5810.00888.103119693.73670.7019.20261.064620715.74691.9896.64821.071121765.21739.8038.55531.842622780.73754.8122.61981.639523837.49809.6819.44380.599524856.74828.300.34121.184425867.79838.983.81103.055926891.75862.156.57494.097327931.91900.973.35742.373528969.45937.2649.05988.285429970.15937.941.853485.798630997.01963.9148.828655.1687311042.961008.335.27744.4998321069.031033.546.412610.7600331087.491051.391.01673.2482341100.601064.0617.035717.7761351112.641075.709.45861.8707361119.151081.9918.42124.3243371167.151128.4036.54382.2083 <td< td=""><td>12</td><td>449.11</td><td>434.20</td><td>4.0004</td><td>0.2578</td></td<>	12	449.11	434.20	4.0004	0.2578
14487.61471.428.70741.543915525.61508.1612.96542.125216587.37567.870.33760.596717613.93593.554.03390.509718684.30661.5810.00888.103119693.73670.7019.20261.064620715.74691.9896.64821.071121765.21739.8038.55531.842622780.73754.8122.61981.639523837.49809.6819.44380.599524856.74828.300.34121.184425867.79838.983.81103.055926891.75862.156.57494.007327931.91900.973.35742.373528969.45937.2649.05988.285429970.15937.9418.53485.798630997.01963.9148.828655.1687311042.961008.335.27744.4998321069.031033.546.412610.7060331087.491051.391.01673.2482341100.601064.0617.035717.7761351112.641075.709.45861.8707361119.151081.9918.42124.3243371167.151128.4036.54382.2083381196.391156.6711.30781.9182 <trr< td=""><td>13</td><td>480.19</td><td>464.25</td><td>4.2043</td><td>0.3249</td></trr<>	13	480.19	464.25	4.2043	0.3249
15525.61508.1612.96542.125216587.37567.870.33760.596717613.93593.554.03390.509718684.30661.5810.00888.103119693.73670.7019.20261.064620715.74691.9896.64821.071121765.21739.8038.55531.842622780.73754.8122.61981.639523837.49809.6819.44380.599524856.74828.300.34121.184425867.79838.983.81103.055926891.75862.156.57494.097327931.91900.973.35742.373528969.45937.2649.05988.285429970.15937.941.853485.798630997.01963.9148.828655.1687311042.961008.335.27744.4998321069.031033.546.412610.7060331087.491051.391.01673.2482341100.601064.0617.03571.7761351112.641075.709.45861.8707361119.151081.9918.42124.3243371167.151128.4036.54382.2083381196.391156.6711.30781.9182391198.041158.2617.94960.7474 <t< td=""><td>14</td><td>487.61</td><td>471.42</td><td>8.7074</td><td>1.5439</td></t<>	14	487.61	471.42	8.7074	1.5439
16587.37567.870.33760.596717613.93593.554.03390.509718684.30661.5810.00888.103119693.73670.7019.20261.064620715.74691.9896.64821.071121765.21739.8038.55531.842622780.73754.8122.61981.639523837.49809.6819.44380.599524856.74828.300.34121.184425867.79838.983.81103.055926891.75862.156.57494.097327931.91900.973.35742.373528969.45937.2649.05988.285429970.15937.9418.53485.798630997.01963.9148.828655.1687311042.961008.335.27744.4998321069.031033.546.412610.7060331087.491051.391.01673.2482341100.601064.0617.035717.7761351112.641075.709.45861.8707361119.151081.9918.42124.3243371167.151128.4036.54382.2083381196.391156.6711.30781.9182391198.041158.2617.94960.7474401243.491202.2037.96045.3811 <td>15</td> <td>525.61</td> <td>508.16</td> <td>12.9654</td> <td>2.1252</td>	15	525.61	508.16	12.9654	2.1252
17 613.93 593.55 4.0339 0.5097 18 684.30 661.58 10.0088 8.1031 19 693.73 670.70 19.2026 1.0646 20 715.74 691.98 96.6482 1.0711 21 765.21 739.80 38.5553 1.8426 22 780.73 754.81 22.6198 1.6395 23 837.49 809.68 19.4438 0.5995 24 856.74 828.30 0.3412 1.1844 25 867.79 838.98 3.8110 3.0559 26 891.75 862.15 6.5749 4.0973 27 931.91 900.97 3.3574 2.3735 28 969.45 937.26 49.0598 8.2854 29 970.15 937.94 18.5348 5.7986 30 997.01 963.91 48.8286 55.1687 31 1042.96 1008.33 5.2774 4.4998 32 1069.03 1033.54 6.4126 10.7060 33 1087.49 1051.39 1.0167 3.2482 34 1100.60 1064.06 17.0357 17.7761 35 1112.64 1075.70 9.4586 1.8707 36 1119.15 1081.99 18.4212 4.3243 37 1167.15 1128.40 36.5438 2.2083 38 1196.39 1156.67 11.3078 1.9182 39 119	16	587.37	567.87	0.3376	0.5967
11 01000 01000 01000 01000 19 093.73 670.70 19.2026 1.0646 20 715.74 691.98 96.6482 1.07111 21 765.21 739.80 38.5553 1.8426 22 780.73 754.81 22.6198 1.6395 23 837.49 809.68 19.4438 0.5995 24 856.74 828.30 0.3412 1.1844 25 867.79 838.98 3.8110 3.0559 26 891.75 862.15 6.5749 4.0973 27 931.91 900.97 3.3574 2.3735 28 969.45 937.26 49.0598 8.2854 29 970.15 937.94 18.5348 5.7986 30 997.01 963.91 48.8286 55.1687 31 1042.96 1008.33 5.2774 4.4998 32 1069.03 1033.54 6.4126 10.7060 33 1087.49 1051.39 1.0167 3.2482 34 1100.60 1064.06 17.0357 17.7761 35 1112.64 1075.70 9.4586 1.8707 36 1119.15 1081.99 18.4212 4.3243 37 1167.15 1128.40 36.5438 2.2083 38 1196.39 1158.26 17.9496 0.7474 40 1243.49 1202.20 37.9604 5.3811 41 1259.64 1217.82 17.5032 <	17	613.93	593 55	4 0339	0 5097
10 693.73 670.70 19.2026 1.0646 20 715.74 691.98 96.6482 1.0711 21 765.21 739.80 38.5553 1.8426 22 780.73 754.81 22.6198 1.6395 23 837.49 809.68 19.4438 0.5995 24 856.74 828.30 0.3412 1.1844 25 867.79 838.98 3.8110 3.0559 26 891.75 862.15 6.5749 4.0973 27 931.91 900.97 3.3574 2.3735 28 969.45 937.26 49.0598 8.2854 29 970.15 937.94 18.5348 5.7986 30 997.01 963.91 48.8286 55.1687 31 1042.96 1008.33 5.2774 4.4998 32 1069.03 1033.54 6.4126 10.7060 33 1087.49 1051.39 1.0167 3.2482 34 1100.60 1064.06 17.0357 17.7761 35 1112.64 1075.70 9.4586 1.8707 36 1119.15 1081.99 18.4212 4.3243 37 1167.15 1128.40 36.5438 2.2083 38 1196.39 1156.67 11.3078 1.9182 39 1198.04 1158.26 17.9496 0.7474 40 1243.49 1202.20 37.9604 5.3811 41 1259.64 1217.82 17.5032	18	684 30	661 58	10 0088	8 1031
171717181718181820715.74691.9896.64821.071121765.21739.8038.55531.842622780.73754.8122.61981.639523837.49809.6819.44380.599524856.74828.300.34121.184425867.79838.983.81103.055926891.75862.156.57494.097327931.91900.973.35742.373528969.45937.2649.05988.285429970.15937.9418.53485.798630997.01963.9148.828655.1687311042.961008.335.27744.4998321069.031033.546.412610.7060331087.491051.391.01673.2482341100.601064.0617.035717.7761351112.641075.709.45861.8707361119.151081.9918.42124.3243371167.151128.4036.54382.2083381196.391156.6711.30781.9182391198.041158.2617.94960.7474401243.491202.2037.96045.3811411259.641217.8217.50324.6193421279.421236.9430.09706.1673431309.201265.7438.1150	19	693 73	670.70	19 2026	1 0646
25 16371 36150 36552 1.8426 21 765.21 739.80 38.5553 1.8426 22 780.73 754.81 22.6198 1.6395 23 837.49 809.68 19.4438 0.5995 24 856.74 828.30 0.3412 1.1844 25 867.79 838.98 3.8110 3.0559 26 891.75 862.15 6.5749 4.0973 27 931.91 900.97 3.3574 2.3735 28 969.45 937.26 49.0598 8.2854 29 970.15 97.94 18.5348 5.7986 30 997.01 963.91 48.8286 55.1687 31 1042.96 1008.33 5.2774 4.4998 32 1069.03 1033.54 6.4126 10.7060 33 1087.49 1051.39 1.0167 3.2482 34 1100.60 1064.06 17.0357 17.7761 35 1112.64 1075.70 9.4586 1.8707 36 1119.15 1081.99 18.4212 4.3243 37 1167.15 1128.40 36.5438 2.2083 38 1196.39 1156.67 11.3078 1.9182 39 1198.04 1158.26 17.9496 0.7474 40 1243.49 1202.20 37.9604 5.3811 41 1259.64 1217.82 17.5032 4.6193 42 1	20	715 74	691.98	96 6482	1.0010
21 780.73 754.81 22.6198 1.6395 22 780.73 754.81 22.6198 1.6395 23 837.49 809.68 19.4438 0.5995 24 856.74 828.30 0.3412 1.1844 25 867.79 838.98 3.8110 3.0559 26 891.75 862.15 6.5749 4.0973 27 931.91 900.97 3.3574 2.3735 28 969.45 937.26 49.0598 8.2854 29 970.15 937.94 18.5348 5.7986 30 997.01 963.91 48.8286 55.1687 31 1042.96 1008.33 5.2774 4.4998 32 1069.03 1033.54 6.4126 10.7060 33 1087.49 1051.39 1.0167 3.2482 34 1100.60 1064.06 17.0357 17.7761 35 1112.64 1075.70 9.4586 1.8707 36 1119.15 1081.99 18.4212 4.3243 37 1167.15 1128.40 36.5438 2.2083 38 1196.39 1156.67 11.3078 1.9182 39 1198.04 1158.26 17.9496 0.7474 40 1243.49 1202.20 37.9604 5.3811 41 1259.64 1217.82 17.5032 4.6193 45 1336.22 1291.86 5.3860 3.1472 46	20	765.21	739.80	38 5553	1.8426
22 100.15 100.161 122.0176 100.0595 23 837.49 809.68 19.4438 0.5995 24 856.74 828.30 0.3412 1.1844 25 867.79 838.98 3.8110 3.0559 26 891.75 862.15 6.5749 4.0973 27 931.91 900.97 3.3574 2.3735 28 969.45 937.26 49.0598 8.2854 29 970.15 937.94 18.5348 5.7986 30 997.01 963.91 48.8286 55.1687 31 1042.96 1008.33 5.2774 4.4998 32 1069.03 1033.54 6.4126 10.7060 33 1087.49 1051.39 1.0167 3.2482 34 1100.60 1064.06 17.0357 17.7761 35 1112.64 1075.70 9.4586 1.8707 36 1119.15 1081.99 18.4212 4.3243 37 1167.15 1128.40 36.5438 2.2083 38 1196.39 1156.67 11.3078 1.9182 39 1198.04 1158.26 17.9496 0.7474 40 1243.49 1202.20 37.9604 5.3811 41 1259.64 1217.82 17.5032 4.6193 42 1279.42 1236.94 30.0970 6.1673 43 1309.20 1265.74 38.1150 9.0617 4	21	780.73	754.81	22 6198	1.6420
25 05117 05010 151110 15114 24 856.74 828.30 0.3412 1.1844 25 867.79 838.98 3.8110 3.0559 26 891.75 862.15 6.5749 4.0973 27 931.91 900.97 3.3574 2.3735 28 969.45 937.26 49.0598 8.2854 29 970.15 937.94 18.5348 5.7986 30 997.01 963.91 48.8286 55.1687 31 1042.96 1008.33 5.2774 4.4998 32 1069.03 1033.54 6.4126 10.7060 33 1087.49 1051.39 1.0167 3.2482 34 1100.60 1064.06 17.0357 17.7761 35 1112.64 1075.70 9.4586 1.8707 36 1119.15 1081.99 18.4212 4.3243 37 1167.15 1128.40 36.5438 2.2083 38 1196.39 1156.67 11.3078 19182 39 1198.04 1158.26 17.9496 0.7474 40 1243.49 1202.20 37.9604 5.3811 41 1259.64 1217.82 17.5032 4.6193 42 1279.42 1236.94 30.0970 6.1673 43 1309.20 1265.74 38.1150 9.0617 44 1321.55 1277.67 2.7495 12.3593 45	22	837.49	809.68	19 4438	0 5995
24 000.14 000.50 0.5112 11044 25 867.79 838.98 3.8110 3.0559 26 891.75 862.15 6.5749 4.0973 27 931.91 900.97 3.3574 2.3735 28 969.45 937.26 49.0598 8.2854 29 970.15 937.94 18.5348 5.7986 30 997.01 963.91 48.8286 55.1687 31 1042.96 1008.33 5.2774 4.4998 32 1069.03 1033.54 6.4126 10.7060 33 1087.49 1051.39 1.0167 3.2482 34 1100.60 1064.06 17.0357 17.7761 35 1112.64 1075.70 9.4586 1.8707 36 1119.15 1081.99 18.4212 4.3243 37 1167.15 1128.40 36.5438 2.2083 38 1196.39 1156.67 11.3078 1.9182 39 1198.04 1158.26 17.9496 0.7474 40 1243.49 1202.20 37.9604 5.3811 41 1259.64 1217.82 17.5032 4.6193 42 1279.42 1236.94 30.0970 6.1673 43 1309.20 1265.74 38.1150 9.0617 44 1321.55 1277.67 2.7495 12.3593 45 1336.22 1291.86 5.3860 3.1472 46	23	856 74	828 30	0 3412	1 1844
25 300.10 300.10 500.10 500.10 26 891.75 862.15 6.5749 4.0973 27 931.91 900.97 3.3574 2.3735 28 969.45 937.26 49.0598 8.2854 29 970.15 937.94 18.5348 5.7986 30 997.01 963.91 48.8286 55.1687 31 1042.96 1008.33 5.2774 4.4998 32 1069.03 1033.54 6.4126 10.7060 33 1087.49 1051.39 1.0167 3.2482 34 1100.60 1064.06 17.0357 17.7761 35 1112.64 1075.70 9.4586 1.8707 36 1119.15 1081.99 18.4212 4.3243 37 1167.15 1128.40 36.5438 2.2083 38 1196.39 1156.67 11.3078 1.9182 39 1198.04 1158.26 17.9496 0.7474 40 1243.49 1202.20 37.9604 5.3811 41 1259.64 1217.82 17.5032 4.6193 42 1279.42 1236.94 30.0970 6.1673 43 1309.20 1265.74 38.1150 9.0617 44 1321.55 1277.67 2.7495 12.3593 45 1336.22 1291.86 5.3860 3.1472 46 1372.36 1326.79 3.2854 2.6903	24	867 79	838.98	3 8110	3 0559
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	891 75	862 15	6 5749	4 0973
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	931.91	900.97	3 3574	2 3735
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	969.45	937.26	49 0598	8 2854
27 7701 963.91 48.8286 55.1687 31 1042.96 1008.33 5.2774 4.4998 32 1069.03 1033.54 6.4126 10.7060 33 1087.49 1051.39 1.0167 3.2482 34 1100.60 1064.06 17.0357 17.7761 35 1112.64 1075.70 9.4586 1.8707 36 1119.15 1081.99 18.4212 4.3243 37 1167.15 1128.40 36.5438 2.2083 38 1196.39 1156.67 11.3078 1.9182 39 1198.04 1158.26 17.9496 0.7474 40 1243.49 1202.20 37.9604 5.3811 41 1259.64 1217.82 17.5032 4.6193 42 1279.42 1236.94 30.0970 6.1673 43 1309.20 1265.74 38.1150 9.0617 44 1321.55 1277.67 2.7495 12.3593 45 1336.22 1291.86 5.3860 3.1472 46 1372.36 1326.79 3.2854 2.6903 47 1386.30 1340.28 45.7518 8.0288 48 1396.55 1350.19 15.0900 3.1962 49 1408.95 1362.17 21.6294 4.3722 50 1414.11 1367.16 72.2036 4.9024 51 1466.26 1417.58 16.0575 1.9488 <td>20</td> <td>970.15</td> <td>937.20</td> <td>18 5348</td> <td>5 7986</td>	20	970.15	937.20	18 5348	5 7986
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	997.01	963.91	48 8286	55 1687
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	1042.96	1008 33	5 2774	4 4998
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1069.03	1033 54	6.4126	10 7060
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	1087.49	1051.34	1.0167	3 2482
35 1100.00 10075.70 9.4586 1.8707 36 1119.15 1081.99 18.4212 4.3243 37 1167.15 1128.40 36.5438 2.2083 38 1196.39 1156.67 11.3078 1.9182 39 1198.04 1158.26 17.9496 0.7474 40 1243.49 1202.20 37.9604 5.3811 41 1259.64 1217.82 17.5032 4.6193 42 1279.42 1236.94 30.0970 6.1673 43 1309.20 1265.74 38.1150 9.0617 44 1321.55 1277.67 2.7495 12.3593 45 1336.22 1291.86 5.3860 3.1472 46 1372.36 1326.79 3.2854 2.6903 47 1386.30 1340.28 45.7518 8.0288 48 1396.55 1350.19 15.0900 3.1962 49 1408.95 1362.17 21.6294 4.3722 50 1414.11 1367.16 72.2036 4.9024 51 1466.26 1417.58 16.0575 1.9488	34	1100.60	1064.06	17 0357	17 7761
36 1112.01 1015.10 1.600 1.600 36 1119.15 1081.99 18.4212 4.3243 37 1167.15 1128.40 36.5438 2.2083 38 1196.39 1156.67 11.3078 1.9182 39 1198.04 1158.26 17.9496 0.7474 40 1243.49 1202.20 37.9604 5.3811 41 1259.64 1217.82 17.5032 4.6193 42 1279.42 1236.94 30.0970 6.1673 43 1309.20 1265.74 38.1150 9.0617 44 1321.55 1277.67 2.7495 12.3593 45 1336.22 1291.86 5.3860 3.1472 46 1372.36 1326.79 3.2854 2.6903 47 1386.30 1340.28 45.7518 8.0288 48 1396.55 1350.19 15.0900 3.1962 49 1408.95 1362.17 21.6294 4.3722 50 1414.11 1367.16 72.2036 4.9024 51 1466.26 1417.58 16.0575 1.9488	35	1112 64	1075 70	9 4586	1 8707
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	1119.15	1081 99	18 4212	4 3243
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	1167.15	1128 40	36 5438	2 2083
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	1196 39	1126.10	11 3078	1 9182
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	1198.04	1158.26	17 9496	0 7474
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1243.49	1202.20	37 9604	5 3811
41 1257.04 1217.02 17.5032 4.0175 42 1279.42 1236.94 30.0970 6.1673 43 1309.20 1265.74 38.1150 9.0617 44 1321.55 1277.67 2.7495 12.3593 45 1336.22 1291.86 5.3860 3.1472 46 1372.36 1326.79 3.2854 2.6903 47 1386.30 1340.28 45.7518 8.0288 48 1396.55 1350.19 15.0900 3.1962 49 1408.95 1362.17 21.6294 4.3722 50 1414.11 1367.16 72.2036 4.9024 51 1466.26 1417.58 16.0575 1.9488	40	12459.64	1202.20	17 5032	4 6193
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	1239.01	1236.94	30.0970	6 1673
44 1321.55 1277.67 2.7495 12.3593 45 1336.22 1291.86 5.3860 3.1472 46 1372.36 1326.79 3.2854 2.6903 47 1386.30 1340.28 45.7518 8.0288 48 1396.55 1350.19 15.0900 3.1962 49 1408.95 1362.17 21.6294 4.3722 50 1414.11 1367.16 72.2036 4.9024 51 1466.26 1417.58 16.0575 1.9488	43	1309.20	1265 74	38 1150	9.0617
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	1307.20	1203.71	2 7495	12 3593
46 1372.36 1326.79 3.2854 2.6903 47 1386.30 1340.28 45.7518 8.0288 48 1396.55 1350.19 15.0900 3.1962 49 1408.95 1362.17 21.6294 4.3722 50 1414.11 1367.16 72.2036 4.9024 51 1466.26 1417.58 16.0575 1.9488	45	1336.22	1291.86	5 3860	3 1472
47 1386.30 1340.28 45.7518 8.0288 48 1396.55 1350.19 15.0900 3.1962 49 1408.95 1362.17 21.6294 4.3722 50 1414.11 1367.16 72.2036 4.9024 51 1466.26 1417.58 16.0575 1.9488	46	1372 36	1326 79	3 2854	2 6903
48 1396.55 1350.19 15.0900 3.1962 49 1408.95 1362.17 21.6294 4.3722 50 1414.11 1367.16 72.2036 4.9024 51 1466.26 1417.58 16.0575 1.9488	40	1386 30	1320.79	45 7518	2.0705 8 0788
49 1408.95 1362.17 21.6294 4.3722 50 1414.11 1367.16 72.2036 4.9024 51 1466.26 1417.58 16.0575 1.9488	48	1396 55	1350 19	15 0900	3 1962
50 1414.11 1367.16 72.2036 4.9024 51 1466.26 1417.58 16.0575 1.9488	40	1408 95	1362 17	21 6294	4 3722
51 1466.26 1417.58 16.0575 1.9488	50	1414 11	1367 16	72 2036	4 9024
	51	1466.26	1417.58	16.0575	1.9488

Table 5 calculated vibrational wavenumbers (cm1) of the mCPP compound byB3LYP/6-311++G (d, p) method.

Turkish Comp Theo Chem (TC&TC), 4(2), (2020), 88-97

Yavuz Ekincioğlu, Hamdi Şükür Kılıç, Ömer Dereli,

Table 5 cont	tinue			
52	1488.48	1439.07	8.7473	2.8987
53	1498.77	1449.01	65.7179	10.6920
54	1509.40	1459.29	114.2521	6.3965
55	1514.72	1464.43	23.1759	2.4309
56	1521.57	1471.05	54.1150	4.8841
57	1526.56	1475.88	15.7500	9.1408
58	1590.98	1538.16	75.8847	5.7226
59	1637.23	1582.87	296.6146	82.0706
60	2949.76	2851.82	55.7566	63.7183
61	2960.14	2861.86	48.9679	322.9880
62	2973.36	2874.65	78.9915	43.8006
63	3011.74	2911.75	42.7893	78.5399
64	3042.14	2941.14	48.2542	147.1256
65	3053.44	2952.06	28.0384	81.1001
66	3069.49	2967.58	26.7370	40.2936
67	3076.31	2974.17	33.8770	182.9935
68	3169.75	3064.52	12.1396	101.3182
69	3204.02	3097.65	8.7541	60.7152
70	3211.70	3105.07	1.7425	147.4444
71	3222.57	3115.59	1.8246	49.0397
72	3559.19	3441.03	2.1724	128.5324

Figure 3. FT-IR spectra of mCPP molecule Using B3LYP/6-311++G (d, p) basis set.

Figure 4. IR spectra of mCPP molecule Using B3LYP/6-311++G (d, p) basis set.

Figure 5. Raman spectra of mCPP molecule Using B3LYP/6-311++G (d, p) basis set.

4. Conclusion

In this study, the structural and electronic as well as optical properties of the mCPP molecule, which is a psychoactive drug of the phenylpiperazine class, have been calculated using B3LYP/6-311++G (d, p) basis set. Theoretically obtained IR spectrum is in good agreement with experimental results. Also, the title molecule has been characterized by the conformational stabilities, optimized molecular structure, nonlinear optics properties HOMO-LUMO analysis, chemical reactivity descriptors, the natural bond orbital and the molecular electrostatic potential using Gaussian 09 program. The results introduce that molecular modelling is valuable for obtainment insight into molecular structure and electronic properties of the mCPP molecule.

The theoretical results obtained for mCPP molecule can be used to understand the activity. Since neither experimental nor theoretical enough published data about the mCPP molecule have been reported in literature, we think that our study will be a pioneering study for both experimental and theoretical studies and we think that this paper presents some good data for the pharmaceutical industry.

Acknowledgement:

Authors would kindly thanks to both Selcuk University and Necmettin Erbakan University for Infrastructures.

References

- [1] C. Hulme, M.-P. Cherrier, Novel applications of ethyl glyoxalate with the Ugi MCR, Tetrahedron letters 40(29) (1999) 5295-5299.
- [2] Y.S. Mary, C.Y. Panicker, V.N. Kavitha, H.S. Yathirajan, M.S. Siddegowda, S. Cruz, Spectroscopic investigation (FT-IR, FT-Raman and SERS), vibrational assignments, HOMO–LUMO analysis and molecular docking study of Opipramol, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137 (2015) 547-559.
- [3] G. Keşan, Ö. Bağlayan, C. Parlak, Ö. Alver, M. Şenyel, FT-IR and Raman spectroscopic and quantum chemical investigations of some metal halide complexes of 1phenylpiperazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 88 (2012) 144-155.
- [4] N. Prabavathi, N. Senthil Nayaki, V. Krishnakumar, Spectroscopic investigation (FT-IR, FT-Raman, NMR and UV-Vis). conformational stability, NBO and thermodynamic analysis of 1-(2methoxyphenyl) piperazine and 1-(2chlorophenyl) piperazine by DFT approach, Pharm Anal Acta 6(391) (2015) 2.
- [5] G. Dikmen, 1-(4-chlorophenyl) piperazine: FT-IR, Raman, NMR and theoretical studies, Anadolu University of Sciences & Technology-A: Applied Sciences & Engineering 20(2) (2019)
- [6] R. Martin, G.R. Martin, Investigations into migraine pathogenesis: time course for effects of m-CPP, BW723C86 or glyceryl trinitrate on appearance of Fos-like immunoreactivity in rat trigeminal nucleus caudalis (TNC), Cephalalgia 21(1) (2001) 46-52.
- [7] A. Hayashi, M. Suzuki, M. Sasamata, K. Miyata, K.Hayashi, Agonist diversity in 5-

HT 2C receptor-mediated weight control in rats, Psychopharmacology 178(2-3) (2005) 241-249.

- [8] J.C. Halford, J.A. Harrold, E.J. Boyland, C.L. Lawton, J.E. Blundell, Serotonergic drugs, Drugs 67(1) (2007) 27-56.
- [9] M.A. Bhat, S.H. Lone, R.J. Butcher, S.K. Srivastava, Theoretical and experimental investigations into structural, electronic, molecular and biological properties of 4-(3chlorophenyl)-1-(3-chloropropyl) piperazin-1-ium chloride, Journal of Molecular Structure 1168 (2018) 242-249.
- [10] C.N. Kavitha, J.P. Jasinski, M. Kaur, H.S. Yathirajan, R.J. Butcher, Synthesis, Crystal Structures and DFT Molecular Orbital Surface Calculations of Two New Salts of a Piperazine Derivative, Journal of Chemical Crystallography 44(10) (2014) 534-541.
- [11] R. man STANASZEK, Z. U. B. A. Dariusz, 1-(3-chlorophenyl) piperazine (mCPP)-a new designer drug that is still a legal substance, Problems of Forensic Sciences (2006) 220-228.
- [12] H. Inoue, Y.T. Iwata, T. Kanamori, H. Miyaguchi, K. Tsujikawa, K. Kuwayama, T. Kishi, Analysis of benzylpiperazine-like compounds, Japanese Journal of Science and Technology for identification 9(2) (2004) 165-184.
- [13] Y. Shao, L.F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S.T. Brown, Jr. R.A. DiStasio, Spartan'08, Wavefunction, Inc. Irvine, CA, Phys. Chem. Chem. Phys 8 (2006) 3172-3191.
- [14] Ö. Dereli, Molecular structure and spectral (FT-IR, Raman) investigations of 3aminocoumarin, Optics and Spectroscopy 120(5) (2016) 690-700.
- [15] M.J.E.A. Frisch, G.W. Trucks, G. H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, H. Nakatsuji, Gaussian 09, Revision D. 01, Gaussian, Wallingford CT 201 (2009).
- [16] P. Hohenberg, W.J.P.R. Kohn, Density functional theory (DFT), Physical review 136 (1964) B864.
- [17] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review 37(2) (1988) 37(2) 785.
- [18] M.P. Andersson, P. Uvdal, New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple- ζ basis set 6-311+ G (d, p). he Journal of Physical Chemistry A 109(12) (2005) 2937-2941.

- [19] N. Prabavathi, A. Nilufer, V. Krishnakumar, FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl) phenyl) piperazine, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 121 (2014) 483-493.
- [20] P.S. Liyanage, R.M. de Silva, K.N. de Silva, Nonlinear optical (NLO) properties of novel organometallic complexes: high accuracy density functional theory (DFT) calculations, Journal of Molecular Structure 639(1-3) (2003) 195-201.
- [21] P.N. Prasad, D.J. Williams, Introduction to nonlinear optical effects in molecules and polymers, Wiley New York 1 1991
- [22] I.C. de Silva, R.M. de Silva, K.N. De Silva, Investigations of nonlinear optical (NLO) properties of Fe, Ru and Os organometallic complexes using high accuracy density functional theory (DFT) calculations, Journal of Molecular Structure: THEOCHEM 728(1-3) (2005) 141-145.
- [23] R.G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory, Proceedings of the National Academy of Sciences 83(22) (1986) 8440-8441.
- [24] L. Pauling, the Nature of the Chemical Bond. Vol. 260 Cornell University press Ithaca, Newyork, 1960.
- [25] F. Weinhold, C.R. Landis, E.D. Glendening, What is NBO analysis and how is it useful?, International Reviews in Physical Chemistry 35(3) (2016) 399-440.
- [26] P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs, A. Vargha, Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene, Journal of the American Chemical Society 105(24) (1983) 7037-7047.
- [27] C. James, A.A. Raj, R. Reghunathan, V.S. Jayakumar, I.H. Joe, Structural conformation and vibrational spectroscopic studies of 2, 6bis (p-N, N-dimethyl benzylidene) cyclohexanone using density functional theory, An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 37(12) (2006) 1381-1392.
- [28] A.A. Balandin, Thermal properties of graphene and nanostructured carbon

materials, Nature materials 10(8) (2011) 569-581.

- [29] P. Kolandaivel, V. Nirmala, Study of proper and improper hydrogen bonding using Bader's atoms in molecules (AIM) theory and NBO analysis, Journal of molecular structure 694(1-3) (2004) 33-38.
- [30] J. Chocholoušová, V. Špirko, P. Hobza, First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H··· O and improper blue-shifted C–H··· O hydrogen bonds, Physical Chemistry Chemical Physics 6(1) (2004) 37-41.
- [31] https://spectrabase.com/compound/Jbiafojxk DX, Novenber 2020, Accessed:27.11.2020.
- [32] E.K. Sarıkaya, S. Bahçeli, D. Varkal, Ö. Derli, FT-IR, micro-Raman and UV–vis spectroscopic and quantum chemical calculation studies on the 6-chloro-4hydroxy-3-phenyl pyridazine compound, Journal of Molecular Structure 1141 (2017) 44-52.
- [33] D. Sajan, Y. Erdogdu, R. Reshmy, Ö. Dereli, K.K. Thomas, I.H. Joe, DFT-based molecular modeling, NBO analysis and vibrational spectroscopic study of 3-(bromoacetyl) coumarin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 82(1) (2011) 118-125.
- [34] N. Colthup, Introduction to infrared and Raman spectroscopy, Elsevier (2012).
- [35] S. Bharanidharan, H. Saleem, S. Subashchandrabose, M. Suresh, N. Ramesh Babu, FT-IR, FT-Raman and UV-Visible spectral analysis on (E)-N'-(thiophen-2ylmethylene) nicotinohydrazide, Archives in Chemical Research 1(2) (2017).