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 Thermal anomalies can be detected with the help of the imagery provided by the satellite 
systems such as Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER). ASTER provides five thermal bands for the effective analysis of thermal 
anomalies. In order to achieve this goal, considering the physical phenomena, many 
satellite signal processing methods and algorithms can be used. In this study, a region of 
steel facilities in the province of Hatay/Turkey is defined as the study area. Heat 
characteristics and extent of the area are represented by using four days of data from 
daytime and nighttime scenes. In order to define the thermal anomalies for the studied 
area, Land Surface Temperature (LST) was estimated by inverse Planck function 
approach for all TIR bands. Minimum Noise Fraction (MNF) and Independent Component 
Analysis (ICA) methods were applied on all thermal infrared (TIR) bands. The results of 
MNF and ICA components show location of the thermal anomalies for industrial 
complexes especially in nighttime scenes. 

 
 
 

1. INTRODUCTION 
 
The principal of remote sensing is to detect 

electromagnetic radiation emitted or reflected from 
the Earth in interaction with the atmosphere. TIR 
remote sensing techniques are commonly used in 
environmental studies and thermal anomaly 
detection (Coutts et al., 2016; Xia et al., 2018). 

TIR energy emitted from vegetation, soil, water, 
minerals and rocks can be detected by the different 
regions of the electromagnetic spectrum using TIR 
bands. TIR sensors on a satellite system sense 
radiant temperature of an object that is related to its 
kinetic temperature. Sometimes these objects can be 
seen as a ‘blackbody’. Blackbody is a hypothetical 
object which is a perfect energy absorber and 
emitter but at the same time which has no ability to 
reflect energy. It absorbs the whole spectrum 
regardless of the frequency. In fact, there is nothing 
as a blackbody but there are partial radiating objects 
like water, soil and rocks. By definition, emissivity is 
the ratio of the radiant flux emitted from an object to 
the value of the same object when accepted as a 
blackbody, which absorbs and emits all the energy at 

the same temperature and wavelength. For a 
blackbody, emissivity is nearly 1 while for a good 
conductor emissivity is nearly zero. Emissivity value 
is affected with the wavelength, surface roughness, 
water vapor absorption and density of the object 
(Handcock et al., 2012; Islam et al., 2016). Also, it is 
dependent on the viewing angle of the satellite and 
the sensor value. Emissivity value of an object can be 
between 0 and 1 (Handcock et al., 2012; Moore and 
Paine, 2014; Ndossi and Avdan, 2016; Jensen, 2020). 

In order to compensate low radiation of thermal 
energy emitted from the objects, satellites with high 
resolution sensors are designed. Aerosols like 
hydrometeors of cloud and water vapor negatively 
affect the emitted electromagnetic signals by 
reducing the infrared energy on the absorption 
bands (Moore and Paine, 2014). So, atmospheric 
transmissivity should be taken into consideration in 
the sensor design and correction of TIR images for 
atmospheric conditions (Handcock et al., 2012). 
Satellite imagery composed of thermal, near-
infrared and visible bands can be used in LST 
estimation by using various algorithms. Split 
window algorithm (Wan and Dozier, 1996), single 
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channel algorithm (Jiménez‐Muñoz and Sobrino, 
2003), inverse Planck function can be given as 
examples to these algorithms (Ndossi and Avdan, 
2016). Radiance, Brightness temperature and Land 
surface emissivity are the intermediate calculation 
steps of the LST. 

Thermal remote sensing has a variety of 
implementation areas such as geothermal activity 
(Darge et al., 2019; Gray et al., 2019; Hewson et al., 
2020), coal fire research (Roy et al., 2015; Singh et 
al., 2020), earthquake forecasting (Ahmad et al., 
2019; Wongpornchai and Suwanprasit, 2020) and 
heat island (Coolbaugh et al., 2007; Kuenzer et al., 
2007; Wei et al., 2013; Moore and Paine, 2014; 
Saryschev et al., 2019). Moore and Paine (2014) 
studied concentrated points of heat release by using 
LST obtained from a different algorithm. Ndossi and 
Avdan (2016) studied on different algorithms to 
estimate LST from radiance image using ASTER data. 
Tiangco et al. (2008) carried out a research to derive 
land surface temperatures to determine the 
nighttime urban heat island effects. Rasul et al. 
(2017) reviewed researches for surface urban heat 
islands and surface urban cool islands. 

In this study, LST was calculated by inverse 
Planck function as its simplicity for conversion. 
Minimum Noise Fraction (MNF) and Independent 
Component Analysis (ICA) methods were applied to 
TIR scenes in order to highlight thermal anomalies 
related with industrial factories in the study area. 
These methods can efficiently be used for point 
based thermal anomaly detection. 

 
2. STUDY AREA and ASTER DATA 

 
2.1.  Study Area 

 
The selected area mainly covers an industrial 

zone that operates on iron and steel in İskenderun 
city of Turkey’s Hatay province. Four different areas 
in a square are selected in accordance with the 
ground truth data by using Google Earth as shown in 
Figure 1. 

The geographic location is between with upper 
left latitude 36° 46′ 20″N and longitude 36° 10′ 27″E, 
lower right latitude 36° 39′ 19″N and longitude 36° 
19′ 43″E. 

 

 
 
Figure 1. Google Earth image of the study area 

2.2. ASTER Data 
 
In this study, ASTER data that was obtained 

from Distributed Active Archive Center (DAAC) 
operated by U.S. Geological Survey (USGS) Earth 
Resources Observation and Science (EROS) Center 
and National Aeronautics and Space Administration 
(NASA) was used. ASTER is a satellite system that 
was launched in December 1999 as a product of 
NASA and Japan's Ministry of Economy developed 
with the aim of obtaining the land surface 
temperature, elevation, emissivity and reflectance 
data. Radiance at sensor of 15 bands is coded with 
digital numbers (DN). One band (Band 3B) is used for 
stereoscopic imagery while the other 14 bands are 
classified as: three bands in the visible and near 
infrared (VNIR), the six bands in the short wave 
(SWIR) and five TIR bands, with 15m, 30m and 90m 
spatial resolution, 8 bit (0-255), 8 bit (0-255), 12 bit 
(0-4095) radiometric resolution and band numbers 
(1-3), (4-9), (10-14), respectively. The ASTER SWIR 
detectors are not functioning since April 2008 and 
SWIR data is available before that date. 

The data is highlighted with the North-up map 
orientation and correction by Digital Elevation 
Model (DEM), radiometric correction, geometric 
correction with GLS2000 model and cross-talk 
correction applied to SWIR band. The details of the 
data are listed in Table 1 (Meyer et al., 2015). 
 
Table 1. The ASTER data 
 

Date 
(Day, 
Month 
Year) 

Time 
(Hour, 
Minute, 
Second) 

Bands  Spatial 
resolution 
(m) 

21.03.2001 08:37:47 VNIR 
SWIR 
TIR 

 15 
30 
90 

13.05.2006 08:32:41 VNIR 
SWIR 
TIR 

 15 
30 
90 

30.08.2005 19:35:39 SWIR 
TIR 

 30 
90 

01.01.2016 19:36:57 TIR  90 
 
3. MATHEMATICAL MODEL of LAND SURFACE 

TEMPERATURE ESTIMATION 
 
Radiance value in DN are retrieved from TIR 

bands of AST_L1T Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) data. 
At first, the radiance value at the sensor is calculated. 
After that radiance value is converted to brightness 
temperature and it follows the conversion from 
brightness temperature to LST. 

 
3.1. Estimation of Radiance at Sensor 

 
In the beginning, given conversion coefficients 

(UCC) in Table 2 (Abrams et al., 2002) for the related 
AST_L1T thermal bands, registered radiance values 
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at AST_L1T sensor in DN are converted to radiance 
at the sensor value in units of W/(m2*sr*µm) by 
using Equation (1). 
 
Table 2. Unit conversion coefficients (UCC) 
 

Band Number Unit Conversion Table 
High gain Normal gain 

1 0.676 1.688 
2 0.708 1.415 
3N 0.423 0.862 
3B 0.423 0.862 
4 0.1087 0.2174 
5 0.0348 0.0696 
6 0.0313 0.0625 
7 0.0299 0.0597 
8 0.0209 0.0417 
9 0.0159 0.0318 
10  0.006822 
11 0.006780 
12 0.006590 
13 0.005693 
14 0.005225 

 
The radiance at sensor is given as: 
 
𝐿𝜆 = (𝐷𝑁 − 1) × 𝑈𝐶𝐶                                                    (1) 
 
3.2. Brightness Temperature 

 

Inverse Planck function is used to estimate 
brightness temperature as in Equation (2): 
 

 𝑇𝑠𝑛 =
𝐾2

𝑙𝑛(
𝐾1
𝐿𝜆

+1)
                                                                   (2) 

 
In this equation, 𝑇𝑠𝑛 is the brightness 

temperature, 𝐿𝜆  is the top of atmosphere radiance (at 
sensor radiance), 𝐾1 (𝑊𝑚2𝑠𝑟−1µ𝑚−1) and 
𝐾2 (𝑊𝑚2𝑠𝑟−1µ𝑚−1) are the coefficients, in Kelvin, 
for ASTER data as listed in Table 3 (Abrams et al., 
2002). 

 
 

Table 3. K1, K2 and λ coefficients for ASTER data  
 

Band K1(Wm2sr‐1µm‐1) K2 (K) Effective 
wavelength 

(λ) in μm 
10 3047.47 1736.18 8.287 
11 2480.93 1666.21 8.685 
12 1930.80 1584.72 9.079 
13 865.65 1349.82 10.659 
14 649.60 1274.49 11.289 

 
3.3. Land Surface Temperature Estimation 
 

Emissivity, brightness temperature and other 
atmospheric values are needed to calculate LST. 
Planck function, split window algorithm and single 
channel algorithm are a few of the various 
algorithms that can be used to calculate LST. LST is 
estimated by correcting the brightness temperature 
with the emissivity value as shown Equation (3): 

 

𝐿𝑆𝑇 =
𝑇𝑠𝑛

1+
𝜆𝑇𝑠𝑛

𝜌
𝑙𝑛𝜀

                                                                 (3) 

 
In this equation, LST is the land surface 

temperature in K, ρ is the ℎ ×
𝑐 𝜎 = 1.438 × 10−2𝑚K⁄ , λ is the effective wavelength 
for the related band (Table 2) and ε is the spectral 
emissivity. In this study, 0.96 value is used for ε 
where it is chosen as an average of 0.94-0.97 used for 
a facility in (Moore and Paine, 2014). 

 
4. RESULTS and DISCUSSION 
 

In the first stage of the study, LST values were 
computed for five TIR bands using Equation 1, 2 and 
3 respectively. It is aimed to define the high LST 
values related with the study area in the industrial 
zone. The selected area mainly covers an industrial 
zone that operates on iron and steel. Four different 
areas in a square are selected in accordance with the 
land observation and are validated with high LST 
values 
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Figure 2. VNIR image of the study area (a) at 08:37:47 on 21.03.2001, (b) at 08:32:41 on 13.05.2006; LST values 
for TIR band10 (c) at 08:37:47 on 21.03.2001, (d) at 08:32:41 on 13.05.2006, (e) at 19:35:39 on 30.08.2005 and 
(f) at 19:36:57 on 01.01.2016 
 

Figures 2a and 2b depict that, VNIR image of the 
study area at 08:37:47 on 21.03.2001 and at 
08:32:41 on 13.05.2006, respectively. In these 
Figures, the high LST values are represented in 
squares from top to bottom as A1, A2, A3 and A4 
(Figure 2a) and B1, B2, B3 and B4 (Figure 2b), 
respectively. In order to make comparison, two days 
from daytime and two days from nighttime image 
was selected. LST values only for band 10 is given in 
Figures 2c, 2d, 2e and 2f at 08:37:47 on 21.03.2001, 
at 08:32:41 on 13.05.2006, at 19:35:39 on 
30.08.2005 and at 19:36:57 on 01.01.2016, 

respectively. LST values range from 283 to 330 K 
(Figure 2c), 286 to 313 K (Figure 2d), 286 to 304 K 
(Figure 2e) and 257 to 295 K (Figure 2f). 

The values in the legends for the minimum are 
represented in turquoise and maximum is in white 
colour. Out of the squared region, there are widely 
white coloured areas that show maximum values in 
daytime image as 330 K (Figure 2c; C1, C2, C3 and 
C4) and 313 K (Figure 2d; D1, D2, D3 and D4). The 
track of the road can be seen in white colour in 
Figure 2d and Figure 2e. It is not easy to distinguish 
the industrial zones in the Figures 2c and 2d. The 
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solar radiation coming from sun interacts with Earth 
and day of year affects the change of this LST values. 
As a result, interpretation of the daytime LST values 
are complex in behaviour because of this interaction. 

The exact points of the thermal anomalies 
related with industrial zone can be seen from the 
nighttime image in Figure 2e (E1, E2, E3 and E4). The 
LST values as high as 304 K can be seen in white 
colour compared with the rest of the area. The 
similar results can be found in the other nighttime 
image that is given in Figure 2f (F1, F2, F3 and F4). 
The nighttime image more clearly depicts the areas 
with high thermal anomalies relative to the daytime 
image. Because the encircled surface has higher 
temperature according to the neighbouring regions 
at night and focused points in the scene can be easily 

observed in ‘white’ for the industrial region with 
steel industry facilities. 

In the second stage of the study, minimum noise 
fraction (MNF) analysis was applied to five thermal 
bands in order to determine thermal anomalies 
pointed out in Figures 2c, 2d, 2e and 2f. These 
anomalies can more clearly be determined in 
nighttime image as focused points (white). In order 
to make comparison, MNF analysis is applied to both 
daytime and nighttime thermal bands for the 
selected days. After the MNF transformation, image 
bands are noise reduced and decorrelated. In theory, 
MNF transformation is dependent on principal 
component analysis (PCA). In MNF, most of the 
information is included in the first two principal 
components. 

 

 
 
Figure 3. The first component of the MNF from the input of five thermal bands for daytime images (a) at 08:37:47 
on 21.03.2001, (b) at 08:32:41 on 13.05.2006; The second component of the MNF from the input of five thermal 
bands for daytime images (c) at 08:37:47 on 21.03.2001, (d) at 08:32:41 on 13.05.2006 
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Figures 3a and 3b show the first components of 
the MNF transform for daytime images at 08:37:47 
on 21.03.2001 and at 08:32:41 on 13.05.2006, 
respectively. The second components of the MNF are 
given at 08:37:47 on 21.03.2001 (Figures 3c) and at 
08:32:41 on 13.05.2006 (Figures 3d) as well. These 
figures show that focused points showing steel 
industry facilities give high LST values because of the 
high temperature of furnaces. This effect represents 
itself as white point clusters in the images. The 

squared areas highlight this clusters. There are no 
exact focused points in daytime images whereas it 
shows localized points related with thermal 
anomalies as white coloured pixels (G1, G2, G3, G4, 
H1, H2, H3 and H4). Similar results can be found for 
the second MNF components (G5, G6, G7, G8, H5, H6, 
H7 and H8). The LST daytime image includes both 
solar radiation effect over steel factory and furnace 
temperature, it is not easy separate two effects from 
the figures.

 
Figure 4. The first component of the MNF from the input of five thermal bands for nighttime images (a) at 19:35:39 
on 30.08.2005, (b) at 19:36:57 on 01.01.2016; The second component of the MNF from the input of five thermal 
bands for nighttime images (c) at 19:35:39 on 30.08.2005, (d) at 19:36:57 on 01.01.2016
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Figures 4a and 4b represent the first component 
of the MNF where Figures 4c and 4d show the second 
component of the MNF for nighttime images at 
19:35:39 on 30.08.2005 and at 19:36:57 on 
01.01.2016, respectively. Thermal anomalies can be 
highlighted as focused points with white colour 
(Figure 4a; I1, I2, I3 and I4) and brown colour 
(Figure 4b; J2, J3 and J4) squares. There is no distinct 
area that shows thermal anomalies except J6 and J7 
in second component of MNF in nighttime image. 

In the last stage of the study, independent 
component analysis (ICA) was applied to five 

thermal bands in order to highlight thermal 
anomalies where results are represented in Figure 5. 
ICA analysis features the advantage of using mixed 
pixels when the anomalies are not evident and 
cannot easily be detected from the pixels. While 
principal component uses Gaussian statistics, ICA 
uses non-Gaussian statistics. ICA can be applied to 
multispectral remote sensing data and it can be 
successful even when the small part of the anomalies 
take place in a pixel. ICA uses mean, eigenvector, 
eigenvalue, principal component rotation to smooth 
the data. 

 
Figure 5. Red (IC3), green (IC2) and blue (IC1) band combination of the independent component analysis (ICA) of 
the five thermal bands (a) at 08:37:47 on 21.03.2001, (b) at 08:32:41 on 13.05.2006, (c) at 19:35:39 on 30.08.2005, 
(d) at 19:36:57 on 01.01.2016 
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Figure 5a, 5b, 5c and 5d show Red (Independent 
component 3-IC3), green (Independent component 
2-IC2) and blue (Independent component 1-IC1) 
band combination of the ICA at 08:37:47 on 
21.03.2001, at 08:32:41 on 13.05.2006, at 19:35:39 
on 30.08.2005 and at 19:36:57 on 01.01.2016. For 
the daytime image in Figure 5a, black pixels in K2, 
K3, K4 and for the nighttime images in Figure 5c, M1, 
M2, M3 and M4 exactly show thermal anomalies in 
yellow and red coloured in a squared region. The 
similar results can be found in Figure 4d with N1, N2, 
N3 and N4 as magenta and purple coloured in a 
square. 

 
5. CONCLUSION 
 

In this study, ASTER Thermal bands was used in 
order to highlight thermal anomalies in an industrial 
zone in İskenderun city of Turkey’s Hatay province 
where steel industry facilities are common. Furnaces 
operating at high temperatures emit high radiation 
that can be sensed as thermal anomalies in satellite 
imagery. 

In order to detect thermal anomalies 
represented by focused points in the imagery, two 
statistical methods as MNF and ICA are used. Four 
different sub-regions are determined for the daytime 
and nightime images for four distinct days.  

At the first stage of the study, thermal anomalies 
in the sub-regions are verified by the calculation of 
LST with inverse Planck function. In the continuation 
of the study, MNF and ICA methods are applied to the 
same image data. It can be observed from the output 
of MNF method that the first component includes 
most of the information. When using this method, 
similar results representing the anomalies can be 
seen with a few exceptions. The last method, ICA, is 
applied to the same imagery data and 3 of the 5 
bands are selected as Red (IC3) green (IC2) and blue 
(IC1) channels. ICA provides similar results as MNF 
method. Especially, nightime imagery shows distinct 
colour combinations for the sub-regions highlighting 
the thermal anomalies.  

The application of MNF and ICA methods on the 
ASTER image data can be helpful in point based 
thermal anomaly detection in a selected region and 
the outputs of this study gives promising results to 
use these methods for this purpose. 
 

ACKNOWLEDGEMENT 
 
The ASTER L1T data product was retrieved 

from the online Data Pool, courtesy of the NASA Land 
Processes Distributed Active Archive Center (LP 
DAAC), USGS/Earth Resources Observation and 
Science (EROS) Center, Sioux Falls, South 
Dakota, (https://lpdaac.usgs.gov/data_access/data_
pool). This research did not receive any specific 
grant from funding agencies in the public, 
commercial, or not-for-profit sectors. 

REFERENCES 
 

Abrams, M., Hook, S., Ramachandran, B. (2002). 
ASTER user handbook, version 2. Jet propulsion 
laboratory, 4800, 135. 

 
Ahmad, N., Barkat, A., Ali, A., Sultan, M., Rasul, K., 

Iqbal, Z., & Iqbal, T. (2019). Investigation of 
spatio-temporal satellite thermal IR anomalies 
associated with the Awaran earthquake (Sep 24, 
2013; M 7.7), Pakistan. Pure and Applied 
Geophysics, 176(8), 3533-3544. 

 
Coolbaugh, M.F., Kratt, C., Fallacaro, A., Calvin, W.M., 

& Taranik, J.V. (2007). Detection of geothermal 
anomalies using advanced spaceborne thermal 
emission and reflection radiometer (ASTER) 
thermal infrared images at Bradys Hot Springs, 
Nevada, USA. Remote Sensing of 
Environment, 106 (3), 350-359. 

 
Coutts, A.M., Harris, R.J., Phan, T., Livesley, S.J., 

Williams, N.S., & Tapper, N.J. (2016). Thermal 
infrared remote sensing of urban heat: 
Hotspots, vegetation, and an assessment of 
techniques for use in urban planning. Remote 
Sensing of Environment, 186, 637-651. 

 
Darge, Y.M., Hailu, B.T., Muluneh, A.A., & Kidane, T. 

(2019). Detection of geothermal anomalies 
using Landsat 8 TIRS data in Tulu Moye 
geothermal prospect, Main Ethiopian 
Rift. International Journal of Applied Earth 
Observation and Geoinformation, 74, 16-26. 

 
Gray, D. M., Burton-Johnson, A., & Fretwell, P.T. 

(2019). Evidence for a lava lake on Mt. Michael 
volcano, Saunders Island (South Sandwich 
Islands) from Landsat, Sentinel-2 and ASTER 
satellite imagery. Journal of Volcanology and 
Geothermal Research, 379, 60-71. 

 
Handcock, R.N., Torgersen, C.E., Cherkauer, K.A., 

Gillespie, A.R., Tockner, K., Faux, R.N. Tan, J. 
(2012). Thermal infrared remote sensing of 
water temperature in riverine 
landscapes. Fluvial remote sensing for science 
and management, (85) 113. 

 
Hewson, R., Mshiu, E., Hecker, C., van der Werff, H., 

van Ruitenbeek, F., Alkema, D., & van der Meer, 
F. (2020). The application of day and night time 
ASTER satellite imagery for geothermal and 
mineral mapping in East Africa. International 
Journal of Applied Earth Observation and 
Geoinformation, 85, 101991. 

 
Islam, T., Hulley, G.C., Malakar, N.K., Radocinski, R.G., 

Guillevic, P.C., & Hook, S.J. (2016). A physics-
based algorithm for the simultaneous retrieval 
of land surface temperature and emissivity from 
VIIRS thermal infrared data. IEEE Transactions 

https://lpdaac.usgs.gov/data_access/data_pool
https://lpdaac.usgs.gov/data_access/data_pool


 Turkish Journal of Geosciences, Vol; 2, Issue; 1, pp. 18-26, 2021. 

  26 TURKGEO 

 

on Geoscience and Remote Sensing, 55(1), 563-
576. 

 
Jensen, J.R. (2020). Thermal Infrared Remote Sensing 

Department of Geography, Lecture Notes, 
University of South Carolina. Retrieved from 
www.gers.uprm.edu/geol6225/pdfs/06_therm
al_rs.pdf 

 
Jiménez‐Muñoz, J.C., Sobrino, J.A. (2003). A 

generalized single‐channel method for 
retrieving land surface temperature from 
remote sensing data. Journal of Geophysical 
Research: Atmospheres, 108(D22). 

 
Kuenzer, C., Zhang, J., Li, J., Voigt, S., Mehl, H., & 

Wagner, W. (2007). Detecting unknown coal 
fires: synergy of automated coal fire risk area 
delineation and improved thermal anomaly 
extraction. International Journal of Remote 
Sensing, 28(20), 4561-4585. 

 
Meyer, D., Siemonsma, D., Brooks, B., Johnson, L., 

(2015). Advanced Spaceborne Thermal Emission 
and Reflection Radiometer Level 1 Precision 
Terrain Corrected Registered At-Sensor Radiance 
(AST_L1T) Product, Algorithm Theoretical Basis 
Document (No. 2015-1171). US Geological 
Survey. 

 
Moore, G., Paine, R. (2014). Quantifying urban-rural 

temperature differences for industrial 
complexes using thermal satellite data. AECOM: 
accessed, 15, 2018. 

 
Ndossi, M.I., Avdan, U. (2016). Inversion of land 

surface temperature (LST) using Terra ASTER 
data: A comparison of three algorithms. Remote 
Sensing, 2016, 8(12), 993. 

 
Rasul, A., Heiko, B., Claire, S., John, R., Bashir, A., José 

A. S., Manat, S., & Qihao, W. (2017). A Review on 
remote sensing of urban heat and cool 
islands. Land 6, (2) 38. 

 
Roy, P., Guha, A., & Kumar, K.V. (2015). An approach 

of surface coal fire detection from ASTER and 

Landsat-8 thermal data: Jharia coal field, 
India. International journal of applied earth 
observation and geoinformation, 39, 120-127. 

 
Saryschev, D.V., Kurolap, S.A., & Popova, I.V. (2019). 

Verification of Urban Heat Island Microclimatic 
Model by Using Thermal Remote Sensing Data. 
In IOP Conference Series: Earth and 
Environmental Science (Vol. 272, No. 2, p. 
022085). IOP Publishing. 

 
Singh, N., Chatterjee, R. S., Kumar, D., Panigrahi, D.C., 

& Mujawdiya, R. (2020). Retrieval of precise 
land surface temperature from ASTER night-
time thermal infrared data by split window 
algorithm for improved coal fire detection in 
Jharia Coalfield, India. Geocarto International, 1-
18. 

 
Tiangco, M.A., Lagmay, M.F., & Argete, J. (2008). 

ASTER‐based study of the night‐time urban heat 
island effect in Metro Manila. International 
Journal of Remote Sensing 29, no. 10: 2799-
2818. 

 
Xia, H., Chen, Y., & Quan, J. (2018). A simple method 

based on the thermal anomaly index to detect 
industrial heat sources. International journal of 
applied earth observation and 
geoinformation, 73, 627-637. 

 
Wan, Z., Dozier, J. (1996). A generalized split-window 

algorithm for retrieving land-surface 
temperature from space. IEEE Transactions on 
geoscience and remote sensing, 34(4), 892-905. 

 
Wei, C., Zhang, Y., Guo, X., Hui, S., Qin, M., & Zhang, Y. 

(2013). Thermal Infrared Anomalies of Several 
Strong Earthquakes. The Scientific World 
Journal. 

 
Wongpornchai, P., Suwanprasit, C. (2020). 

Feasibility study of thermal anomaly detection 
for earthquake: A case study from 2014 Mae Lao 
earthquake, Thailand. In IOP Conference Series: 
Earth and Environmental Science (Vol. 538, No. 
1, p. 012034). IOP Publishing. 

 
 
© Author(s) 2021. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/ 

http://www.gers.uprm.edu/geol6225/pdfs/06_thermal_rs.pdf
http://www.gers.uprm.edu/geol6225/pdfs/06_thermal_rs.pdf
https://creativecommons.org/licenses/by-sa/4.0/

