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Abstract 
 

Plant diseases and pests cause yield and quality losses. It has great importance to detect plant diseases and 

pests quickly and with high accuracy in terms of preventing yield and quality losses. Plant disease and 

pest detection performed by plant protection experts through visual observation is a labor-intensive 

process with a high error rate. Developing effective, fast and highly successful computer-aided disease 

detection systems has become a necessity in terms of precision agriculture applications. In this study, 

well-known pre-trained convolutional neural network (CNN) models AlexNet, GoogLeNet and ResNet-

50 are used as feature extractors. In addition, a deep learning model that concatenate deep features 

extracted from 3 CNN models has been proposed. The deep features were used to train the support vector 

machine classifier. The proposed model was used to classify leaf images of tomato plant diseases and 

pests, which is a subset of open-access PlantVillage dataset consisting of a total of 18835 images 

belonging to 10 classes including a healthy one. Accuracy, precision, sensitivity and f-score performance 

metrics were used with the hold-out validation method in determining model performances. Experimental 

results show that the detection of tomato plant diseases and pests is possible using concatenated deep 

features with an overall accuracy rate of 96.99%. 

 

Keywords: convolutional neural networks, deep features extraction, deep learning, image 

classification, plant diseases and pests detection, precision agriculture. 

 

1. Introduction 

 

Tomato (Solanum lycopersicum) is one of the most 

widely cultivated agricultural products all over the 

world. As in all other agricultural products, one of the 

factors that negatively affect tomato cultivation is 

diseases and pests. Various diseases and pests cause 

yield and quality losses in crop production [1]. Early 

and accurate detection of diseases and pests is very 

important to prevent yield and quality losses. Plant 

disease and pest detection performed by visual 

observation by plant protection experts is a labor-

intensive process with a high error rate [2]. The 

development of effective, fast and highly successful 

computer-aided disease detection systems has become a 

necessity for precision agriculture applications. 

 

Remarkable progress has been made in plant disease 

and pest detection with studies based on traditional 

machine learning methods. Al-Hiary et al. [3] proposed 

a model for diagnosing 5 diseases that cause symptoms  
 

 

in leaves in different plant species. They segmented the 

images using Otsu thresholding and k-means clustering 

methods and extracted texture features. They used these 

features to feed artificial neural networks (ANN) 

classifiers. Dubey and Jalal [4] performed feature 

extraction from apple images segmented by the k-means 

clustering method using local binary pattern methods to 

detect 3 different apple fruit diseases. They classified 

the obtained features using a support vector machine 

(SVM). Singh and Misra [5] conducted a study to detect 

5 different diseases in 4 different plant species. They 

obtained the color co-occurrence matrix features from 

images that were segmented and enhanced with image 

processing techniques. According to their experimental 

results, they reported that the best performance was 

obtained with the SVM classifier. Success in traditional 

machine learning methods largely depends on the 

features used. Segmentation is required to extract the 

features. This situation necessitates that the work carried 

out with traditional machine learning methods should be 

under highly controlled conditions and limits the 

classification success achieved. 
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Deep learning refers to models that can learn the 

representations of data through multiple processing 

layers and thus perform end-to-end learning [6]. Thanks 

to deep learning, unlike traditional machine learning 

methods, learning from raw data can be performed 

without the need for feature extraction. In the literature, 

many studies have been conducted on the detection of 

plant diseases and pests based on deep learning [7, 8]. 

Mohanty et al. [1] retrained AlexNet and GoogLeNet 

pre-trained convolutional neural network (CNN) 

models, both from scratch and by fine-tuning. They 

reported that transfer learning provided faster converge 

on colored, gray-level and segmented images in their 

studies. Ferentinos [2] used deep learning methodology 

to identify plant diseases in his study on an open-access 

dataset containing 25 plant species and 58 plant-disease 

combinations. Although there are a limited number of 

studies on the detection of plant diseases and pests in 

more than one crop type, many studies have also been 

conducted on a single crop type such as apple [9], 

cucumber [10] and rice [11]. 

 

Fuentes et al. [12] proposed a deep learning-based 

approach to detect of tomato diseases and pests. They 

used a region-based CNN method to detect features on 

tomato leaf images. Durmuş et al. [13] retrained 

AlexNet and SquezeeNet pre-trained CNN models from 

scratch to detect tomato diseases and pests on the open-

access PlantVillage dataset. Sardoğan et al. [14] used 

500 healthy and infected tomato leaves from the 

PlantVillage dataset to detect 4 tomato diseases. They 

classified the features obtained from the fully connected 

layer of the proposed CNN architecture with the 

Learning Vector Quantization (LVQ) algorithm. 

Rangarajan et al. [15] fine-tuned both AlexNet and 

VGG16 pre-trained CNN models to detect of tomato 

plant diseases and pests. They analyzed both the role of 

the number of images and importance of 

hyperparameters in classification accuracy and 

execution time. Aversano et al. [16] fine-tuned the 

VGG19, Xception and ResNet-50 pre-trained CNN 

models for the detection of tomato diseases and pests.  

Agarwal et al. [17] proposed a CNN architecture 

consisting of 3 convolution and 3 max pooling layers 

followed by 2 fully connected layers for the detection of 

tomato diseases and pest. Saeed et al. [18] used tomato, 

corn and potato leaves images from the PlantVillage 

dataset to build an automated crop disease recognition 

system. They selected the deep features extracted from 

the fully connected layers 6 and 7 of the VGG19 pre-

trained CNN model using partial least squares (PLS) 

regression. They used selected deep features for model 

estimation using the ensemble baggage tree classifier. 

 

In this study, the effect of using pre-trained CNN 

models as feature extractors on success in detecting 

tomato diseases and pests has been investigated. For this 

purpose, well-known pre-trained CNN models AlexNet, 

GoogLeNet and ResNet-50 were used as feature 

extractors. In addition, deep features fusion was 

performed by concatenating the deep features obtained 

from 3 CNN models. The obtained deep features were 

used to train the SVM classifier. According to the 

results, all CNN models achieved high classification 

success in detecting tomato diseases and pests by deep 

feature extraction. Concatenated deep features, on the 

other hand, achieved the best classification performance 

with an overall accuracy of 96.99%. The results of the 

experiments conducted within the scope of the study 

were compared with each other and with related studies 

in the literature. 

 

The remaining of the paper is organized as follows: the 

materials and methods are given in Section 2. The 

experimental results are presented in Section 3. In 

Sections 4 and 5 discussion and conclusion remarks are 

given, respectively. 

 

2. Materials and Methods 

2.1. Dataset 

 

In this study, experiments have been carried out on 

diseased and healthy tomato leaf images, which is a 

subset of the open-access PlantVillage [19] dataset. 

 

Figure 1. Sample images in the dataset. 
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Since the link reported in the original article has been 

broken, the version republished by Geetharamani and 

Pandian [20] has been used. The dataset consists of 

18835 images belonging to 10 classes. Images are 256-

by-256 pixels resolution and colored. The image format 

is JPEG. The space occupied by the dataset in the disk is 

321 MB. 

 

Sample images from the dataset have been 

demonstrated in Figure 1. The sample images from left 

to right in the first row belong to bacterial spot, early 

blight, healthy, late blight, and leaf mold classes; the 

sample images in the second row belong to septoria leaf 

spot, spider mites, target spot, mosaic virus, and yellow 

leaf curl virus classes. 

 

AlexNet, GoogLeNet and ResNet-50 CNN models take 

input images with a resolution of 227-by-227, 224-by-

224 and 224-by-224 pixels respectively. For this reason, 

images have been resized to the specified resolutions. 

 

The hold-out validation method has been used to make a 

one-to-one comparison of the models applied within the 

scope of the study. For this purpose, the dataset has 

been divided into training and test groups at a ratio of 

4:1. All models have been trained with the same training 

images and tested with the same testing images. The 

classes of the dataset, the scientific names of the 

diseases, the class distribution of the samples, and the 

number of training and testing images are given in 

Table 1. 

 

2.2. Convolutional neural networks 

 

CNNs are deep learning models designed to 

automatically learn representations of data. A CNN 

architecture consists of two parts. The first part consists 

of convolution, activation and pooling layers where 

discriminative features of data is learned, the second 

part consists of fully connected layers and softmax layer 

where the learned features are classified [6]. 

 

Thanks to the filters in the convolution layer, the 

interrelated spatial dependencies of the data are 

discovered. Filter weights are shared. In this way, it 

does not affect learning where the same discriminative 

feature in different locations of the input data [21]. As a 

result of the convolution process, the weighted sum of 

inputs is obtained. This layer is followed by an 

activation layer to get rid of linear dependencies. 

Although there are different activation functions such as 

hyperbolic tangent and sigmoid, the most preferred 

activation function is the Rectified Linear Unit (ReLU). 

ReLU activation function sets negative values to 0. 

Feature maps are obtained in this layer. Next comes the 

pooling layer to shrink in size, without losing valuable 

information in the data. A maximum or average pooling 

can be done. Convolution operations are repeated one 

after another depending on the hyper-parameter values 

such as input size, filter size, stride and padding. 

Ultimately, it is transferred to the fully connected layer. 

The purpose of this layer is to flatten the learned 

features. Depending on the architecture, there may be 

one or more fully connected layers. Then the last fully 

connected layer is passed to a softmax layer. Finally, the 

model estimation is made by performing class 

probability calculations of the features learned with the 

softmax layer. There are as many outputs as the number 

of classes in the problem addressed in the last fully 

connected layer. 

 

2.3. Deep feature extraction and proposed model 

 

Deep feature extraction is a transfer learning approach 

to employ a pre-trained CNN model for a similar task. 

Deep feature extraction is to use a pre-trained CNN 

model as a feature extractor. In this approach, the model 

parameters (weights) are used without fine-tuning [22]. 

Table 1. Details of classes in the dataset 

Class Name Disease Scientific Name 
Images (Number) 

Training Test Total 

Bacterial spot Xanthomonas campestris pv. vesicatoria 1703 424 2127 

Early blight Alternaria solani 800 200 1000 

Healthy - 1273 318 1591 

Late blight Phytophthora infestans 1528 381 1909 

Leaf mold Fulvia fulva 800 200 1000 

Septoria leaf spot Septoria lycopersici 1417 354 1771 

Spider mites Tetranychus urticae 1342 334 1676 

Target spot Corynespora cassiicola 1124 280 1404 

ToMV Tomato mosaic virus (ToMV) 800 200 1000 

TYLCV Begomovirus (Fam. Geminiviridae) 4287 1070 5357 

 Total 15074 3761 18835 

TYLCV: Tomato yellow leaf curl virus 
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Then a classification algorithm such as SVM is used for 

the new classification task [23]. In this approach, the 

pre-trained CNN model is employed as part of the 

solution of the new task using as a feature extractor. 

 

In the deep feature extraction approach, deep features 

can be obtained from any layer of a pre-trained CNN 

model. However, common usage is to extract deep 

features from the last fully connected layer. In this 

study, the last fully connected layers of AlexNet, 

GoogLeNet and ResNet-50 CNN models are used to 

extract the deep features. In addition, a deep learning 

model that concatenate deep features obtained from 3 

CNN models has been proposed to increase prediction 

performance. Overall structure of the proposed model is 

shown in Figure 2. 

 

The pre-trained CNN models used in the study are 

briefly introduced below. AlexNet [24] is one of the 

pioneering CNN architecture. AlexNet has a simple 

architecture that consists of 5 convolution layers, and 3 

fully connected layers. 

 

GoogLeNet [25] is a 22 layer CNN architecture that's a 

variant of the inception network. The most important 

properties of GoogLeNet architecture is the use of the 

inception module. The module simply provides a direct 

link between multiple different layers. This increases 

network complexity while keeping the computing cost 

at the same level. 

 

 

ResNet-50 [26] architecture consists of 50 layers. 

ResNet-50 is different from other architectures with its 

micro-architecture module structure. In architecture, it 

may be preferred to switch to the lower layer by 

ignoring the change between some layers. In ResNet 

architecture, the performance rate has been increased by 

allowing transition operations between blocks with this 

structure. 

 

2.4. Support vector machines 

 

The deep feature extraction approach requires a 

classifier method to be trained with the extracted deep 

features. In this study, SVM proposed by Vapnik [27] 

was used as a classifier. It has been reported that the 

SVM classifier shows superior performance in different 

agricultural image classification problems [28]. 

 

The basic principle in solving a classification problem 

with SVM is to determine a hyperplane that divides 

samples belonging to two classes optimally from each 

other. The formula for the output of a linear SVM is 

given in Equation (2.1), where �⃗⃗�  is the normal vector to 

the hyperplane and 𝑥 ⃗⃗⃗   is the input vector. Maximizing 

margins can be defined as an optimization problem: 

minimize Equation (2.2) subject to Equation (2.3) where 

𝑦𝑖  and 𝑥 ⃗⃗⃗  𝑖 are the correct output of the SVM and the 

input vector for ith training sample, respectively [29]. 

 

 

 
 

Figure 2. Overall structure of the proposed model 
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𝑢 = �⃗⃗� ⋅  𝑥 ⃗⃗⃗  − 𝑏 (2.1) 

 

1

2
 ‖ �⃗⃗�  ‖2 (2.2) 

 

𝑦𝑖(�⃗⃗� ⋅  𝑥 ⃗⃗⃗  𝑖 − 𝑏) ≥ 1, ∀𝑖 (2.3) 

 

SVM is a binary classifier defined to separate only 2 

classes and do not support for multi-class classification 

problems. One strategy for multi-class classification 

with SVMs is to create a one-to-one set of classifiers 

and predict the class chosen by the majority of 

classifiers [30]. While this enables creating classifiers 

𝐾(𝐾 − 1)/2 for the classification problem with K 

classes, the training time of the classifiers may be 

reduced as the training data set for each classifier will 

be smaller. 

 

3. Results 

 

In this study, the deep feature extraction method, which 

is a transfer learning approach employing pre-trained 

CNN models as feature extractors, was used for the 

detection of tomato plant diseases and pests. The deep 

features were obtained from the last fully connected 

layers of AlexNet, GoogLeNet and ResNet-50 named 

FC-8, Loss-3 and FC-1000, respectively. In addition, a 

deep learning model that concatenate 1000 deep 

features obtained from each of the 3 CNN models 

proposed to increase predictive performance. Obtained 

deep features were used to train the SVM classifier. In 

the configuration of the SVM, all parameters are used in 

default configurations. Experimental studies were 

carried out on a computer with i5-8250U CPU, 8 GB 

RAM, 2 GB GPU, 256 SSD HDD hardware 

specifications. All experimental studies were 

implemented in MATLAB 2019b programming 

environment. 

 

Since there is a sufficient number of images in the 

dataset, the hold-out validation method was used to 

make a one-to-one comparison of the models.  For this 

purpose, the dataset was divided into training and test 

groups at a ratio of 4:1. Accuracy (Acc.), precision 

(Pre.), sensitivity (Sen.) and f-score performance 

metrics were calculated for comparison of model 

performances. These performance metrics are calculated 

with the indices true positive (TP), false negative (FN), 

false positive (FP), and true negative (TN) obtained 

from the confusion matrix. The mathematical equations 

of performance metrics used in comparing models are as 

follows: 

 

𝐴𝑐𝑐. =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 (3.1) 

 

𝑃𝑟𝑒. =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.2) 

 

𝑆𝑒𝑛. =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.3) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3.4) 

In multi-class classification problems, confusion matrix 

indices and performance metrics are calculated 

separately for each class. For the class for which 

performance metrics are calculated, samples belonging 

to that class are considered positive and all other 

samples are considered negative. Then, TP, FN, FP, and 

TN indices are calculated according to the predictions of 

the model for the samples treated as positive and 

negative. 

 

While TP, FN, FP, and TN values are calculated for the 

Healthy class, samples labeled as Healthy in the dataset 

are considered positive and all other samples are 

considered negative. The number of positive samples in 

the test set, which are predicted as Healthy by the 

model, gives the TP value. The number of positive 

samples in the test set that are not predicted as Healthy 

by the model gives the FN value. The number of 

negative samples in the test set that are predicted as 

Healthy by the model gives the FP value. The number 

of negative samples in the test set that are not predicted 

as Healthy by the model gives the TN value. 

 

That is, all samples except the class whose confusion 

matrix indices are calculated are considered negative 

and are named TN regardless of whether they are 

correctly predicted in their own class. This situation 

causes high accuracy and sensitivity values. 

 

In multi-class classification problems, the overall 

accuracy metric is also used to measure the overall 

performance of the model. This metric gives us the ratio 

of the number of correct predictions of the model to the 

total number of predictions. It is calculated as follows. 
  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐. =
∑ 𝑇𝑃𝑖

𝑁
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑃𝑖)
𝑁
𝑖=1

 (3.5) 

 

In the formula, N refers to the number of classes. TPi 

and FPi show the correct and incorrect prediction 

numbers of the ith class respectively. 

 

The classification results are given in Table 2. The 

values given in the table are confusion matrix (TP, FN, 

FP, and TN), Acc., Pre., Sen., F-Score (F-scr), and 

overall accuracy (Overall Acc.).  



 

              Celal Bayar University Journal of Science  
              Volume 17, Issue 2, 2021, p 145-152 

              Doi: 10.18466/cbayarfbe.812375                                                                                          Y. Altuntaş 

 

150 

According to the experimental results, the overall 

accuracy rates obtained by classifying the deep features 

extracted from the last fully connected layers of 

AlexNet, GoogLeNet and ResNet-50 pre-trained CNN 

models with SVM classifier are 92.18%, 89.31% and 

96.96%, respectively. According to the experimental 

results, all CNN models used within the scope of the 

study showed superior classification performance. 

However, the best performance has been achieved by 

using concatenating deep features with an overall 

accuracy rate of 96.99%. This overall accuracy rate is 

better than all CNN models individually. 

 

The time taken to extract deep features for 3761 test 

images and store the resulting deep feature vectors on 

disk as a separate file was measured as 14 minutes 58 

seconds, 20 minutes 19 seconds, and 50 minutes 33 

seconds for AlexNet, GoogLeNet and ResNet-50 

models, respectively. Experimental results show that 

deep feature extraction process from CNN models with 

a high number of layers requires more time. 

 

 

 

 

 

Table 2. Classification results 

Pre-trained 

CNN Model 
Class TP FN FP TN 

Acc. 

(%) 
Pre. Sen. F-Scr 

Overall 

Acc. (%) 

AlexNet 

Bacterial spot 403 18 21 3319 98.96 0.957 0.993 0.953 

92.18 

Early blight 153 50 47 3511 97.42 0.753 0.986 0.759 

Healthy 304 11 14 3432 99.33 0.965 0.995 0.960 

Late blight 348 38 33 3342 98.11 0.901 0.990 0.907 

Leaf mold 168 23 32 3538 98.53 0.879 0.991 0.859 

Sep. leaf spot 324 39 30 3368 98.16 0.892 0.991 0.903 

Spider mites 295 39 39 3388 97.92 0.883 0.988 0.883 

Target spot 242 55 38 3426 97.52 0.814 0.989 0.838 

ToMV 186 6 14 3555 99.46 0.968 0.996 0.948 

TYLCV 1044 15 26 2676 98.90 0.985 0.990 0.980 

GoogLeNet 

Bacterial spot 390 37 34 3300 98.11 0.913 0.989 0.916 

89.31 

Early blight 142 67 58 3494 96.67 0.679 0.983 0.694 

Healthy 300 16 18 3427 99.09 0.949 0.994 0.946 

Late blight 329 41 52 3339 97.52 0.889 0.984 0.876 

Leaf mold 168 29 32 3532 98.37 0.852 0.991 0.846 

Sep. leaf spot 294 66 60 3341 96.64 0.816 0.982 0.823 

Spider mites 289 49 45 3378 97.50 0.855 0.986 0.860 

Target spot 227 57 53 3424 97.07 0.799 0.984 0.804 

ToMV 181 12 19 3549 99.17 0.937 0.994 0.921 

TYLCV 1039 28 31 2663 98.43 0.973 0.988 0.972 

ResNet-50 

Bacterial spot 414 7 10 3330 99.54 0.983 0.997 0.979 

96.96 

Early blight 173 20 27 3541 98.75 0.896 0.992 0.880 

Healthy 313 3 5 3440 99.78 0.990 0.998 0.987 

Late blight 368 21 13 3359 99.09 0.946 0.996 0.995 

Leaf mold 193 6 7 3555 99.65 0.969 0.998 0.967 

Sep. leaf spot 344 10 10 3397 99.46 0.971 0.997 0.971 

Spider mites 324 21 10 3406 99.17 0.939 0.997 0.954 

Target spot 259 18 21 3463 98.96 0.935 0.993 0.929 

ToMV 194 3 6 3558 99.76 0.984 0.998 0.977 

TYLCV 1065 5 5 2686 99.73 0.995 0.998 0.995 

Concatenated 

Deep 

Features 

Bacterial spot 419 4 5 3333 99.76 0.990 0.998 0.989 

96.99 

Early blight 175 22 25 3539 98.75 0.888 0.992 0.881 

Healthy 312 5 6 3438 99.70 0.984 0.998 0.982 

Late blight 366 15 15 3365 99.20 0.960 0.995 0.960 

Leaf mold 188 8 12 3553 99.46 0.959 0.996 0.949 

Sep. leaf spot 345 16 9 3391 99.33 0.955 0.997 0.965 

Spider mites 326 14 8 3413 99.41 0.958 0.997 0.967 

Target spot 260 18 20 3463 98.98 0.935 0.994 0.931 

ToMV 196 6 4 3555 99.73 0.970 0.998 0.975 

TYLCV 1061 5 9 2686 99.62 0.995 0.996 0.993 
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4. Discussion  

 

The number of classes dealt with in the related studies is 

not equal. Sardoğan et al. [14] conducted a study with a 

total of 5 classes, including 4 diseases and 1 healthy 

class. Rangarajan et al. [15] conducted a study with a 

total of 7 classes, including 6 diseases and 1 healthy 

class. In other related studies, 10 classes, including 9 

diseases and 1 healthy class were conducted. Since test 

samples are not pre-defined in the PlantVillage dataset, 

the test samples used in related studies are not the same. 

Also, the number of test samples used is not equal. 

Sardoğan et al. [14] in their work with a total of 500 

images, they used 400 images for training and 100 

images for testing. Agarwal et al. [17] in their work with 

a total of 17500 images, they used 10000 images for 

training, 7000 images for validation and 500 images for 

testing. A one-to-one comparison among the related 

studies is not feasible due to the reasons explained 

above. Nevertheless, we present a comparison in Table 

3 considering several criteria, such as the number of 

classes, methods, and overall accuracy rates. 

 

5. Conclusion 

 

In this study, the possibilities of detecting tomato plant 

diseases and pests by deep feature extraction were 

investigated. For this purpose, well-known pre-trained 

CNN models AlexNet, GoogLeNet, and ResNet-50 

were used as feature extractors. 1000 deep features 

obtained from the last fully connected layers of CNN 

models were used to train the SVM classifier. In 

addition, a deep learning model that concatenate 1000 

deep features obtained from each of the 3 CNN models 

proposed to increase predictive performance. According 

to the experimental results, while superior classification 

performance was obtained with deep features extracted 

from all CNN models, the best result was obtained with 

the concatenated deep features. The reason for this is 

considered to be the result of CNN models with 

different architectures discovering different 

discriminative features. 

 

In future studies, it is aimed to increase the 

classification performance with different fusion 

methods. In addition, the performance of the models to 

be developed on field condition images will be 

evaluated. 
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