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Özet. Etkileşen Bozon Modeli (IBM) Hamiltoniyen'in O(6) simetrisini kıran kübik 

terimler, U(6) ve alt gruplarının Casimir değişmezlerinden oluşturulmuştur. Bu yazıda, 

yukarıdaki Casimir değişmezlerinden oluşturulabilen kübik terimleri ele alıyor ve bu 

tür terimlerin kalıcı üç eksenli deformasyona yol açıp açamayacağını araştırılmıştır. 

Kübik terimlerin klasik sınırı elde edilmiştir ve hiçbirinin kalıcı üç eksenli 

deformasyona yol açmasını beklemediği gösterilmiştir.  

Anahtar Kelimeler: Casimir değişmezliği, Birbirini etkileyen Boson Modeli (IBM), 

Triaxial deformasyon. 

Abstract. Cubic terms breaking O(6) symmetry of the Interacting Boson Model (IBM) 

Hamiltonian are constructed out of the Casimir invariants of U (6) and its subgroups. The 

classical limit of these cubic terms is obtained, and it is shown that none of them expect one 

can give rise to permanent triaxial deformation. 

Keywords: Casimir invariants, Interacting Boson Model (IBM), Triaxial deformation. 
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1. Introduction 

The isotopes of Xenon and Barium are known [1] to be examples of the O (6) 

dynamical symmetry of IBM [2-4]. Triaxiality is also known to occur in this region of 

the periodic table and an intimate connection between the two is speculated. It has been 

shown that the conventional Interacting Boson Model (IBM) Hamiltonian in none of the 

limits U (5), SU (3) and O(6) can give rise to permanent triaxial deformation [5]. The 

classical limit of the O (6) Hamiltonian expressed in terms of the deformation 

parameters β. The nucleus in the O (6) limit is thus γ unstable and will, in general, 

execute large oscillations in γ. The average value of γ for such oscillations may not be 

zero. The situation is very similar to that in the γ unstable model of Wilets and Jean 

[6].Even in their original work establishing O (6) symmetry in Xe and Ba isotopes 

Casten and von Brentano considered departures from the O (6) symmetry [7].Van 

Isacker and Chen [8,9] introduced in the O (6) Hamiltonian terms involving three boson 

creation and destruction operators (the so called “cubic terms”) and showed that such 

terms can give rise to permanent triaxial deformation [10-12]. Such cubic terms, when 

added to the O (6) Hamiltonian improve agreement with experiments. 

The IBM Hamiltonian in the three limits can be written in terms of the Casimir 

invariants of U (5), SU (3), O (6) and their subgroups. In this paper we consider cubic 

terms which can be constructed out of the above Casimir invariants and investigate 

whether such terms can give rise to permanent triaxial deformation. Such constructions 

will not only make the nature of symmetry breaking transparent, but it will also simplify 

the evaluation of the matrix elements of the cubic terms. Interacting boson model is 

defined in Sec.2. In Sec. 3 cubic terms are constructed out of the Casimir invariants and 

their classical limits are evaluated. This followed by conclusions in Sec. 4. 

2. The interacting boson model 

In this section we give a brief description of the IBM with particular emphasis 

on the version of the model which includes higher-order interactions between the 

bosons, A full account of the IBM is given in ref. [13]. 

2.1 The general Hamiltonian 

The building blocks of the IBM are s and d bosons with angular moments 𝑙 =

0and 𝑙 = 2. A nucleus is characterized by a constant total number of bosons N which 
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equals half the number of valence nucleons (particles or holes, whichever is smaller). In 

this paper no distinction is made between neutron and proton bosons, an approximation 

which is known as IBM-1. 

Since the Hamiltonian of the IBM-1 conserves the total number of bosons, it can 

be written in terms of the 36 operators 𝑏𝑙𝑚
+ 𝑏𝑙′𝑚′ where 𝑏𝑙𝑚

+  (𝑏𝑙𝑚) creates (annihilates) a 

boson with angular momentum 𝑙 and 𝑧projection 𝑚. It can be shown [13] that this set of 

36 operators generates the Lie algebra U(6) of unitary transformations in six 

dimensions. A Hamiltonian that conserves the total number of bosons is of the generic 

form 

�̂� = 𝐸0 + �̂�(1) + �̂�(2) + �̂�(3) + ⋯,                                                                               (1) 

where the index refers to the order of the order of the interaction in the generators of 

U(6). The first term 𝐸0 is a constant which represents the binding energy of the core. 

The second term is the one-body part 

�̂�(1) = 𝜖𝑠[𝑠+x �̌�]{0} + 𝜖𝑑√5[𝑑+x �̌�]{0} ≡ 𝜖𝑠�̃�𝑠 + 𝜖𝑑�̃�𝑑,                                                (2) 

where x refers to coupling in angular momentum (shown as an upper script in round 

brackets), �̃�𝑙𝑚 ≡ (−)𝑙−𝑚𝑏𝑙−𝑚 and the coefficients 𝜖𝑠 and 𝜖𝑑 are the energies of the s 

and d bosons. The third term in the Hamiltonian (1) represents the two-body interaction 

�̂�(2) = ∑ �̃�𝑙1𝑙2𝑙1
′ 𝑙2

′
𝐿 [[𝑏𝑙1

+𝑥 𝑏𝑙2

+ ]
(𝐿)

 𝑥 [�̃�𝑙2
′  𝑥 �̃�𝑙1

′ ](𝐿)]0
{0}

𝑙1≤𝑙2 ,𝑙1
′ ≤𝑙2

′ ,𝐿

 ,                                             (3)  

where the coefficients �̃�  are related to the interaction matrix elements between 

normalized two-boson states, 

⟨𝑙1𝑙2; 𝐿𝑀|�̂�(2)|𝑙1
′ 𝑙2

′ ; 𝐿𝑀⟩ = √
(1 + 𝛿𝑙1𝑙2

)(1 + 𝛿𝑙1
′ 𝑙2

′ )

2𝐿 + 1
�̃�

𝑙1𝑙2𝑙1
′ 𝑙2

′
𝐿 .                                            (4) 

Since the boson are necessarily symmetrically coupled, allowed two-boson states are 

𝑠2(𝐿 = 0), 𝑠𝑑 (𝐿 = 2)and 𝑑2(𝐿 = 0,2,4). Since for 𝑛 states with a given angular 

momentum one has 𝑛(𝑛 + 1)/2 interactions, seven independent two-body interactions 

𝑣 are found; three for 𝐿 = 0, three for 𝐿 = 2 and one for 𝐿 = 4. 
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This analysis can be extended to higher-order interactions. One may consider, for 

example, the three-body interactions ⟨𝑙1𝑙2𝑙3; 𝐿𝑀|�̂�(3)|𝑙1
′ 𝑙2

′ 𝑙3
′ ; 𝐿𝑀⟩. The allowed three-

boson states are 𝑠3(𝐿 = 0), 𝑠2𝑑 (𝐿 = 2), 𝑠𝑑2(𝐿 = 0,2,4) and 𝑑3(𝐿 = 0,2,3,4,6), 

leading to 6+6+1+3+1=17 independent three-body interactions for 𝐿 = 0,2,3,4,6, 

respectively. Note that any three-boson state 𝑠𝑖𝑑3−𝑖 is fully characterized by its angular 

momentum 𝐿; this is no longer  the case for higher boson numbers when additional 

labels must be introduced. 

The number of possible interactions at each order 𝑛 is summarized in table 1 for up to 

𝑛 = 3. Some of these interactions exclusively contribute to the binding energy and do 

not influence the excitation spectrum of a nucleus. To determine the number of such 

interactions, one notes that the Hamiltonian �̂��̂�(𝑛−1) for constant boson number (i.e., a 

single nucleus) essentially reduces to the (𝑛 − 1)-body Hamiltonian �̂�(𝑛−1). 

Consequently, of the 𝑁𝑛 independent interactions of order 𝑛 contained in �̂�(𝑛), 𝑁𝑛−1 

terms of the type �̂��̂�(𝑛−1) must be discarded if one wishes to retain only those that 

influence the excitation energies. For example, given that there is one term of order zero 

(i.e., a constant), one of the two first-order terms (I.e., the combination �̂�) does not 

influence the excitation spectrum. Likewise, there are two first-order terms (i.e., �̂�𝑠and 

�̂�𝑑) and hence two of the two-body interactions do not influence the excitation 

spectrum. This argument leads to the numbers quoted in Table 1. 

Table 1Enumeration of  𝑛-body interactions in IBM-1 for 𝑛 ≤ 3. 

Order Number of interactions 

total Type I𝑎 Type II𝑏 

𝑛 = 0 1 1 0 

𝑛 = 1 2 1 1 

𝑛 = 2 7 2 5 

𝑛 = 3 17 7 10 

aInteraction energy is constant for all states with the same 𝑁 

bInteraction energy varies from state to state. 
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We conclude that, in the nucleus-by-nucleus fits that will be performed in this work, 

there is a single one-boson energy of relevance, as well as five two-body and ten three-

body interactions. This number of independent terms is too high for practical 

applications and simplifications must be sought on the basis of physical, empirical or 

formal arguments. Some of them are based on the classical limit of the IBM-1. 

3. Cubic terms from Casimir invariants and their classical limits 

The Casimir invariants of U (5) and its subgroups can be conveniently written in 

terms of the following operators.  

𝑃 =
1

2
(�̃��̃� − �̃�. �̃�)               (5)  

𝐿 = √10[𝑑+ 𝑥 𝑑](1)            (6)  

𝑄 =[𝑑+x �̃� +�̃�+x d](2)−
√7

2
[𝑑+ × �̃�](2)            (7) 

𝑈 = [𝑑+ × �̃�](3)               (8) 

𝑉 = [𝑑+ × �̃�](4)               (9) 

Expressed in terms of these operators, the Casimir operators of U (6) and its 

subgroups in the three chains are given below [5]:  

𝐶2(⋃6) = 𝑁(𝑁 + 5)            (10) 

𝐶1(⋃5) = 𝑛𝑑             (11) 

𝐶2(SU3) =
2

3
[2𝑄 ⋅ 𝑄 +

3

4
𝐿 ⋅ 𝐿]            (12) 

𝐶2(𝑂6)   =  2 [𝑁(𝑁 + 4) − 4𝑃+. 𝑃]          (13) 

𝐶2(O5) = 4 [
1

10
𝐿. 𝐿 + 𝑈. 𝑈]             (14) 

𝐶2(𝑂3)  =  2 [𝐿. 𝐿]                     (15) 

         Where 𝐶𝑃(𝐺) represents the Casimir operator of order p of the group G. The 

subgroup O (2) has been omitted because unless the nucleus is in a magnetic field, the 

Hamiltonian does not depend on the magnetic quantum number M. The O (6) limit of 
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the IBM Hamiltonian can be expressed as a linear combination of the linear and 

quadratic Casimir operators of U (6) and its subgroups. 

H= e0 +e1 C1 (U6) + e2 C2 (U6) + 𝛽 C2 (O5) + ϒ C2 (O3) + ὴC2 (O6)                   (16) 

          The following cubic terms can be constructed out of the Casimir invariants given 

equations (10) – (15): 

[𝐶1(𝑈5)]3= 𝑛𝑑
3        (17) 

𝐶2(O5)𝐶1(U5) = 4 [
1

10
𝐿 ⋅ 𝐿 + 𝑈 ⋅ 𝑈] 𝑛𝑑      (18) 

𝐶2(𝑂3)𝐶1(𝑈5) = 2𝐿 2𝑛𝑑         (19) 

𝐶2(𝑂6)𝐶1(𝑈5) = 2 [𝑁(𝑁 + 4) –  4𝑃+. 𝑃]𝑛𝑑   (20) 

𝐶2 (𝑆𝑈3) 𝐶1(𝑈5) =
2

3
 [2𝑄. 𝑄 +

3

4
𝐿. 𝐿]𝑛𝑑                                        (21)                                                                              

The classical limit of all the above terms have been calculated using the techniques 

ofVan isacker and Chen[8]. Considering a coherent state. 

|𝑁23〉 = [(𝑆+ + 2 cos 3𝑑𝑂
+ +

1

√2
2 sin 3(𝑑+2

+ +  𝑑−2
+ ))

𝑁

]
𝑁

10⟩ (22) 

          Where N is the boson number and 𝛽 and ϒ are the usual deformation parameters, 

the classical limit of an operator O is given by  

𝑂𝑐𝑙 =
⟨𝑁23|𝑂|𝑁23⟩

⟨𝑁23|𝑁23⟩
 (23) 

For a general three body operator of the form  

A3 = ∑ <𝑖𝑗𝑘𝑙>𝑁 𝑏𝑖
+. 𝑏𝑗

+
𝑖𝑗𝑘𝑙>𝑁 . 𝑏𝑘

+. 𝑏𝑙 . 𝑏>. 𝑏𝑁A3 = ∑ < 𝑏𝑖
+𝑏𝑗

+𝑏𝑘
+𝑏𝑙𝑏>𝑏𝑁𝑖𝑗𝑘𝑙>𝑁 (24)Where 

𝑏𝑖
+(𝑏𝑖) are boson creation (destruction) operators, the classical limit is given by: 

〈𝐴3〉𝑐𝑙 =
𝑁(𝑁−1)(𝑁−2)

𝐾6
∑ 𝐾𝑖𝑖𝑗𝑘𝑙>𝑁 . 𝐾𝑗. 𝐾𝑘. 𝐾𝑙. 𝐾>. 𝐾𝑁𝛼𝑖𝑗𝑘𝑙>𝑁                                   (25)                                     

Where 𝛼𝑖’ s are the coefficients of the boson creation operators in eqn. (25) and α2 

=∑ 𝐾𝑖
2

𝑖 . Using equations (21 to 23) the following classical limits have been obtained: 
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⟨𝑛𝑑
3⟩𝑐𝑙  = 

𝑁(𝑁−1)(𝑁−2)

(1+22)3  26+ 
𝑁 (𝑁−1)

(1+22)
 24+ 

𝑁2

(1+22)
   (26) 

〈𝐿2𝑛𝑑〉cl= 2𝑁(𝑁 − 1)
22

(1+22)
+ 2𝑁

22

(1+22)
      (27)                                                                   

〈(𝑈. 𝑈)𝑛𝑑〉cl= 8𝑁(𝑁 − 1) 
24

(1+22)
+ 2𝑁 

22

(1+22)
    (28) 

〈(𝑃+. 𝑃)𝑛𝑑〉cl=
1

4

𝑁(𝑁−1)(𝑁−2)

(1+22)
[26 + 324 +  22] +

1

2

𝑁(𝑁−1)

(1+22  )
[24 + 22 ]                (29) 

〈(𝑄. 𝑄) 𝑛𝑑 〉𝑐𝑙 =
1

2

𝑁(𝑁−1)(𝑁−2)

(1+22)
[26 −  4 √225 cos 33 + 824] +

1

2

𝑁(𝑁−1)

(1+22)
[(2 +  𝑐𝑜𝑠23) −

2√223(10 𝑐𝑜𝑠3 − 12 𝑐𝑜𝑠33) + 1422 + 224] +
1

2

𝑁−2

2(1+22)
[(2 + 𝑐𝑜𝑠23) − 4 √2𝑐𝑜𝑠3 +

22]           (30)                                                                    

The operators in eqns. (26) – (30) are related to the cubic terms given in (17) – (21) Sec. 

4. 

4. Concluding Remarks  

Permanent triaxial deformation will occur if the minima of the energy functional 

E (N, 𝜷, ϒ) with respect to 𝜷 and ϒ occur for any value of ϒ other than 00 and 600. The 

classical limit of the O (6) Hamiltonian is independent of ϒ  and the classical limits 

given by eqns. (24) – (28) show that only the cubic term nd = 
𝟑

𝟒
[𝑪𝟐(𝑺𝑼𝟑) −

𝟏

𝟒
𝑪𝟐 (𝑶𝟑)]C1 (U5) is capable of producing permanent triaxial deformation. Van Isacker 

and Chen considered cubic terms of the form 𝒅(𝟏, 𝒌, 𝟑) = [(𝒅+𝒅+)𝟏𝒅+]𝟑[(𝒅𝒅)𝒌𝒅]
𝟑
 

which for 1= K has the classical limit 𝑵(𝑵 – 𝟏)(𝑵 − 𝟐)
𝟐𝟔

(𝟏+𝟐𝟐 )𝟑 (𝑨 + 𝑩 𝒄𝒐𝒔𝟑𝟑𝟑). 

Minimization with respect to 𝜸 shows that such a cubic term is capable of producing a 

permanent triaxial deformation corresponding to γ =300. This leads to the somewhat 

unnatural conclusion that all triaxial nuclei must have the same triaxial deformation 

corresponding to 𝜸 = 𝟑𝟎𝟎. Minimization of the right hand side of (30) with respect to 𝜷 

and 𝜸 on the other hand, will yield values of γ which depend on 𝜷. Thus, both the 

deformation parameters 𝜷 and 𝜸 will be different for different nuclei -a scenario more 

likely to be found in nature.  
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