Index and Equality Conditions of the Subgroups $\Gamma_{0, n}(N)$ and $\Lambda_{n}(N)$

Aziz Büyükkaragöz ${ }^{1 *}$, Erdal Ünlüyol ${ }^{1}$ and Mehmet Akbaş ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
* Corresponding author

Abstract

In this paper, we find conditions on the natural number n that the subgroups $\Gamma_{0, n}(N)$ and $\Lambda_{n}(N)$ of modular group are different. And then, by defining an $\Lambda_{n}(N)$ invariant equivalence relation on the subset $\hat{\mathbb{Q}}_{n}(N)$, we calculate the index formula for $\Gamma_{0, n}(N)$ in $\Lambda_{n}(N)$.

Keywords: Congruence subgroup of modular group, transitivity, conjugateness, stabilizing, infinite cycle group, index formula 2010 Mathematics Subject Classification: 05C20, 20E07, $20 F 38$.

1. Introduction

Definition 1.1. [1] Let G be a group and also a topology. If the functions $F: G \times G \longrightarrow G, F(x, y):=x y$ and $f: G \longrightarrow G, f(x):=x^{-1}$ functions are continuous, then G is called a topological group.

Definition 1.2. [2] Let G be a group and $X \neq \emptyset$ be a set. In this case, if the function $\Psi: G \times X \longrightarrow X$ satisfies the following conditions,
i.) $\Psi\left(g_{1} g_{2}, x\right)=\Psi\left(g_{1}, \Psi\left(g_{2}, x\right)\right)$ for $g_{1}, g_{2} \in G$ and $x \in X$,
ii.) $\Psi(1, x)=x$ for $1 \in G$ is unit element and $x \in X$,
then G is called an act group according to the left product on X.

Here, we shortly write gx instead of $\Psi(g, x)$. Hence, $\left(g_{1} g_{2}\right) x=g_{1}\left(g_{2} x\right)$ and $1 x=x$. An act group expression will mean an act group with respect to the left product. Moreover, if G is a topological group, X is a topology and the transformation Ψ is continuous, then the pair of $[G, X]$ is called topological transformation group.

Definition 1.3. [2] Let $[G, X]$ be a topological transformation group. If $G x=X$ for $x \in X$, then the pair of $[G, X]$ is called transitive topological transformation group. It is clearly, if there is a element $g \in G$, such that $g x=y$ for $x, y \in X$, then the pair of $[G, X]$ is transitive topological transformation group.

Definition 1.4. [3] Let $[G, X]$ be any topological transformation group. In this case,
i.) For $x \in X$, the set of $\operatorname{Sb}_{G}(x)=G_{x}:=\{g \in G: g x=x\}$ is called stabilizing x in G.
ii.) For $g \in G$, the set of $\operatorname{Sb}(g ; X):=\{x \in X: g x=x\}$ is called constant point set g in X.

Now, we give some information for subgroups act.
$\mp\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad a, b, c, d \in \mathbb{Z}, a d-b c=1$ 。
Here we omit the symbol \mp, and identify each matrix with its negatives. As usual, Γ and its subgroups act on the extended rational $\widehat{\mathbb{Q}}=\mathbb{Q} \cup\{\infty\}$ by

$$
z \rightarrow \frac{a z+b}{c z+d}
$$

where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is as in (1.1).
Throughout the paper we use the following subgroups

$$
\Gamma_{0, n}(N)=\left\{\left(\begin{array}{cc}
a & b \\
c N & d
\end{array}\right) \in \Gamma: a^{2} \equiv 1 \bmod n\right\}
$$

and

$$
\Lambda_{n}(N)=\left\{\left(\begin{array}{cc}
a & b \\
c N & d
\end{array}\right) \in \Gamma: a^{4} \equiv 1 \bmod n\right\}
$$

where N, n be positive integers with $n \mid N$. Then We now give the notion, as in [3], an imprimitive action for a permutation group (G, Ω), where G is the group acting on the set Ω transitively. The equivalence relation \approx is called G-invariant if and only if

$$
x \approx y \quad \text { gives } \quad g(x) \approx g(y) \quad \text { for all } g \in G
$$

Then we immediately have two trivial equivalence relations Ω as
i.) For all $x, y \in \Omega \quad x \approx y$,
ii.) For all $x \in \Omega \quad x \approx x$.

If there is an equivalence relation on Ω other than the above two we say that group G acts on Ω imprimitively.

Let H be a subgroup of G with $H \neq G$ and G_{α} be stabilizer of $\alpha \in \Omega$ and that $G_{\alpha} \nRightarrow H \varsubsetneqq G$. In this case we define a G-invariant imprimitive action as follows. Since G acts on Ω transitively there exist $g, h \in G$ such that, for any given x and y in Ω

$$
x=g(\alpha), y=h(\alpha)
$$

Let $x \approx y \Leftrightarrow g h^{-1} \in H$. Then the relation \approx on Ω is a G-invariant primitive equivalence relation. As in [3], in this case the index $|G: H|$ is the number of equivalence classes. You can find the fundamental concepts and information in [4]-[8].

Lemma 1.5. [6] Let $n \in \mathbb{Z}^{+}, x \leq n$ and $(x, n)=1$. In this case, the solution of the congruence $x^{2} \equiv 1$ mod n consists of 2^{r+s} values for

$$
n=2^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r+1}^{\alpha_{r+1}} \text { and } s= \begin{cases}0, & \text { if } \alpha_{1}=1 \\ 1, & \text { if } \alpha_{1}=2 \\ 2, & \text { if } \alpha_{1} \geq 3\end{cases}
$$

The paper is organized as follows.

First of all we will get conditions on the natural number n so that the equality

$$
\Lambda_{n}(N)=\Gamma_{0, n}(N)
$$

is satisfied. Then we calculate the index

$$
\left|\Lambda_{n}(N): \Gamma_{0, n}(N)\right| .
$$

2. Main Calculations

We again write the groups as

$$
\Gamma_{0, n}(N)=\left\{\left(\begin{array}{cc}
a & b \\
c N & d
\end{array}\right) \in \Gamma: a^{2} \equiv 1 \bmod n \quad \text { or } \quad a \equiv d \bmod n\right\}
$$

and

$$
\Lambda_{n}(N)=\left\{\left(\begin{array}{cc}
a & b \\
c N & d
\end{array}\right) \in \Gamma: a^{4} \equiv 1 \bmod n \quad \text { or } \quad a^{2} \equiv d^{2} \bmod n\right\}
$$

Then it is clear that $\Gamma_{0, n}(N) \leq \Lambda_{n}(N)$.
Let us define the subset of $\hat{\mathbb{Q}}$ as

$$
\hat{\mathbb{Q}}_{n}(N)=\left\{\frac{a}{c N} \in \hat{\mathbb{Q}}: a^{4} \equiv 1 \bmod n \quad \text { and } \quad(a, c N)=1\right\} .
$$

Then it is easily seen that this is one of the largest subset of $\hat{\mathbb{Q}}$ on which the group $\Lambda_{n}(N)$ acts transitively.

Theorem 2.1. We suppose that $m, N \in \mathbb{Z}^{+}, p \in \mathbb{P}, p \mid N$ and $p \neq 4 m+1$. Then

$$
\Lambda_{p}(N)=\Gamma_{0, p}(N)
$$

Proof. If $a \equiv d \bmod p$, then $a^{2} \equiv d^{2} \bmod p$. From this, it is clear that $\Gamma_{0, p}(N) \subset \Lambda_{p}(N)$. Now, let we show that $\Lambda_{p}(N) \subset \Gamma_{0, p}(N)$.
Firstly, let we take $\left(\begin{array}{ll}a & b \\ c N & d\end{array}\right) \in \Lambda_{p}(N)$. Then, we obtain $a d-b c N=1$ and $a^{2} \equiv d^{2} \bmod p$. Hence, we establish $a d \equiv 1 \bmod p$ according to $p \mid N$. Therefore, $d \equiv a^{-1} \bmod p$. And then $a^{4} \equiv 1 \bmod p$ from $a^{2} \equiv\left(a^{-1}\right)^{2} \bmod p$. If $m \in \mathbb{Z}^{+}$and $p \neq 4 m+1$, then we have $a^{2} \equiv 1 \bmod p$. Namely, we find $a \equiv d \bmod p$ in the group $\Gamma_{o, p}(N)$. This is also means that $\left(\begin{array}{ll}a & b \\ c N & d\end{array}\right) \in \Gamma_{0, p}(N)$. Thus, we get $\Lambda_{p}(N) \subset \Gamma_{0, p}(N)$. Consequently, we obtain $\Lambda_{p}(N)=\Gamma_{0, p}(N)$ under the conditions of $p \neq 4 m+1$ and $m \in \mathbb{Z}^{+}$. Clearly, if $p \equiv-1 \bmod 4$, then we prove $\Lambda_{p}(N)=\Gamma_{0, p}(N)$.

As a start we now give the following important theorem.
Theorem 2.2. Let p be a prime with $p>2$ and suppose that $\left(\frac{-1}{p}\right)$, namely there exists an $x \in \mathbb{Z}$ such that $x^{2} \equiv-1$ mod p. Then, with the same understanding, $\left(\frac{-1}{p^{n}}\right)=1$ if and only if $p \equiv 1 \bmod 4$ for all $n \in \mathbb{N}$.

Proof. Take n to be 1 , we get $\left(\frac{-1}{p}\right)=1$. Then, $p \equiv 1 \bmod 4$. Conversely, suppose $p \equiv 1 \bmod 4$ and n is an arbitrary natural number. We here use the principle of Mathematical Induction.

It is true for $n=1$. Suppose it is true for $\ell \in \mathbb{N}$, that is, there exists $y \in \mathbb{Z}$ such that $y^{2} \equiv-1 \bmod p^{\ell}$. We will show that the claim is true for the number $\ell+1$.

Since $(y, p)=1$, then there exists $z \in \mathbb{Z}$ such that $2 y z \equiv 1 \bmod p$. Then

$$
\frac{1+y^{2}}{p^{\ell}}-2 y z \frac{1+y^{2}}{p^{\ell}} \equiv 0 \bmod p .
$$

So, $1+y^{2}-2 y z\left(1+y^{2}\right) \equiv 0 \bmod p^{\ell+1}$. Let $k=-z \frac{1+y^{2}}{p^{\ell}}$. Then we get

$$
1+y^{2}+2 y k p^{\ell} \equiv 0 \bmod p^{\ell+1} .
$$

Therefore we have $\left(y+k p^{\ell}\right)^{2} \equiv-1 \bmod p^{\ell+1}$. That is, $\left(\frac{-1}{p^{\ell+1}}\right)=1$, which completes the proof.
Theorem 2.3. Let $n=2^{\alpha} \cdot p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot p_{3}^{\alpha_{3}} \cdots \cdot p_{r}^{\alpha_{r}}$ be the prime power decomposition of n with $n \mid N$. Then, for $\alpha \leq 3$ and $1 \leq k \leq r$,

$$
p_{k} \equiv-1 \bmod 4 \quad \Leftrightarrow \quad \Gamma_{0, n}(N)=\Lambda_{n}(N) .
$$

Proof. It is already known that $\Gamma_{0, n}(N) \leq \Lambda_{n}(N)$. Now we take an arbitrary $T=\left(\begin{array}{cc}a & b \\ c N & d\end{array}\right) \in \Lambda_{n}(N)$. Thus, we have $a^{4} \equiv 1$ mod n. So, we find $n \mid\left(a^{2}-1\right)\left(a^{2}+1\right)$. This gives that $p_{k}^{\alpha_{k}} \mid\left(a^{2}-1\right)\left(a^{2}+1\right)$ for $1 \leq k \leq r$. Since $p \equiv-1 \bmod 4, p_{k} \nmid\left(a^{2}+1\right)$. Therefore we have $p_{k}^{\alpha_{k}} \mid\left(a^{2}-1\right)$ for $1 \leq k \leq r$. On the other hand we know that $a^{2} \equiv 1 \bmod 2^{\alpha}$ with $\alpha \leq 3$. Consequently, $n \mid\left(a^{2}-1\right)$, that is, $a^{2} \equiv 1 \bmod n$ which gives that $T \in \Gamma_{0, n}(N)$. Hence, $\Gamma_{0, n}(N)=\Lambda_{n}(N)$.

Conversely, we will show that $\alpha \leq 3$ and $p \equiv-1 \bmod 4$ for $1 \leq k \leq r$.
Suppose that, $\alpha \geq 4$. Let $n=2^{\alpha} n_{1}$ and $N=2^{\beta} N_{1}$ with $\left(2, N_{1}\right)=1$. Take $a=2^{\alpha-2} N_{1}+1$. Then, there exist b and d in \mathbb{Z} due to $(a, N)=1$, so that $A=\left(\begin{array}{cc}a & b \\ N & d\end{array}\right)$ is in $\Gamma_{0}(N)$. Because $\alpha \geq 4$ it is easily seen that $a^{4} \equiv 1 \bmod n$ and $a^{2} \not \equiv 1 \bmod n$. Hence $A \in \Lambda_{n}(N)$ but $A \notin \Gamma_{0, n}(N)$. This shows that $\alpha \leq 3$.

Now, we suppose that $n=p^{\alpha} n_{0}$ with $\left(p, n_{0}\right)=1$, and that $p \equiv 1 \bmod 4$. In this case, by theorem 2.2 , there exists $a \in \mathbb{Z}$ such that $a^{2} \equiv-1 \bmod p^{\alpha}$ 。
Let $N=p^{\beta} \cdot p_{1}^{\beta_{1}} \cdot p_{2}^{\beta_{2}} \cdots p_{r}^{\beta_{r}}$ and $n=p^{\alpha} \cdot p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots p_{\ell}^{\alpha_{\ell}}$ be the prime power decomposition of N and n respectively, and $n \mid N$.
i.) Let $\left(a, N_{0}\right)=1$, where $N_{0}=p_{1}^{\beta_{1}} \cdots p_{r}^{\beta_{r}}$. Due to $\left(a p^{\alpha}, N_{0}\right)=1$, there exists $k \in \mathbb{Z}$ such that

$$
k a p^{\alpha} \equiv 1-a \bmod N_{0} \quad \text { or } \quad a+k a p^{\alpha} \equiv 1 \bmod N_{0} .
$$

It is clear that

$$
\left(a+k a p^{\alpha}\right)^{2} \equiv 1 \bmod p^{\alpha} \quad \text { and } \quad\left(a+k a p^{\alpha}\right)^{4} \equiv 1 \bmod p^{\alpha} .
$$

Hence $\left(a+k a p^{\alpha}\right)^{2} \equiv-1 \bmod p^{\alpha}$ we have $\left(a+k a p^{\alpha}\right)^{2} \not \equiv 1 \bmod n$. In this case, again, there exist $u, v \in \mathbb{Z}$ such that

$$
\left(\begin{array}{cc}
a+k a p^{\alpha} & u \\
N & v
\end{array}\right) \in \Lambda_{n}(N) \backslash \Gamma_{0, n}(N) .
$$

This contradicts the equality of the groups $\Gamma_{0, n}(N)$ and $\Lambda_{n}(N)$. Therefore, we must have $p \equiv-1 \bmod 4$.
ii.) Let $\left(a, N_{0}\right) \neq 1$ and $N_{0}=p_{1}^{\beta_{1}} \ldots p_{r}^{\beta_{r}}$. Suppose that, $p_{1}\left|a, \cdots, p_{\ell}\right| a$ and $p_{\ell+1} \nmid a, \cdots, p_{r} \nmid a$. Let $b=a+p_{\ell+1} \ldots p_{r} p^{\alpha}$. Then

$$
b^{2} \equiv a^{2} \equiv-1 \bmod p^{\alpha} \quad \text { and } \quad\left(b, N_{0}\right)=1
$$

So, if we repeat the calculations as in i.), we get a contradiction as $\Gamma_{0, n}(N) \neq \Lambda_{n}(N)$. Hence, in this case as well, we have $p \equiv-1 \bmod 4$. Consequently, the proof of theorem 2.3 is completed.

We now continue to define a $\Lambda_{n}(N)$-invariant equivalence relation on the set

$$
\hat{\mathbb{Q}}_{n}(N)=\left\{\frac{a}{c N} \in \widehat{\mathbb{Q}}: a^{4} \equiv 1 \bmod n \quad \text { and } \quad(a, c N)=1\right\}
$$

This will be used in the index calculation of $\Gamma_{0, n}(N)$ in $\Lambda_{n}(N)$.
Let $n=2^{\alpha} \cdot p_{1}^{\alpha_{1}} \ldots p_{\ell}^{\alpha_{\ell}}, \alpha \geq 4$ or $p_{i} \equiv 1 \bmod 4$ for some $1 \leq i \leq \ell$. Only, in this case, we have $\Gamma_{0, n}(N) \nRightarrow \Lambda_{n}(N)$ with $n>1$. The stabilizer $\Lambda_{n}(N)_{\infty}$ of ∞ in $\Lambda_{n}(N)$ is the group $\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$. Then, we get

$$
\Lambda_{n}(N)_{\infty} \supsetneqq \Gamma_{0, n}(N) \supsetneqq \Lambda_{n}(N)
$$

Let $\frac{r}{s N}, \frac{x}{y N}$ be in $\hat{\mathbb{Q}}_{n}(N)$. Since $\Lambda_{n}(N)$ act transitively on $\hat{\mathbb{Q}}_{n}(N)$, there exist $g, h \in \Lambda_{n}(N)$ such that $g(\infty)=\frac{r}{s N}$ and $h(\infty)=\frac{x}{y N}$. In this case, we can define an equivalence relation as

$$
\frac{r}{s N} \approx \frac{x}{n} \Leftrightarrow g h^{-1} \in \Gamma_{0, n}(N)
$$

So, If we take the T and M for the convenient $g=\left(\begin{array}{cc}r & k \\ s N & \ell\end{array}\right)$ and $h=\left(\begin{array}{cc}x & t \\ y N & m\end{array}\right)$ respectively, then we get

$$
T M^{-1}=\left(\begin{array}{cc}
r m-k y N & * \\
* & *
\end{array}\right)
$$

$T M^{-1} \in \Gamma_{0, n}(N)$ if $(r m-k y N)^{2} \equiv r^{2} m^{2} \equiv 1 \bmod n$. Since $\operatorname{det} M=1, x m \equiv 1 \bmod n$ or $x \equiv m^{-1} \bmod n$. Therefore,

$$
r^{2} x^{-2} \equiv 1 \bmod n \text { or } r^{2} \equiv x^{2} \bmod n
$$

Hence,

$$
\frac{r}{s N} \approx \frac{x}{n} \quad \Leftrightarrow \quad r^{2} \equiv x^{2} \bmod n
$$

The relation $\underset{n}{\approx}$ is a Γ-invariant primitive equivalence relation. Then, the number of equivalence classes, denoted by $\Psi_{N}(n)$, will give the index

$$
\left|\Lambda_{n}(N): \Gamma_{0, n}(N)\right|
$$

Therefore, we must calculate the number $\Psi_{N}(n)$. First of all we give the following theorem.
Theorem 2.4. The function $\Psi_{N}: E \rightarrow \mathbb{N}$ is a multiplicative function. That is, let E be the exact divisors of $n:=k . \ell$ for $k, \ell \in E$ with $(k, \ell)=1$. Then

$$
\Psi_{N}(n)=\Psi_{N}(k \cdot \ell)=\Psi_{N}(k) \cdot \Psi_{N}(\ell)
$$

Proof. Without loss of generality, it is sufficient to prove only the case, where $n=k \cdot \ell$ for $k, \ell \in E$ with $(k, \ell)=1$. It is clear that if $x \approx y$, then $x \underset{k}{\approx} y$ and $x \underset{\ell}{\approx} y$.

Conversely, we show that if $a \underset{k}{\approx} b$ and $c \underset{\ell}{\approx} d$, then exists $x \underset{n}{\approx} y$, such that

$$
\left\{\begin{array} { l l }
{ x \equiv a } & { \operatorname { m o d } k , } \\
{ y \equiv b } & { \operatorname { m o d } k }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
x \equiv c & \bmod \ell \\
y \equiv d & \bmod \ell
\end{array}\right.\right.
$$

Therefore, let $a \underset{k}{\approx} b$ and $c \underset{\ell}{\approx} d$. Then, $a \underset{k}{\approx} b$ and $c \underset{\ell}{\approx} d$. Then

$$
\left\{\begin{array} { c c }
{ a ^ { 4 } \equiv 1 } & { \operatorname { m o d } k , } \\
{ b ^ { 4 } \equiv 1 } & { \operatorname { m o d } k , }
\end{array} \quad \text { and } \left\{\begin{array}{ll}
c^{4} \equiv 1 & \bmod \ell \\
d^{4} \equiv 1 & \bmod \ell
\end{array}\right.\right.
$$

Since $(k, \ell)=1$, then there exist $x, y \in \mathbb{Z}$ such that $a+k x=c+\ell y$.

$$
(a+k x)^{4} \equiv a^{4} \equiv 1 \bmod k \quad \text { and } \quad(a+k x)^{4} \equiv(c+\ell y)^{4} \equiv c^{4} \equiv 1 \bmod \ell
$$

So, we get that $(a+k x)^{4} \equiv 1 \bmod n$. Therefore, if $[a]_{k}$ and $[c]_{\ell}$ are the equivalence classes of a and c respectively, then we get a unique equivalence class $[a+k x]_{n}$ with respect to the number n. Consequently, this means that $\Psi_{N}(n)=\Psi_{N}(k) . \Psi_{N}(\ell)$. This proves the theorem.

Now we give the below important theorem.

Theorem 2.5. Let $N, n \in \mathbb{N}$ with $n \mid N$ and $n=2^{\alpha} . p_{1}^{\alpha_{1}} \ldots . p_{r}^{\alpha_{r}} . q_{1}^{\beta_{1}} \cdots . q_{\ell}^{\beta_{\ell}}$, where $p_{i} \equiv-1 \bmod 4$ for $1 \leq i \leq r$ and $q_{j} \equiv 1 \bmod 4$ for $1 \leq j \leq \ell$. Then the index $\left|\Lambda_{n}(N): \Gamma_{0, n}(N)\right|$ is

$$
\Psi_{N}(n)= \begin{cases}2^{\ell}, & \alpha \leq 3, \\ 2^{\ell+1}, & \alpha>3 .\end{cases}
$$

Proof. Since the function Ψ_{N} is transitive, we can take n as a prime power as follows.
i.) Let $n=2^{\alpha}$ with $\alpha \leq 3$. Then, it is easy to see that

$$
\Psi_{N}(2)=\Psi_{N}\left(2^{2}\right)=\Psi_{N}\left(2^{3}\right)=1,
$$

as expected.
ii.) Let $n=2^{\alpha}$ with $\alpha>3$. For the solution $x^{4} \equiv 1 \bmod 2^{\alpha}$, we must check the numbers $1,3,5, \cdots, 2^{\alpha}-1$. These numbers are not solutions of the congruence $x^{2}+1 \equiv 0 \bmod 2^{\alpha}$ by solutions of $x^{2}+1 \equiv 0 \bmod 2$. Therefore, the solutions of the congruence $x^{4} \equiv 1 \bmod 2^{\alpha}$ comes from the congruence $x^{2}-1 \equiv 0 \bmod 2^{\alpha-1}$, since

$$
x^{4}-1 \equiv\left(x^{2}-1\right)\left(x^{2}+1\right) \equiv 0 \bmod 2^{\alpha} .
$$

$(x-1, x+1)=2$ gives that $x-1 \equiv 0 \bmod 2^{\alpha}-2$ or $x+1 \equiv 0 \bmod 2^{\alpha}-2$. Then, there exist natural numbers k and ℓ such that $x=1+k .2^{\alpha}-2$ or $x=-1+\ell .2^{\alpha}-2$. Since $x<2^{\alpha}$, we have $k=1,2,3$ and $\ell=1,2,3,4$. Therefore, all these x are as follows,

$$
\begin{aligned}
& \begin{cases}x_{1}=1+2^{\alpha}-2, & \text { for } k=1, \\
x_{2}=1+2^{\alpha}-1, & \text { for } k=2, \\
x_{3}=1+3.2^{\alpha}-2, & \text { for } k=3,\end{cases} \\
& \left\{\begin{array}{lr}
x_{4}=-1+2^{\alpha}-2, & \text { for } \ell=1, \\
x_{5}=-1+2^{\alpha}-1, & \text { for } \ell=2, \\
x_{6}=-1+3.2^{\alpha}-2, & \text { for } \ell=3, \\
x_{7}=-1+2^{\alpha}, & \text { for } \ell=4,
\end{array}\right.
\end{aligned}
$$

and of course we have $x_{8}=1$. From the above solutions we have

Therefore, we get that $\left[x_{1}\right]_{2^{\alpha}} \neq\left[x_{8}\right]_{2^{\alpha}}$. Consequently, we have conclude that $\Psi_{N}(n)=2$, where $n=2^{\alpha}$ and $\alpha>3$.
iii.) Let $n=p^{\vartheta}$. In this case, there are two conditions:
(1.) Suppose that $p \equiv 1 \bmod 4$. Then, the congruence $x^{2} \equiv-1 \bmod p^{\alpha}$ has a solution x_{1}. And, the only other solution is $x_{2}=p^{\alpha}-x_{1}$. Also, the solutions of the congruence $x^{2} \equiv 1 \bmod p^{\alpha}$ are $x_{3}=1$ and $x_{4}=p^{\alpha}-1$. Hence, the congruence $x^{4} \equiv 1 \bmod p^{\alpha}$ has the solutions x_{1}, x_{2}, x_{3} and x_{4}. Since $x_{1}^{2} \equiv x_{2}^{2} \equiv-1 \bmod p^{\alpha}$ we have $\left[x_{1}\right]_{p^{\vartheta}}=\left[x_{2}\right]_{p^{\vartheta}}$. Likewise, we have $\left[x_{3}\right]_{p^{\vartheta}}=\left[x_{4}\right]_{p^{\vartheta}}$. But it is easily seen that $\left[x_{1}\right]_{p^{\vartheta}} \neq\left[x_{3}\right]_{p^{\vartheta}}$. So, $\Psi_{N}(n)=2$, as promised.
(2.) Now suppose that $p \equiv-1 \bmod 4$. In this case, the congruence $x^{2} \equiv-1 \bmod p^{\vartheta}$ has no solution. Therefore, if the congruence $x^{4} \equiv 1 \bmod p^{\vartheta}$ has a solution x, then $x^{2} \equiv 1 \bmod p^{\vartheta}$. As in 1 ., the congruence $x^{2} \equiv 1 \bmod p^{\vartheta}$ has the solutions $x_{1}=1$ and $x_{2}=p^{\vartheta}-1$. It is clear that $\left[x_{1}\right]_{p^{\vartheta}}=\left[x_{2}\right]_{p^{\vartheta}}$. That is, $\Psi_{N}(n)=1$, as claimed.
Consequently, from the above and theorem 2.4 , the proof of theorem 2.5 is completed.

References

[1] M. Akbaş,The Normalizer of Modular Subgroup, Ph. D. Thesis (1989), Faculty of Mathematical Studies, University of Southampton, Southampton, UK.
[2] J.S. Rose, A Course on Group Theory, Cambridge University Press (1978), Cambridge, UK
[3] G.A. Jones, D. Singerman, K. Wicks, The modular group and generalized Farey graphs, London Math. Soc. Lecture Notes Series 160 (1991), Cambridge University Press, Cambridge, UK.
[4] N.L. Biggs, A.T. White, Permutation Groups and Combinatorial Structures, 33rd edn., London Mathematical Society Lecture Note Series (1979), Cambridge University Press, Cambridge, UK
[5] A. Büyükkaragöz, Signatures and graph connections of some subgroups of extended modular group, PhD Thesis (2019), Ordu University, Ordu, Turkey.
[6] G.H. Hardy, E.M. Wright,An introduction to the theory of numbers, 5th edn, Oxford University Press (1979), Oxford, UK.
[7] G.A. Jones, D. Singerman, Complex Functions: An Algebraic and Geometric Viewpoint Cambridge University Press (1997), UK.
[8] C.C. Sims, Graphs and finite permutation groups, Math. Zeitschr, 95(1967), 76-86.

