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Abstract

In this paper, we find conditions on the natural number n that the subgroups Γ0,n(N) and Λn(N) of modular group are different. And then, by
defining an Λn(N) invariant equivalence relation on the subset Q̂n(N), we calculate the index formula for Γ0,n(N) in Λn(N).
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1. Introduction

Definition 1.1. [1] Let G be a group and also a topology. If the functions F : G×G −→ G, F(x,y) := xy and f : G −→ G, f (x) := x−1

functions are continuous, then G is called a topological group.

Definition 1.2. [2] Let G be a group and X 6= /0 be a set. In this case, if the function Ψ : G×X −→ X satisfies the following conditions,

i.) Ψ(g1g2,x) = Ψ(g1,Ψ(g2,x)) for g1,g2 ∈ G and x ∈ X,
ii.) Ψ(1,x) = x for 1 ∈ G is unit element and x ∈ X,

then G is called an act group according to the left product on X.

Here, we shortly write gx instead of Ψ(g,x). Hence, (g1g2)x = g1(g2x) and 1x = x. An act group expression will mean an act group with
respect to the left product. Moreover, if G is a topological group, X is a topology and the transformation Ψ is continuous, then the pair of
[G,X ] is called topological transformation group.

Definition 1.3. [2] Let [G,X ] be a topological transformation group. If Gx = X for x ∈ X, then the pair of [G,X ] is called transitive
topological transformation group. It is clearly, if there is a element g ∈ G, such that gx = y for x,y ∈ X, then the pair of [G,X ] is transitive
topological transformation group.

Definition 1.4. [3] Let [G,X ] be any topological transformation group. In this case,

i.) For x ∈ X, the set of SbG(x) = Gx := {g ∈ G : gx = x} is called stabilizing x in G.
ii.) For g ∈ G, the set of Sb(g;X) := {x ∈ X : gx = x} is called constant point set g in X.

Now, we give some information for subgroups act.

∓
(

a b
c d

)
a,b,c,d ∈ Z,ad−bc = 1. (1.1)

Here we omit the symbol ∓, and identify each matrix with its negatives. As usual, Γ and its subgroups act on the extended rational
Q̂=Q∪{∞} by

z→ az+b
cz+d

,
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where
(

a b
c d

)
is as in (1.1).

Throughout the paper we use the following subgroups

Γ0,n(N) =

{(
a b

cN d

)
∈ Γ : a2 ≡ 1 mod n

}

and

Λn(N) =

{(
a b

cN d

)
∈ Γ : a4 ≡ 1 mod n

}
.

where N,n be positive integers with n | N. Then We now give the notion, as in [3], an imprimitive action for a permutation group (G,Ω),
where G is the group acting on the set Ω transitively. The equivalence relation ≈ is called G-invariant if and only if

x≈ y gives g(x)≈ g(y) for all g ∈ G.

Then we immediately have two trivial equivalence relations Ω as

i.) For all x,y ∈Ω x≈ y,
ii.) For all x ∈Ω x≈ x.

If there is an equivalence relation on Ω other than the above two we say that the group G acts on Ω imprimitively.

Let H be a subgroup of G with H 6= G and Gα be stabilizer of α ∈Ω and that Gα � H � G. In this case we define a G-invariant imprimitive
action as follows. Since G acts on Ω transitively there exist g,h ∈ G such that, for any given x and y in Ω

x = g(α),y = h(α).

Let x≈ y⇔ gh−1 ∈ H. Then the relation ≈ on Ω is a G-invariant primitive equivalence relation. As in [3], in this case the index | G : H | is
the number of equivalence classes. You can find the fundamental concepts and information in [4]-[8].

Lemma 1.5. [6] Let n ∈ Z+,x≤ n and (x,n) = 1. In this case, the solution of the congruence x2 ≡ 1 mod n consists of 2r+s values for

n = 2α1 pα2
2 . . . pαr+1

r+1 and s =


0, i f α1 = 1
1, i f α1 = 2
2, i f α1 ≥ 3

The paper is organized as follows.

First of all we will get conditions on the natural number n so that the equality

Λn(N) = Γ0,n(N)

is satisfied. Then we calculate the index
| Λn(N) : Γ0,n(N) | .

2. Main Calculations

We again write the groups as

Γ0,n(N) =

{(
a b

cN d

)
∈ Γ : a2 ≡ 1 mod n or a≡ d mod n

}
and

Λn(N) =

{(
a b

cN d

)
∈ Γ : a4 ≡ 1 mod n or a2 ≡ d2 mod n

}
.

Then it is clear that Γ0,n(N)≤ Λn(N).

Let us define the subset of Q̂ as

Q̂n(N) =
{ a

cN
∈ Q̂ : a4 ≡ 1 mod n and (a,cN) = 1

}
.

Then it is easily seen that this is one of the largest subset of Q̂ on which the group Λn(N) acts transitively.

Theorem 2.1. We suppose that m,N ∈ Z+, p ∈ P, p|N and p 6= 4m+1. Then

Λp(N) = Γ0,p(N).
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Proof. If a≡ d mod p, then a2 ≡ d2 mod p. From this, it is clear that Γ0,p(N)⊂ Λp(N). Now, let we show that Λp(N)⊂ Γ0,p(N).

Firstly, let we take
(

a b
cN d

)
∈ Λp(N). Then, we obtain ad−bcN = 1 and a2 ≡ d2 mod p. Hence, we establish ad ≡ 1 mod p according

to p|N. Therefore, d ≡ a−1 mod p. And then a4 ≡ 1 mod p from a2 ≡ (a−1)2 mod p. If m∈Z+ and p 6= 4m+1, then we have a2 ≡ 1 mod p.

Namely, we find a ≡ d mod p in the group Γo,p(N). This is also means that
(

a b
cN d

)
∈ Γ0,p(N). Thus, we get Λp(N) ⊂ Γ0,p(N).

Consequently, we obtain Λp(N) = Γ0,p(N) under the conditions of p 6= 4m+ 1 and m ∈ Z+. Clearly, if p ≡ −1 mod 4, then we prove
Λp(N) = Γ0,p(N).

As a start we now give the following important theorem.

Theorem 2.2. Let p be a prime with p > 2 and suppose that
(−1

p

)
, namely there exists an x ∈ Z such that x2 ≡−1 mod p. Then, with the

same understanding,
(−1

pn

)
= 1 if and only if p≡ 1 mod 4 for all n ∈ N.

Proof. Take n to be 1, we get
(−1

p

)
= 1. Then, p≡ 1 mod 4. Conversely, suppose p≡ 1 mod 4 and n is an arbitrary natural number. We

here use the principle of Mathematical Induction.

It is true for n = 1. Suppose it is true for ` ∈ N, that is, there exists y ∈ Z such that y2 ≡−1 mod p`. We will show that the claim is true for
the number `+1.

Since (y, p) = 1, then there exists z ∈ Z such that 2yz≡ 1 mod p. Then

1+ y2

p`
−2yz

1+ y2

p`
≡ 0 mod p.

So, 1+ y2−2yz(1+ y2)≡ 0 mod p`+1. Let k =−z
1+ y2

p`
. Then we get

1+ y2 +2ykp` ≡ 0 mod p`+1.

Therefore we have
(

y+ kp`
)2
≡−1 mod p`+1. That is,

( −1
p`+1

)
= 1, which completes the proof.

Theorem 2.3. Let n = 2α .pα1
1 .pα2

2 .pα3
3 . · · · .pαr

r be the prime power decomposition of n with n | N. Then, for α ≤ 3 and 1≤ k ≤ r,

pk ≡−1 mod 4 ⇔ Γ0,n(N) = Λn(N).

Proof. It is already known that Γ0,n(N)≤ Λn(N). Now we take an arbitrary T =

(
a b

cN d

)
∈ Λn(N). Thus, we have a4 ≡ 1 mod n. So,

we find n | (a2−1)(a2 +1). This gives that pαk
k | (a

2−1)(a2 +1) for 1 ≤ k ≤ r. Since p ≡ −1 mod 4, pk - (a2 +1). Therefore we have
pαk

k | (a
2−1) for 1≤ k ≤ r. On the other hand we know that a2 ≡ 1 mod 2α with α ≤ 3. Consequently, n | (a2−1), that is, a2 ≡ 1 mod n

which gives that T ∈ Γ0,n(N). Hence, Γ0,n(N) = Λn(N).

Conversely, we will show that α ≤ 3 and p≡−1 mod 4 for 1≤ k ≤ r.

Suppose that, α ≥ 4. Let n = 2α n1 and N = 2β N1 with (2,N1) = 1. Take a = 2α−2N1 +1. Then, there exist b and d in Z due to (a,N) = 1,

so that A =

(
a b
N d

)
is in Γ0(N). Because α ≥ 4 it is easily seen that a4 ≡ 1 mod n and a2 6≡ 1 mod n. Hence A∈Λn(N) but A /∈ Γ0,n(N).

This shows that α ≤ 3.

Now, we suppose that n = pα n0 with (p,n0) = 1, and that p ≡ 1 mod 4. In this case, by theorem 2.2, there exists a ∈ Z such that
a2 ≡−1 mod pα .

Let N = pβ .pβ1
1 .pβ2

2 . · · · pβr
r and n = pα .pα1

1 .pα2
2 . · · · pα`

` be the prime power decomposition of N and n respectively, and n | N.

i.) Let (a,N0) = 1, where N0 = pβ1
1 . · · · pβr

r . Due to (apα ,N0) = 1, there exists k ∈ Z such that

kapα ≡ 1−a mod N0 or a+ kapα ≡ 1 mod N0.

It is clear that

(a+ kapα )2 ≡ 1 mod pα and (a+ kapα )4 ≡ 1 mod pα .

Hence (a+ kapα )2 ≡−1 mod pα we have (a+ kapα )2 6≡ 1 mod n. In this case, again, there exist u,v ∈ Z such that(
a+ kapα u

N v

)
∈ Λn(N)\Γ0,n(N).

This contradicts the equality of the groups Γ0,n(N) and Λn(N). Therefore, we must have p≡−1 mod 4.
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ii.) Let (a,N0) 6= 1 and N0 = pβ1
1 . . . pβr

r . Suppose that, p1 | a, · · · , p` | a and p`+1 - a, · · · , pr - a. Let b = a+ p`+1 . . . pr pα . Then

b2 ≡ a2 ≡−1 mod pα and (b,N0) = 1.

So, if we repeat the calculations as in i.), we get a contradiction as Γ0,n(N) 6= Λn(N). Hence, in this case as well, we have
p≡−1 mod 4. Consequently, the proof of theorem 2.3 is completed.

We now continue to define a Λn(N)-invariant equivalence relation on the set

Q̂n(N) =
{ a

cN
∈ Q̂ : a4 ≡ 1 mod n and (a,cN) = 1

}
.

This will be used in the index calculation of Γ0,n(N) in Λn(N).

Let n = 2α .pα1
1 . . . pα`

` , α ≥ 4 or pi ≡ 1 mod 4 for some 1≤ i≤ `. Only, in this case, we have Γ0,n(N)� Λn(N) with n > 1. The stabilizer

Λn(N)∞ of ∞ in Λn(N) is the group
〈( 1 1

0 1

)〉
. Then, we get

Λn(N)∞ � Γ0,n(N)� Λn(N).

Let
r

sN
,

x
yN

be in Q̂n(N). Since Λn(N) act transitively on Q̂n(N), there exist g,h ∈ Λn(N) such that g(∞) =
r

sN
and h(∞) =

x
yN

. In this

case, we can define an equivalence relation as

r
sN
≈
n

x
yN
⇔ gh−1 ∈ Γ0,n(N).

So, If we take the T and M for the convenient g =

(
r k

sN `

)
and h =

(
x t

yN m

)
respectively, then we get

T M−1 =

(
rm− kyN ∗
∗ ∗

)
.

T M−1 ∈ Γ0,n(N) if (rm− kyN)2 ≡ r2m2 ≡ 1 mod n. Since detM = 1, xm≡ 1 mod n or x≡ m−1 mod n. Therefore,

r2x−2 ≡ 1 mod n or r2 ≡ x2 mod n.

Hence,

r
sN
≈
n

x
yN

⇔ r2 ≡ x2 mod n.

The relation ≈
n

is a Γ-invariant primitive equivalence relation. Then, the number of equivalence classes, denoted by ΨN(n), will give the
index

| Λn(N) : Γ0,n(N) | .

Therefore, we must calculate the number ΨN(n). First of all we give the following theorem.

Theorem 2.4. The function ΨN : E→N is a multiplicative function. That is, let E be the exact divisors of n := k.` for k, `∈ E with (k, `) = 1.
Then

ΨN(n) = ΨN(k.`) = ΨN(k).ΨN(`).

Proof. Without loss of generality, it is sufficient to prove only the case, where n = k.` for k, ` ∈ E with (k, `) = 1. It is clear that if x≈
n

y,
then x≈

k
y and x≈

`
y.

Conversely, we show that if a≈
k

b and c≈
`

d, then exists x≈
n

y, such that{
x≡ a mod k,
y≡ b mod k,

and
{

x≡ c mod `,
y≡ d mod `.

Therefore, let a≈
k

b and c≈
`

d. Then, a≈
k

b and c≈
`

d. Then{
a4 ≡ 1 mod k,
b4 ≡ 1 mod k,

and
{

c4 ≡ 1 mod `,
d4 ≡ 1 mod `.

Since (k, `) = 1, then there exist x,y ∈ Z such that a+ kx = c+ `y.

(a+ kx)4 ≡ a4 ≡ 1 mod k and (a+ kx)4 ≡ (c+ `y)4 ≡ c4 ≡ 1 mod `.

So, we get that (a+ kx)4 ≡ 1 mod n. Therefore, if [a]k and [c]` are the equivalence classes of a and c respectively, then we get a unique
equivalence class [a+kx]n with respect to the number n. Consequently, this means that ΨN(n) = ΨN(k).ΨN(`). This proves the theorem.

Now we give the below important theorem.
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Theorem 2.5. Let N,n ∈ N with n|N and n = 2α .pα1
1 . · · · .pαr

r .qβ1
1 . · · · .qβ`

` , where pi ≡ −1 mod 4 for 1 ≤ i ≤ r and q j ≡ 1 mod 4 for
1≤ j ≤ `. Then the index |Λn(N) : Γ0,n(N)| is

ΨN(n) =
{

2`, α ≤ 3,
2`+1, α > 3.

Proof. Since the function ΨN is transitive, we can take n as a prime power as follows.

i.) Let n = 2α with α ≤ 3. Then, it is easy to see that

ΨN(2) = ΨN(22) = ΨN(23) = 1,

as expected.
ii.) Let n= 2α with α > 3. For the solution x4 ≡ 1mod 2α , we must check the numbers 1,3,5, · · · ,2α−1. These numbers are not solutions

of the congruence x2 + 1 ≡ 0mod 2α by solutions of x2 + 1 ≡ 0mod 2. Therefore, the solutions of the congruence x4 ≡ 1mod 2α

comes from the congruence x2−1≡ 0mod 2α−1, since

x4−1≡ (x2−1)(x2 +1)≡ 0mod 2α .

(x− 1,x+ 1) = 2 gives that x− 1 ≡ 0mod 2α − 2 or x+ 1 ≡ 0mod 2α − 2. Then, there exist natural numbers k and ` such that
x = 1+ k.2α −2 or x =−1+ `.2α −2. Since x < 2α , we have k = 1,2,3 and `= 1,2,3,4. Therefore, all these x are as follows,

x1 = 1+2α −2, for k = 1,
x2 = 1+2α −1, for k = 2,
x3 = 1+3.2α −2, for k = 3,

x4 =−1+2α −2, for `= 1,
x5 =−1+2α −1, for `= 2,
x6 =−1+3.2α −2, for `= 3,
x7 =−1+2α , for `= 4,

and of course we have x8 = 1. From the above solutions we have
x2

2 ≡ x2
5 ≡ x2

7 ≡ x2
8 ≡ 1 mod 2α and,

x2
1 ≡ x2

3 ≡ x2
4 ≡ x2

6 6≡ 1 mod 2α and that,
x4

1 ≡ x4
3 ≡ x4

4 ≡ x4
6 ≡ 1 mod 2α .

Therefore, we get that [x1]2α 6= [x8]2α . Consequently, we have conclude that ΨN(n) = 2, where n = 2α and α > 3.
iii.) Let n = pϑ . In this case, there are two conditions:

(1.) Suppose that p≡ 1 mod 4. Then, the congruence x2 ≡−1 mod pα has a solution x1. And, the only other solution is x2 = pα−x1.
Also, the solutions of the congruence x2 ≡ 1 mod pα are x3 = 1 and x4 = pα −1. Hence, the congruence x4 ≡ 1 mod pα has the
solutions x1,x2,x3 and x4. Since x2

1 ≡ x2
2 ≡−1 mod pα we have [x1]pϑ = [x2]pϑ . Likewise, we have [x3]pϑ = [x4]pϑ . But it is

easily seen that [x1]pϑ 6= [x3]pϑ . So, ΨN(n) = 2, as promised.
(2.) Now suppose that p≡−1 mod 4. In this case, the congruence x2 ≡−1 mod pϑ has no solution. Therefore, if the congruence

x4 ≡ 1 mod pϑ has a solution x, then x2 ≡ 1 mod pϑ . As in 1., the congruence x2 ≡ 1 mod pϑ has the solutions x1 = 1 and
x2 = pϑ −1. It is clear that [x1]pϑ = [x2]pϑ . That is, ΨN(n) = 1, as claimed.

Consequently, from the above and theorem 2.4, the proof of theorem 2.5 is completed.
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