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Abstract  Öz 

Knowledge-based modeling has a critical role to embed existing 
knowledge to improve modeling performance. Since reconfigurable 
antenna can provide more operational frequencies than the classical 
antennas, a knowledge-based hybrid structure is used in this work to 
obtain efficient model and producing optimum new models for a 
reconfigurable microstrip antenna. The hybrid structure consists of two 
phases. The first phase generates initial knowledge which is used in 
knowledge-based modeling structure to obtain design parameters. 
Artificial neural network based multilayer perceptron can generate 
necessary knowledge for a knowledge-based model after the training 
process. Knowledge-based modeling improves the accuracy of the initial 
model to determine design parameters corresponding to the design 
target. Source difference, prior knowledge Input and prior knowledge 
input with difference can be applied to realize an efficient knowledge-
based strategy. 3D-EM simulation generates the new model in terms of 
the design parameters of the proposed application. It has three 
switching states for operating, which are organized by two resistor 
circuits representing ON/OFF states. Switch positions and geometrical 
parameters can be used for satisfying design targets between 1 GHz and 
6 GHz for the efficient antenna design.  

 Bilgi tabanlı modelleme, modelleme performansını geliştirmek için 
mevcut bilgiyi içine katmak için kritik bir role sahiptir. Yeniden 
yapılandırılabilir anten, klasik antenlerden daha fazla operasyonel 
frekans sağlayabildiğinden, bu çalışmada bilgi tabanlı bir hibrid yapı, 
verimli bir model elde etmek ve aynı zamanda yeniden yapılandırılabilir 
bir N-şekilli mikroşerit anten (RNSMA) için optimum yeni çözümler 
üretmek için kullanılmıştır. Hibrid yapı iki aşamadan oluşmaktadır. İlk 
aşama, tasarım parametrelerini elde etmek için bilgi tabanlı modelleme 
yapısında kullanılan başlangıç bilgisini üretmektedir. Yapay sinir ağı 
tabanlı çok katmanlı algılayıcı, eğitim sürecinden sonra bilgi tabanlı bir 
model için gerekli bilgiyi üretebilir. Bilgi tabanlı modelleme, tasarım 
hedefine karşılık gelen tasarım parametrelerini belirlemek için 
başlangıç modelinin doğruluğunu geliştirir. Verimli bilgi temelli bir 
stratejiyi gerçekleştirmek için Ön Bilgi Girişi (PKI), Kaynak Farkı (SD) 
ve Ön Bilgi Girişi ile Fark (PKID) uygulanabilir. 3B-EM simülasyonu, 
RNSMA'nın tasarım parametrelerine bağlı olarak yeni çözümü üretir. 
Önerilen anten, AÇIK/KAPALI durumlarını kullanarak iki direnç devresi 
tarafından kontrol edilen üç çalışma moduna sahiptir. Anahtar 
konumları ve geometrik parametreler verimli bir anten tasarımı için 1 
GHz ve 6 GHz arasında tasarım hedeflerini karşılamak için 
kullanılabilir. 

Keywords: Artificial neural networks, Knowledge-based models, 
Reconfigurable microstrip antenna, Resistor circuits. 

 Anahtar kelimeler: Yapay sinir ağı, Bilgi tabanlı modelleme, Yeniden 
yapılandırılabilir anten, Direnç devresi. 

1 Introduction  

The recent development of reconfigurable microstrip antennas 
is rapidly growing especially in telecommunication 
technologies [1]. They are gained considerable attention in the 
IEEE 802.11n standard, MIMO radar systems, portable 
computers and 5G cellular technologies such as WiMAX and 
long-term evolution (LTE) [2],[3]. Through changing the shape 
of the structure of the antenna by connecting/disconnecting 
some radiating parts, types of dielectric materials and feeding 
systems, different characteristics can be realized such as 
frequency bands, radiation patterns, directivity, etc. In addition, 
they have excellent properties as light weights, easily 
fabricated, small electrical dimensions (length, breadth and 
height.), low price and profile compared to conventional 
antennas [2]. Various switching mechanisms have been applied 
for designing reconfigurable antennas. Set of those (e.g. thin 
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film microstrip, MEMS, resistors, PIN diodes, varactors and 
smart material) have played a major role for achieving different 
results as resonant frequencies, wideband and polarization 
diversity [1],[4]. In this study, three switching states have been 
researched with two resistor circuits which are ON-ON, ON-OFF 
and OFF-OFF. These states have a wide area of operating 
frequencies that make the proposed antenna more advisable 
when compared to other reconfigurable antennas controlled by 
different switching mechanisms studied in [5]-[8]. Therefore, 
the idea of using resistor circuits is for switching states that can 
minimize the complexity and non-linearity of the proposed 
antenna compared to today’s wireless communication systems 
[4]. It is possible to model and optimize different types of 
antennas using different optimization methods, one of the most 
important is ANN methods [9],[10]. They provide a general 
structure for modelling non-linear links between various 
outputs and inputs related to the problem (control, remote 
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sensing, pattern recognition, medical, telecommunications, 
speech processing, and more applications). They are also much 
faster than 3D-EM simulation for achieving results. Therefore, 
ANNs are considered as an optimization and modeling process 
for the antenna design, microwave device, electronic circuits 
and signal integrity analysis [9]-[11]. They are computational 
algorithms. It intended to simulate the action of different 
systems by data. In certain cases, data should be available from 
designed/modeled applications represented sometimes by 
data collected from equivalent, covariance, undeformed and 
deformed models, in addition to semi-analytical, math and 
empirical equations [10]. In knowledge-based/added ANN 
models, the present knowledge (data/any information) is 
integrated as input sometimes as target vectors to learn in the 
fine model [11],[12]. They have more accuracy, often faster, 
have better interpolation and extrapolation data process and 
require minimal training knowledge compared to 
traditional ANN (e.g. Multilayer perceptron (MLP)) [9],[13]. 

This paper supports the growing needs in the application of 
ANNs in reconfigurable antenna design areas. ANNs depend on 
enough training data for modelling and optimizing the results 
of any microwave application, in which their accuracy also 
depends on the data presented during the training process step. 
In this application, training data is generated by CST-EM 
simulation software that is based on the Finite Integration 
Technique (FIT). 

In this study, novel models (solutions) are presented by using 
the hybrid structure for modeling the reconfigurable N-shaped 
microstrip antenna as an alternative technique to only use  
3D-EM simulations [14]. The structure is developed to contain 
two phases, the first phase contains two processing steps: MLP 
as a first training step followed by means of knowledge-added 
methods as a second training step. Knowledge-added methods 
are: (1) prior knowledge input (PKI), (2) source difference (SD) 
and (3) prior knowledge input with difference (PKID) methods 
[9],[10],[14]. However, in the hybrid structure, the frequency 
samples are provided as an input and the geometrical 
characteristics of the model/proposed antenna as an output, 
and consequently the learning process is inversely achieved. 
Thus, the hybrid structure was reversed to start processing 
from right to left direction as explained in paragraph 3. It is 
significant to note that the output of MLP presents a coarse 
model/information in some cases, which is subsequently 
trained by the knowledge-added methods. In the last, the 
characteristic parameters have been taken out from the ANNs 
are designed by the 3D-EM CST software as a second phase to 
find new models as goaled hence new operational frequencies 
which can be contributed in different wireless communication 
applications that have operating frequency range between 1-6 
GHz such as L-band, S-band, and C-band. The proposed models 
confirm to be especially useful in case of the frequency samples 
are only the input used to produce several new models with 
several geometrical dimensions. Improved accuracy is outlined 
by the normalized mean absolute error (NMARE) between the 
predicted output and the target of the model for the return loss 
(RL). 

2 Reconfigurable antenna design 

The antenna being studied introduces a new reconfigurable 
microstrip antenna (RNSMA) that the radiation conductor is 
configured in the shape of capital “N” letter. This RNSMA is 
made up of three different material sheets and a feeding system 
(Coaxial cable). The radiation conductor (first sheet) consists of 

two faced triangles separated by mid rectangular strip as 
shown in Figure 1(a). The length of parameters of  𝐿1, 𝐿2, 𝐿3, 𝑊1 
and 𝑊4 set to 0.8 cm while the width of mid rectangular strip 
set to 0.4 cm. They are typed on a dielectric substrate of  
FR-4 (mid sheet) with a thickness set to 0.2 cm and a relative 
permittivity of 4.3. The ground plane (last sheet) is typed on the 
back side of the dielectric. 𝑊2 and 𝑊3 are introduced as empty 
spaces between the two triangles and the mid conductor set to 
0.2 cm that contains two resistor circuits (𝑅𝐶1 and 𝑅𝐶2). Each 
circuit contains two different resistors of value and in parallel 
mode, the main rule of 𝑅𝐶1 and 𝑅𝐶2 is to control the flow of the 
electrical current hence they might permit appearing new 
results. Ordinarily, resistors work by scattering power as heat 
and minimizing the flow of electricity through it. They are 
passive electrical components that act as variable material at 
radio frequency (RF) and microwave wireless systems. They 
are placed in the position of the upper left   
(between A & B = 0.2 cm) and lower right (between C & D= 0.2 
cm) parts of the triangle conductors to do a perfect shared 
current paths on the conductors basing on their switching 
states (𝑆𝑊1 & 𝑆𝑊2) as shown in  

 

(a) (b) 

Figure 2(a). As it is known, a switch has two functions, a short 
circuit when closed and an open circuit when open. Therefore, 
when switches (𝑆𝑊1 & 𝑆𝑊2) in the circuits are switched off 
(OFF-OFF state/between 𝑡2 − 𝑡3), the current is only 
distributed on the mid conductor that is minimizing the non-
linearity. In the case of both switches in the circuits are 
switched on (ON-ON state/between 𝑡0 − 𝑡1), the effective 
length of the RNSMA begins to be higher which maximizes the 
non-linearity. If one of the switches in the circuits is switched 
off while the other is switched on (ON-OFF state/between  
𝑡1 − 𝑡2), the effective conductors are the mid rectangle and the 
triangle that is linked to it causing mid non-linearity  
(see  

 
(a) (b) 

Figure 2(a & b)).  
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(a) (b) 

Figure 1. (a): Reconfigurable N-shaped microstrip antenna and 
(b): Side views. 

 
(a) (b) 

Figure 2. (a): Perspective of resistor circuits and (b): Switching 
states. 

The resistive value of the used resistors is limited by the 
forward biased DC current only. The resistor of 𝑅𝑂𝐹𝐹 has a large 
resistive value of 130 Ohms to not permit distributing the DC 
current to the surface of the connected conductors, the resistor 
of 𝑅𝑂𝑁 has a small resistive value of 5 Ohms when used in the 
ON state as shown in  

 

(a) (b) 

Figure 2(b). Therefore, the current flowing through each 
resistor will be different as specified by Ohm’s Law. The feeding 
system is located at the center (0, 0) of the middle conductor 
with an inside radius of (65 x 10−3 cm) as shown in Figure 1(b). 
Suppose the change in the resistive value of the shape of 
conductors and the resistors are R, the feeding source is V (V is 
the voltage) and they are independently verified based on 
switching states, thus I is a function of the two variables I(V, R). 

According to ohm’s low, the resistive value of each resistor 
determines the amount of current flowing within that resistor 
as shown in  

 

(a) (b) 

Figure 2(a). The equation of parallel resistors specifies 
𝑅𝐶1 and 𝑅𝐶2 as (𝑅𝑂𝐹𝐹 ∗ 𝑅𝑂𝑁) (𝑅𝑂𝐹𝐹 + 𝑅𝑂𝑁)⁄ . Therefore, the 
resistive value of 𝑅𝐶1 or 𝑅𝐶2 is approximately close to the value 
of 𝑅𝑂𝑁 in a situation in which 𝑆𝑊3 and 𝑆𝑊4 switched OFF or ON. 
In other word, switching state (ON or OFF) of 𝑆𝑊3 and/or 𝑆𝑊4 
is not important because it is followed by high-value resistance 
(𝑅𝑂𝐹𝐹). 

To accomplish this nonlinear function, the boundary of the 
generated  training data (minimum and maximum values) for 
the antenna parameters are ranged as shown in Table 1. 

Table 1. The range of generated training data. 

Parameters  Minimum Maximum Samples 
𝐿1(cm) 0.8 2 5 
𝐿2(cm) 0.7 2 5 
𝐿3(cm) 0.65 2 5 
𝑊1(cm) 0.5 1.2 5 
𝑊4(cm) 0.5 1.2 5 
𝑅𝑂𝑁(Ω) 5 - 1 
𝑅𝑂𝐹𝐹(Ω) - 130 1 
𝑓𝑖(GHz) 1 10 100 

3 Proposed hybrid structure 

The hybrid structure has been developed presently that uses 
neural networks and 3D-EM simulation as its basis. The 
proposed hybrid structure consists of two phases which is the 
first phase has two data training/processing steps in the neural 
network area, then followed by 3D-EM simulator to design the 
output of the first and second step of the first phase for 
obtaining the novel models (𝑌𝑀𝐿𝑃 and 𝑌𝐾𝐵𝑁𝑁) of the RNSMA as 
shown in Figure 3. 

 

Figure 3. Two-phase data processing of the hybrid structure 
and producing new models. 

 

The input for ANNs of the hybrid structure is only frequency 
samples (𝑌𝑓 = 𝑓𝑓), while the outputs are the required 

geometrical dimensions of the reconfigurable antenna model. 
(XMLP is the result from 1. st step and XKBNN is the result 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 26(5), 935-943, 2020 
A. Aoad, Z. Aydın 

 

938 
 

from 2. nd step) as shown in Figure 3 and Figure 4. 
Furthermore, the output of the first training step is the input of 
the second training step in addition to extra knowledge as in 
case of PKI and PKID while the extra knowledge will be added 
to the target in SD method. The 3D-EM simulator is given as a 
mutual simulation part for generating training data beforehand 
the first phase and designing the result (𝑋𝑀𝐿𝑃 and 𝑋𝐾𝐵𝑁𝑁) of the 
first phase to get novel models (𝑌𝑀𝐿𝑃 & 𝑌𝐾𝐵𝑁𝑁) through the 
second training phase of the structure.  The result obtained 
from MLP that is known as the first training step will go through 
the knowledge-based neural network (KBNN) that is known as 
the second training step which is shown as 𝑋𝑆𝐷, 𝑋𝑃𝐾𝐼 and 𝑋𝑃𝐾𝐼𝐷. 

During data processing of ANNs, applying the required training 
steps for adjusting synaptic weights and thresholds of their 
neurons. Therefore, the weight coefficient (𝜔) in the error 
function (𝑒) can be defined by 

𝜔 = arg
𝑚𝑖𝑛

𝜔
 ⎸⎸𝑒𝑛 ⎸⎸, 𝑛 = 1,2,3, … , 𝑁 (1) 

Where 𝑛 and 𝑁 represent the iteration number and the training 
data number for ANN modeling, respectively. The error 
measurement function is defined as: 

𝑒𝑛 = 𝑌𝐴𝑁𝑁𝑠
𝑛 − 𝑌𝑓

𝑛,   𝑛 = 1,2,3, … , 𝑁 (2) 

Where 𝑌𝑓
𝑛  represents the input and 𝑌𝐴𝑁𝑁𝑠

𝑛  represents ANN 

models which is known here as 𝑋𝑀𝐿𝑃 and 𝑋𝐾𝐵𝑁𝑁. Finally, after 
finishing the training process in the hybrid structure, the 
function can be defined as: 

𝑋𝐴𝑁𝑁𝑠 = 𝑓𝐴𝑁𝑁𝑠(𝑌𝑓) (3) 

Hata! Başvuru kaynağı bulunamadı.), Hata! Başvuru 
kaynağı bulunamadı.) and Hata! Başvuru kaynağı 
bulunamadı.) equations are considered as a general concept to 
the following ANN methods. 

The training data generated by 3D-EM-simulator was 312,500- 
samples which are computed by Hata! Başvuru kaynağı 
bulunamadı.) of the five trained parameters of 𝐿𝑖  and 𝑊𝑗  for 

the proposed application as shown in Table 1. 

𝑁𝑡𝑟 = 𝑌𝑓 ∏ |𝐿𝑖| ∏ |𝑊𝑗| 

2

𝑗=1

3

𝑖=1

 (4) 

Where 𝑁𝑡𝑟 is the training sample numbers, 𝑌𝑓 is frequency 

sample numbers (which is equal to 100), |𝐿𝑖| and |𝑊𝑗| are the 

number of samples generated for proposed antenna 
parameters  𝐿𝑖 and 𝑊𝑗  (which is equal to 5). Therefore, 𝑁𝑡𝑟=  

100 x 55 = 312,500-samples. This large amount of training data 
has been minimized to be 3,125-samples. The obtained number 
of samples cover the data requirements. The minimization 
procedure depends on the artificial selection of optimum 
frequency samples available between 1-10 GHz of the 
frequency band which has the lesser values of return losses. 
The frequency samples are 100 which are considered the input 
of the presented models and the output is 5 parameters which 
are the geometrical parameters of the proposed RNSMA. 
Therefore, the connection between the inputs of Y vector and 
the outputs of X vector are multi-dimensional and non-linear 
related to the problem (RNSMA). In the testing development 
stage, three testing data sets are selected in ON-ON state. The 
first two testing data sets selected inside training data while the 
third is selected outside the training data which are applied to 

examine the accuracy, generalization capability and final model 
for interpolation and extrapolation data sets in addition to 
verify the actual predictive impact of the neural structure. In 
ON-OFF and OFF-OFF states, different methods of selection 
testing data have been made. 

 

Figure 4. Perspective of produced new models by hybrid 
structure. 

3.1 Multilayer perceptron modeling method (MLP)  

MLP is an important and simplest modeling method. It is a class 
of feedforward neural networks, which is the processing 
method at the first step of the first phase as shown in the hybrid 
structure of Figure 3. In MLP, neurons are grouped into three 
layers interconnected as an input layer, one or more added 
hidden layers and the last is an output layer. It is in the first 
processing step of the hybrid structure, corresponding to 
model Y and X variables respectively [10]. The relationship 
between the input and the output parameters can be 
functionally presented as X = 𝑓(Y). In the present research, the 
input parameter is  𝑌𝑓 = [𝑓]𝑇  (𝑓 is 100-frequency samples) and 

the predicted output is 𝑋𝑀𝐿𝑃 = [𝐿1, 𝐿2, 𝐿3, 𝑊1, 𝑊4 ]𝑇 .The input 
and the output response can be functionally  presented as: 

𝑋𝑀𝐿𝑃 = 𝑓𝑀𝐿𝑃(𝑌𝑓) (5) 

𝑌𝑀𝐿𝑃 = 𝑓𝐸𝑀(𝑋𝑀𝐿𝑃) (6) 

3.2 Source difference modeling method (SD) 

Differently from the previous network architecture, SD is the 
method at the second training step of the first phase which is 
considered a knowledge-based neural network (KBNN) [10]. 
The concept of SD is integrating collected two of training 
datasets together to be the target for the new model. These data 
sets are 3D-EM simulation outputs of 𝑋𝑓 = [𝐿1, 𝐿2, 𝐿3, 𝑊1, 𝑊4 ]𝑇 

and XMLP = [L1, L2, L3, W1, W4]Twhich represents the fine 
information and the information of the output of MLP (𝑋𝑀𝐿𝑃) 
respectively. Therefore, the input parameters for MLP in first 
training step and SD in second training step are only the 
frequency samples 𝑌𝑓 = [𝑓]𝑇 . 𝑋𝑆𝐷 represents predicted output, 

while the target is ∆𝑋𝑆𝐷 = 𝑋𝑓 − 𝑋𝑀𝐿𝑃 as shown in Figure 5. 

 

Figure 5. Hybrid structure including SD modeling in the 
second training step. 

The relationship between the input and the output of the design 
case of 3D-EM simulation and ANNs are functionally presented 
as: 
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𝑌𝑆𝐷 = 𝑓𝐸𝑀(𝑋𝑆𝐷) (7) 

𝑌𝑀𝐿𝑃 = 𝑓𝐸𝑀(𝑋𝑀𝐿𝑃) (8) 

𝑋𝑆𝐷 = 𝑓𝐴𝑁𝑁𝑠(𝑌𝑓) + 𝑋𝑀𝐿𝑃 (9) 

where 𝑌𝑆𝐷 is the optimum frequency (𝑓𝑜𝑝𝑡) that is obtained by 

designing of the predicted model of 𝑋𝑆𝐷. 𝑒𝑆𝐷 is the error 
measure expresses the absolute difference between 𝑓𝑜𝑝𝑡  and  𝑌𝑓  

and it can be presented as: 

𝑒𝑆𝐷 = |𝑓𝑜𝑝𝑡 − 𝑌𝑓| (10) 

3.3 Prior knowledge input modeling method (PKI)  

In this method [10], the output of MLP (𝑋𝑀𝐿𝑃XC) is considered 
the input of PKI (second training step), in addition to the 
original input of 𝑌𝑓 which is an extra knowledgeYf. The target 

output is the fine output (𝑋𝑓Xf). Therefore, the mapping of 

input/output is between the output of MLP (𝑋𝑀𝐿𝑃Xc) and (𝑌𝑓Yf)  

in addition to the target of PKI. The special feature is enhanced 

by including input parameters of the fine model (𝑌𝑓) as 

additional inputs to the PKI in the second training step.  
Therefore, the PKI input parameters can be presented as  

𝑌𝑓−𝑃𝐾𝐼 = [ 𝑌𝑓, 𝑋𝑀𝐿𝑃 ]𝑇 which is shown in Figure 6. 

 

Figure 6. Hybrid structure including PKI modeling in the 
second training step. 

Like the previous modeling case, the relationship between the 
input and the output of the design case of 3D-EM simulation and 
ANNs modeling are, respectively, presented as: 

𝑌𝑃𝐾𝐼 = 𝑓𝐸𝑀(𝑋𝑃𝐾𝐼) (11) 

𝑌𝑀𝐿𝑃 = 𝑓𝐸𝑀(𝑋𝑀𝐿𝑃) (12) 

𝑋𝑃𝐾𝐼 = 𝑓𝐴𝑁𝑁𝑠(𝑌𝑓, 𝑋𝑀𝐿𝑃) (13) 

3.4 Prior knowledge input with difference modeling 
method (PKID) 

PKID totalizes the advantages of PKI and SD knowledge-based 
modeling methods as introduced in [9][13]. The quality of the 
mapping here is enhanced by entering the knowledge obtained 
from MLP (𝑋𝑀𝐿𝑃) with the knowledge of (𝑌𝑓) to be PKID's inputs 

in the second training step. Therefore, the input parameter is 
𝑌𝑓−𝑃𝐾𝐼𝐷 = [𝑌𝑓 , 𝑋𝑀𝐿𝑃 ]𝑇 , when the target is ∆𝑋𝑃𝐾𝐼𝐷 = 𝑋𝑓 − 𝑋𝑀𝐿𝑃 

as shown in Figure 7. 

 

 

 

Figure 7. Hybrid structure including PKID modeling in the 
second training step. 

For 3D-EM simulation and ANNs modeling, Hata! Başvuru 
kaynağı bulunamadı.), Hata! Başvuru kaynağı 
bulunamadı.) and Hata! Başvuru kaynağı bulunamadı.) 
present functionally the relationship between the input and the 
output parameters in the first training and second modeling 
phases as shown in Figure 7. 

𝑌𝑃𝐾𝐼𝐷 = 𝑓𝐸𝑀(𝑋𝑃𝐾𝐼𝐷) (14) 

𝑌𝑀𝐿𝑃 = 𝑓𝐸𝑀(𝑋𝑀𝐿𝑃) (15) 

𝑋𝑃𝐾𝐼𝐷 = 𝑓𝐴𝑁𝑁𝑠(𝑌𝑓 , 𝑋𝑀𝐿𝑃) + 𝑋𝑀𝐿𝑃 (16) 

4 Preprocessing and training of neural 
networks  

Neural model development starts by generating and collecting 
data for training and testing process. Therefore, there are two 
data sets simulated: “Training data set” and 
“interpolation/extrapolation testing data sets”. Two hidden 
layers are used for all networks. However, the number of 
hidden neurons is (60-40) used for MLP and KBNNs. A 
feedforward network computes the outputs of the 100-sample 
inputs as compositions of (60-40) hidden neurons.  Number of 
hidden layers and their neurons based on the nature, non-
linearity and complexity of the function/problem which are 
mapped by the network structure. Highly nonlinear problems 
need more hidden neurons and regular problems need fewer 
hidden neurons. The output neurons are responsible for 
presenting results (models), which result from the processing 
performed by the neurons in the previous hidden layers. ANNs 
have been developed by applying the Levenberg-Marquardt 
algorithm (LMA) which is used for adapting weights, with 
tangent-sigmoid transfer functions (TFs) that is used for 
mapping the input layer to the output layer within certain 
bounds as in the case in the biological neuron. Both are inside 
neurons of the hidden layer. Purely linear function is inside the 
output layer for calculating a layer’s output from its net input. 
The training parameters of the ANNs are optimized as shown in 
Table 2. 

Table 2. ANN training parameters. 

Parameters MLP KBNN 

Learning rate (𝜼) 0.1 0.05 

Performance goal 0.000001 0.000001 

Momentum coefficient (µ)    0.2 (ON-ON state) 
0.2 (OFF-OFF state) 
0.1 (ON-OFF state) 

0.2 

Regularization coefficient 0.2 0.2 
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Both MLP and KBNNs structures are trained for producing new 
models by using MATLAB-Neural Networks. 

5 Results and discussion 

The first phase of the hyper structure is for training ANN 
models. For stable results, the training process has been 
achieved by 50-iterations. The geometrical parameters of the 
RNSMA are calculated on the testing data sets. The first phase 
of the hybrid structure is trained with 3,125-samples to achieve 
the accuracy that is like that have been obtained by 3D-EM 
simulation. The accuracy of the models is presented by the 
optimum value of the S-parameters (frequency and the return 
loss) of which are the results of simulating geometrical 
parameters that obtained by the hybrid structure for 
interpolation and extrapolation test data sets. Numerical 
results that are shown in the following tables represent the 
value of the antenna parameters obtained by running of ANNs 
(MLP, SD, PKI and PKID) at different ON/OFF switching states.  

In the next sub-paragraphs, each switching sate contains 
numerical tables for antenna parameters, new geometries 
(models) and S-parameters for RNSMA. In addition to the result 
of measuring the normalized mean absolute relative error 
(NMARE) as shown in Table 10 . For a RL of the fine model as a 
target and a prediction RL of ANNs, the NMARE is 

𝑁𝑀𝐴𝑅𝐸 =
|𝑅𝐿𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑅𝐿𝐴𝑁𝑁𝑠|

|𝑅𝐿𝐴𝑁𝑁𝑠|
 (17) 

In order to get an optimal model, model simulations have been 
completed under the same conditions of the design mentioned 
in section 2. Geometric transformations are shown on the 
radiation conductors of models depending on switching states, 
while no change on the substrate material and the feeding 
system. 

5.1 ON-ON switching state 

In this state, two of testing data sets are internally chosen from 
training data which is called interpolation and the third is 
externally chosen from training data which is called 
extrapolation. Therefore, the results shown in Table 3, Table 4 
and Table 5 are designed by 3D-EM simulator in the second 
phase to produce new models illustrated in new forms of. 

Table 3. Results obtained by hybrid structure with fine model 

in ON-ON state, 𝑓𝑜𝑝𝑡=2.54 GHz. 

Parameters 𝑌𝑓(Fine) 𝑋𝑀𝐿𝑃 𝑋𝑆𝐷 𝑋𝑃𝐾𝐼 𝑋𝑃𝐾𝐼𝐷 

𝐿1(cm) - 0.6407 0.6056 0.6325 0.6419 

𝐿2(cm) - 0.7397 0.7102 0.7189 0.7082 

𝐿3(cm) -  1.6240 1.6442 1.6551    1.656 

𝑊1(cm) - 0.4360 0.4868 0.5092 0.4543 

𝑊4(cm) - 0.8052 0.7742 0.7734 0.7777 

𝑓𝑜𝑝𝑡(GHz) 2.54 2.63 2.63 2.54 2.63 

𝑅𝐿(dB) -34.67 -15.25 -19.45 -25.61 -17.06 

Table 4. Results obtained by hybrid structure with fine model 

in ON-ON state, 𝑓𝑜𝑝𝑡=4.45 GHz. 

Parameters 𝑌𝑓(Fine) 𝑋𝑀𝐿𝑃 𝑋𝑆𝐷 𝑋𝑃𝐾𝐼 𝑋𝑃𝐾𝐼𝐷 

𝐿1(cm) - 1.7065 1.6985 1.6454 1.6788 

𝐿2(cm) - 1.0210 1.0194 1.0294 1.0196 

𝐿3(cm) - 1.2751 1.3058 1.3172 1.6560 

𝑊1(cm) - 0.9979 0.4868 1.0070 1.3013 

𝑊4(cm) - 0.9388 0.9263 0.9349 0.9419 

𝑓𝑜𝑝𝑡(GHz) 4.45 4.54 4.45 4.45 4.45 

𝑅𝐿(dB) -26.47 -23.15 -23.98 -25.82 -24.03 

Table 5. Numerical results obtained hybrid structure with fine 

model in ON-ON state, 𝑓𝑜𝑝𝑡=5.36 GHz. 

Parameters 𝑌𝑓(Fine) 𝑋𝑀𝐿𝑃  𝑋𝑆𝐷 𝑋𝑃𝐾𝐼 𝑋𝑃𝐾𝐼𝐷 

𝐿1(cm) - 1.7532 1.8359 1.8658 1.8322 

𝐿2(cm) - 0.7124 0.7024 0.7260 0.7059 

𝐿3(cm) - 0.8760 0.8523 0.8309 0.8196 

𝑊1(cm) - 0.9512 0.9732 0.9861 0.9750 

𝑊4(cm) - 0.9512 0.8010 0.7787 0.7611 

𝑓𝑜𝑝𝑡(GHz) 5.36 5.27 5.36 5.36 5.36 

𝑅𝐿(dB) -50.23 -35.76 -34.24 -31.41 -62.77 

𝑋𝑀𝐿𝑃 with their S-parameters as shown in the following Figures 
(Figure 8, Figure 9, Figure 10,  

 

Figure 11, Figure 12 and 
Figure 13). 

 

Figure 8. Production of a new model of RNSMA by using 

parameters of  𝑋𝑀𝐿𝑃, 𝑓𝑜𝑝𝑡=2.54 GHz. 

 

Figure 9. S-parameters produced by simulating ANNs results 

compared with fine, 𝑓𝑜𝑝𝑡=2.54 GHz. 

 

Figure 10. Production of a new model of RNSMA by using 

parameters of  𝑋𝑀𝐿𝑃, 𝑓𝑜𝑝𝑡=4.45 GHz. 
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Figure 11. S-parameters produced by simulating ANNs results 

compared with fine, 𝑓𝑜𝑝𝑡=4.45 GHz. 

 
Figure 12. Production of a new model of RNSMA by using 

parameters of  𝑋𝑀𝐿𝑃, 𝑓𝑜𝑝𝑡=5.36 GHz. 

 

Figure 13. S-parameters produced by simulating ANNs results 

compared with fine, 𝑓𝑜𝑝𝑡=5.36 GHz. 

In this case, all conductive parts of the antenna are connected 
by resistor circuits (ON-ON state) and the current is distributed 
on each conducting part which has different sizes, and 
consequently there was a change in results which means 
getting new models.  Note that values of antenna parameters 
shown in Figure 8 and similar following figures are only the 
values of MLP models while there is a difference in values of 
antenna parameters of KBNN  models as shown in Table 3 and 
similar following tables. 

5.2 ON-OFF switching state 

Two testing data sets are derived by choosing new adjoining 
samples next to the middle samples of the training data while 
keeping minimum and maximum values of parameters as 
shown in Table 1 [9], a similar process is realized in OFF-OFF 
state as well. Table 6 and Table 7 summarize the new models of 
RNSMA which their results are shown in the following Figures 
(Figure 14, Figure 15, Figure 16 and Figure 17). 

Table 6. Numerical results obtained by hybrid structure with 

fine model in ON-OFF state, 𝑓𝑜𝑝𝑡=3 GHz. 

Parameters 𝑌𝑓(Fine) 𝑋𝑀𝐿𝑃 𝑋𝑆𝐷 𝑋𝑃𝐾𝐼 𝑋𝑃𝐾𝐼𝐷 

𝐿1(cm) - 1.6791 1.6718 1.6702 1.6777 

𝐿2(cm) - 1.4826 1.5153 1.5412 1.5424 

𝐿3(cm) - 0.9492 0.9505 0.9349 0.9463 

𝑊1(cm) - 0.9614 0.9598 0.9581 0.9423 

𝑊4(cm) - 1.5410 1.5568 1.5216 1.5607 

𝑓𝑜𝑝𝑡(GHz) 3 3 3 3 3 

𝑅𝐿(dB) -18.11 -18.06 -18.05 -17.56 -17.90 

Table 7. Numerical results obtained by the hybrid structure 

with fine model in ON-OFF state, 𝑓𝑜𝑝𝑡=4 GHz. 

Parameters 𝑌𝑓(Fine) 𝑋𝑀𝐿𝑃  𝑋𝑆𝐷 𝑋𝑃𝐾𝐼 𝑋𝑃𝐾𝐼𝐷 

𝐿1(cm) - 1.0390 1.0301 1.0304 1.0336 

𝐿2(cm) - 1.3618 1.3832 1.4029 1.4077 

𝐿3(cm) - 0.8498 0.8315 0.7965 0.8107 

𝑊1(cm) - 0.8460 0.8231 0.8244 0.8200 

𝑊4(cm) - 1.3772 1.4072 1.4009 1.4037 

𝑓𝑜𝑝𝑡(GHz) 4 4.10 4.06 4 4 

𝑅𝐿(dB) -17.49 -17.42 -17.34 -17.57 -17.57 

 

Figure 14. Production of a new model of RNSMA by using 

parameters of  𝑋𝑀𝐿𝑃, 𝑓𝑜𝑝𝑡=3 GHz. 

 

Figure 15. S-parameters produced by simulating ANNs results 

compared with fine, 𝑓𝑜𝑝𝑡=3 GHz. 

 
Figure 16. Production of a new model of RNSMA by using 

parameters of  𝑋𝑀𝐿𝑃, 𝑓𝑜𝑝𝑡=4 GHz. 

 

Figure 17. S-parameters produced by simulating ANNs results 

compared with fine, 𝑓𝑜𝑝𝑡=4 GHz. 

5.3 OFF-OFF switching state 

Two Interpolation testing data sets falling within the range of 
the existing training data are chosen. New models of RNSMA are 
also obtained as shown in the last following tables (Table 8 and 
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Table 9) and figures (Figure 18, Figure 19, Figure 20 and Figure 
21). These results show that the model of OFF-OFF state has 
less non-linearity than the previous states. 

Table 8. Numerical results obtained by hybrid structure with 

fine model in OFF-OFF state, 𝑓𝑜𝑝𝑡=2 GHz. 

Parameters 𝑌𝑓(Fine) 𝑋𝑀𝐿𝑃 𝑋𝑆𝐷 𝑋𝑃𝐾𝐼 𝑋𝑃𝐾𝐼𝐷 

𝐿1(cm) - 1.3051 1.3150 1.3018 1.3186 

𝐿2(cm) - 1.1097 1.0580 1.0329 1.0309 

𝐿3(cm) - 0.8420 0.8573 0.8739 0.8801 

𝑊1(cm) - 0.8763 0.9191 0.9317 0.9505 

𝑊4(cm) - 1.0712 1.0391 0.9870 0.9840 

𝑓𝑜𝑝𝑡(GHz) 2 2.07 2.02 2 2 

𝑅𝐿(dB) -17.77 -18.11 -17.99 -18.09 -17.88 

 

Figure 18. Production of a new model of RNSMA by using 

parameters of  𝑋𝑀𝐿𝑃, 𝑓𝑜𝑝𝑡=2 GHz. 

 

Figure 19. S-parameters produced by simulating ANNs results 

compared with fine, 𝑓𝑜𝑝𝑡=2 GHz. 

Table 9. Numerical results obtained by hybrid structure with 

fine model in OFF-OFF state, 𝑓𝑜𝑝𝑡=1.72 GHz. 

Parameters 𝑌𝑓(Fine) 𝑋𝑀𝐿𝑃 𝑋𝑆𝐷 𝑋𝑃𝐾𝐼 𝑋𝑃𝐾𝐼𝐷 

𝐿1(cm) - 1.6555 1.6647 1.6711 1.6667 

𝐿2(cm) - 1.4918 1.5210 1.5795 1.5693 

𝐿3(cm) - 0.9888 1.0002 1.0037 1.0213 

𝑊1(cm) - 0.9412 0.9321 0.9028 0.9133 

𝑊4(cm) - 1.5695 1.5614 1.5202 1.5311 

𝑓𝑜𝑝𝑡(GHz) 1.72 1.71 1.72 1.72 1.72 

𝑅𝐿(dB) -14.94 -15.16 -15.05 -14.92 -15.02 

 
Figure 20. Production of a new model of RNSMA by using 

parameters of  𝑋𝑀𝐿𝑃, 𝑓𝑜𝑝𝑡=1.72 GHz. 

 

Figure 21. S-parameters produced by simulating ANNs results 

compared with fine, 𝑓𝑜𝑝𝑡=1.72 GHz. 

According to the results previously presented, 𝑌𝑓 (fine) model 

(before training ANNs) and predicted model from hybrid 
structure (after training ANNs) are in a good agreement in the 
ON-ON state. However, they are in an excellent agreement in 
ON-OFF and OFF-OFF states with a difference of the antenna 
forms and return losses. Table 10 shows the prediction 
accuracy and proves the agreement between ANNs and the 
proposed models.  

Table 10. NMARE results of ANNs for RL at all switching states. 

Switching state 𝑓𝑜𝑝𝑡  

(GHz) 

MLP SD PKI PKID 

ON-ON  2.54 0.5601 0.4390 0.2613 0.5079 

 4.45 0.1254 0.0941 0.0246 0.0922 

 5.36 0.2881 0.3183 0.3747 0.2497 

ON-OFF 3 0.0028 0.0033 0.0304 0.0116 

 4 0.0040 0.0086 0.0046 0.0046 

OFF-OFF 2 0.0191 0.0124 0.0180 0.0062 

 1.72 0.0147 0.0074 0.0013 0.0054 

The complexity and non-linearity are clearly shown when all 
radiating parts of the antenna are connected by the resistor 
circuits (ON-ON state) but minimized slowly in ON-OFF and 
OFF-OFF state. This explains the convergence of numerical 
values of the parameters shown in the result’s tables and curves 
(S-parameters). This minimum difference in convergence 
between simulated results is created by the switches during 
controlling states. But there is a big noticeable difference in 
antenna shapes between simulated results obtained from 
training ANNs and fine models.  It is also noticed that the value 
of the optimum frequency (𝑓𝑜𝑝𝑡) of SD, PKI and PKID models is 

closer to the fine model (𝑌𝑓) than MLP models. As a result, 

increasing the data in the knowledge-based training step is 
necessary for getting close model to the fine model. As shown 
the change of the operating frequency depends on switching 
states which change the configuration of the antenna.  

From the above, ANNs can be used to generate new models 
(solutions) for communication applications. The results 
illustrate the benefits of the hybrid structure and support the 
use of this type of structures for designing of reconfigurable and 
other types of antennas that operate in the obtained frequency 
bands. 1-6 GHz band is largely harmonized globally for short-
distance licensed/unlicensed antenna applications. As such, an 
antenna designer/researcher can develop for marketing the 
same 1-6 GHz module throughout the world with minimal 
tuning states or changing the type of control switches. 

6 Conclusion 
This study presents new models of the reconfigurable antenna, 
where any frequency samples between 1-10 GHz can be the 
input of the proposed hybrid structure that includes ANN 
methods to obtain new models. 3D-EM simulation results agree 
with ANN results but have different configurations. The 
proposed application is introduced as a single reconfigurable 
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microstrip antenna, operating at a wide range of different 
frequencies. The studied antenna can be used for several 
wireless communication applications, ranging from 1 GHz to 6 
GHz. The hybrid structure can be further applied to different 
configurations of microstrip antennas.  
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