
Research Article
Journal of Intelligent Systems: Theory and Applications 4(2) (2021) 65-75
DOI: 10.38016/jista.815823

* Corresponding Author. Recieved : 25 October 2020
 E-mail: cavidebalki.gemirter@std.yeditepe.edu.tr Revision : 03 March 2021

 Accepted : 19 March 2021

A Turkish Question Answering System Based on Deep

Learning Neural Networks

Cavide Balkı Gemirter 1* , Dionysis Goularas 2

1Yeditepe University, Faculty of Engineering, Department of Computer Engineering, İstanbul/Turkey,

TEB ARF Teknoloji (Türk Ekonomi Bankası)

2Yeditepe University, Faculty of Engineering, Department of Computer Engineering, İstanbul/Turkey

cavidebalki.gemirter@std.yeditepe.edu.tr, goularas@cse.yeditepe.edu.tr

Abstract
In the domain of Natural Language Processing (NLP), despite the progress made for some common languages, difficulties persist for
many others for the completion of particular NLP tasks. In this scope, the current study aims to explore these challenges by proposing
a question answering (QA) system in the Turkish language. In particular, the system will generate the best answers in terms of content
and length from questions that are based on a set of documents related to the banking sector. In order to achieve this goal, the system

utilizes advanced artificial intelligence algorithms and large data sets. More specifically, BERT algorithm is used for the generation of
the language model, followed by a fine-tuning procedure for performing a machine reading for question answering (MRQA) task. In
this work, various experiments were conducted using original and translated data sets in an effort to solve the challenges that arise from
morphologically complex languages as Turkish. Finally, the system achieved a performance that overall is applicable to a wider range
than any other QA system in the Turkish language. The proposed methodology is not only proper to the Turkish language, but can also
be adapted to any other language for performing various NLP tasks.

Keywords: machine reading comprehension, machine reading for question answering, deep learning, BERT.

Derin Öğrenme Sinir Ağlarına Dayalı Türkçe Soru Cevaplama Sistemi

Öz
Doğal Dil İşleme (NLP) alanında, yaygın diller için kaydedilen bazı ilerlemelere rağmen, diğer dillerde belli başlı NLP görevleri için
zorluklar devam etmektedir. Bu kapsamda, mevcut çalışma Türkçe dilinde bir soru cevaplama (QA) sistemi önererek bu zorluklara
çözüm araştırmayı amaçlamaktadır. Sistem, bankacılık sektöründen seçilen dokümanları kullanarak, sorulan sorulara içerik ve uzunluk
açısından en iyi yanıtları üretecektir. Bu amaca ulaşmak için sistem, gelişmiş yapay zeka algoritmaları ve büyük veri kümeleri kullanır.
Daha spesifik olarak, dil modelinin oluşturulması için BERT algoritması kullanılmış, ardından sistemin soru cevaplama (MRQA)
becerisini arttırmak için bir iyileştirme (fine-tuning) uygulanmıştır. Bu çalışmada, Türkçe gibi morfolojik açıdan karmaşık dillerden
kaynaklanan zorlukları çözmek için orijinal ve İngilizce’den çevrilmiş veri setleri kullanılarak çeşitli deneyler yapılmıştır. Son olarak,
sistem, genel olarak Türkçe dilinde diğer tüm QA sistemlerinden genel olarak daha yeni bir yelpazede yüksek bir performans elde

etmiştir. Önerilen metodoloji sadece Türk diline özgü olmayıp aynı zamanda çeşitli NLP görevlerini yerine getirmek için başka diğer
dillerde de uyarlanabilir.

Anahtar Kelimeler: makine okuma anlama, soru cevaplama için makine okuma, derin öğrenme, BERT.

1. Introduction

In recent years, novel artificial intelligence

algorithms proposed solutions in problems from various

domains and outperformed previous methodologies and

architectures. Even if some of the algorithmic ideas were

not new, the dramatic increase of available data and

process power, various parallelization techniques,

cloud-based processing methodologies and the use of
graphic processor units (GPU) allowed developing a

series of different types of neural networks that

demonstrated astonishing results. In the domain of

Natural Language Processing (NLP), the use of deep

mailto:cavidebalki.gemirter@std.yeditepe.edu.tr
https://orcid.org/0000-0003-3534-3129
https://orcid.org/0000-0002-4802-2802

Journal of Intelligent Systems: Theory and Applications 4(2) (2021) 65-75 66

neural networks outperformed almost all previous types

of approaches. Their ability to create language models

from large amounts of data is one of the main reasons

for their success. Moreover, recent models managed to

generate word representations that change according to

their current context, thus giving a dynamic approach

and increasing the system performance in various NLP

tasks. These networks are configured and tested mainly

for English and some other common languages because

of the available data sets.
Despite some efforts to create multilingual models,

there is still a lack of available data and little experience

in the way that these algorithms should be trained and

utilized for different languages. In particular, Turkish

language has been proven to be challenging for Natural

Language Processing because it is an agglutinative

language with a derivational structure and

morphologically rich. Consequently, the main

motivation of this study is to explore the challenges of

generating a Turkish language model and performing a

particular NLP task, a question answering system (QA).
Additionally, another motivation of this work is to

explore the difficulties that could arise and propose

adequate methods and guidelines for the generation of a

language model and the completion of particular tasks

in a language structurally different from English.

More specifically, the proposed system will be able

to give the best and shorter answer to a question related

to the banking sector. In order to achieve this goal, the

system will be trained from a variety of data sets. In

general, this task is called “Machine Reading for

Question Answering” (MRQA) and it is essential for
QA systems and search engines in general. To the best

of our knowledge, in the Turkish language, a performant

MRQA system doesn’t exist, as most of the systems

follow a semantic approach.

Today, in the domain of NLP the machine learning

system that outperforms the state of the art is the

Bidirectional Encoder Representatives from

Transformers (BERT) (Devlin et al., 2018). Its success

lies in the fact that in the generated language model

words have a contextual, dynamic representation rather

than a fixed one, resulting in a context-sensitive

language model. Moreover, as its structure is agnostic
and not configured for a particular task or domain, it can

be fine-tuned with little effort and perform various NLP

tasks. Although BERT proposed a multi-language

model, its performance in the Turkish language is not

satisfactory. In this context, the purpose of this study is

first to create a model of Turkish language based on

BERT and then use this model in order to generate a

MRQA system oriented to the banking sector. Figure 1

presents a general overview of the study.

2. Related Work

In Turkish questioning (QA) systems, most of the

research is focused on improving the skills of search

engines by introducing two modules: one that

ameliorates the structure of a user’s query with specific

preprocessing steps, and another that generates a

selected list of the most appropriate search results

(Amasyalı and Diri, 2005; Biricik et al., 2013; Çelebi et

al., 2011; Er and Cicekli, 2013).

One of the tasks of the first module is to detect the

question type with the help of a predefined table. Using
specialized libraries for Turkish language processing

like Zemberek (Akın and Akın, 2007) or Treebank

(Eryiğit and Oflazer, 2006; Oflazer et al., 2003), the

module analyzes the sentence morphologically and

generates the stems of the words. The module can also

create simplified variations of the query or eliminate

prepositions, conjunctions, stop words, and replicates

the query with synonyms of terms using the thesaurus.

In general, these studies utilize rule-based

approaches. Their success is limited, and most of them

are suitable for factoid questions only. To the best of our

knowledge, there is still no approach that utilizes neural
networks for a Turkish QA system. Today, NLP domain

approaches that are based on neural networks

outperform all rule-based systems. Neural networks

solutions with pre-trained language representations were

available with ELMo (Peters et al., 2018) and

Generative Pre-trained Transformer (GPT) (Radford

and Salimans, 2018). ELMo presented a bidirectional

architecture but it was difficult to be adapted to different

tasks. On the other hand, GPT required minimal

architectural changes but it was unidirectional. In 2018,

Bidirectional Encoder Representations from
Transformers (BERT) was published by Google. BERT

managed to have a bidirectional architecture by

requiring minimal architectural changes for performing

various NLP tasks. Within this way, BERT and its recent

variations managed to achieve remarkable results.

Figure 1. Diagrammatic representation of the study.

Journal of Intelligent Systems: Theory and Applications 4(2) (2021) 65-75 67

A recent competition for generalized MRQA tasks in

English language (Fisch et al., 2019) included also

solutions based on BERT architecture. In this contest,

the presence of big multinational corporations

demonstrated the increasing interest in the MRQA task

worldwide. After its success in English, BERT has been

implemented to other languages. Despite the fact that

BERT proposes a multilingual model (mBERT), its

performance is relatively low. For this reason, for a

particular language a special effort has to be made for
the generation of a new language model. In (Antoun et

al., 2020) the authors generated a BERT model in the

Arabic language named AraBERT and tested it in

several NLP tasks, including QA. In tests conducted

with the Arabic Reading Comprehension Dataset

(ARCD), they utilized an English question answering

datasets (SQuAD) translated to Arabic. When tested,

AraBERT presented a similar performance to mBERT.

There exists also a BERT model for the French language

named CamemBERT (Martin et al., 2019), for the

Korean language named KoBERT1, and another for the
Persian language named ParsBERT (Farahani et al.,

2020) but these models do not report accuracy results on

QA tasks. Finally, there is a model for the Chinese

language trained by Google. This model was tested in

the following Machine Reading Comprehension (MRC)

datasets generated for Chinese: CMRC 2018, DRCD,

CJRC (Cui et al., 2019).

Based on the above, it can be concluded that the

existing QA systems in the Turkish language have

limited success because of the approaches they utilize.

Moreover, despite the progress made for systems in

English language, there is still little progress for QA

platforms in other languages. In the following section,

the methodology for the creation of an MRQA system in

the Turkish language is presented.

3. Methodology

3.1. Data sets

When a QA architecture incorporates neural

networks, one of the challenges is to generate adequate

data sets for the training procedure. In this work, special

attention and effort were given in the choice and the

generation of pertinent data sets. Two types were

generated: one dedicated for a pre-training task for

training the language model in Turkish and another for
a fine-tuning task in order to perform a QA task for the

banking domain. Table 1 presents the data sets used for

training the language model. Here, the first data set is

based on Wikipedia pages2, the second on a news article

collection in Turkish and the third on a corpus based on

the specific domain of the final QA system prepared by

the authors of this study. All sentences are in the Turkish

language.

Table 2 presents the data sets utilized for the QA task

or fine tuning the model. All documents were created

based on the Stanford Question Answer Data Set
(SQuAD) structure (Rajpurkar et al., 2016), published in

2016.

Table 1. Data sets for the fine-tuning task (QA system for the banking domain).

Name Size Content Information

Wikipedia Corpus (Tr) 456.5 MB 4.5M sentences Turkish Wikipedia dump
922335 pages (08/2019)

News Corpus (Tr) 2.5 GB 20M sentences News articles collection in Turkish
Economy Corpus (Tr) 15.5 MB 270K sentences Turkish economy blogs from Web

Table 2. Data sets for the fine-tuning task (QA system for the banking domain).

Name Size Content Information

SQuAD (Tr) 24.42 MB 490 documents
20963 paragraphs
45872 questions
56117 answers

Q&A from paragraphs from Wikipedia articles.
(Machine translation from English to Turkish)

NewsQA (Tr) 19.66 MB 8379 documents

8343 paragraphs
21270 questions
21270 answers

Q&A from articles from CNN news.

(Machine translation from English to Turkish)

Banking Sector QA (Tr) 5 MB 679 documents
1637 paragraphs
17708 questions
17708 answers

Q&A from documents from the banking sector.
(in Turkish)

1 GitHub (2020). KoBERT GitHub Page [online].

Website https://github.com/SKTBrain/KoBERT

[accessed 25 05 2020].

2 Wikimedia (2020). Wikipedia Dump [online].

Website https://dumps.wikimedia.org/backup-

index.html [accessed 25 05 2020].

Journal of Intelligent Systems: Theory and Applications 4(2) (2021) 65-75 68

Figure 2. BERT architecture.

A SQuAD based data set includes a set of paragraphs

accompanied with a set of questions and answers for

each paragraph. The questions are related to the

associated paragraph and the answers are generated

from its text. The first data set is the original SQuAD

data set translated automatically in Turkish. The second

is the NewsQA data set (Trischler et al., 2016) translated

also automatically in Turkish having also a similar

structure with the SQuAD data set.
Finally, the third data set is created by a team

working in a private Turkish bank and supervised by the

authors of this study. This data set follows the SQuAD

structure: a set of paragraphs with a set of related

questions and answers for each paragraph.

3.2. BERT

In 2018 Google proposed the Bidirectional Encoder

Representations from Transformers (BERT) neural

network. First it generates a context-sensitive language
model (pre-training task) and then it can perform a series

of NLP tasks (fine tuning task). The language model is

generated by applying two training procedures

simultaneously. The first aims to predict a number of

masked words from a sentence and the second aims to

predict the following sentence. When the language

model is generated, BERT can do a particular NLP task

by using a supplementary data set. During the fine-

tuning procedure, the weighs of the BERT network are

slightly modified. Figure 2 presents the architecture of

BERT. In this study, the BERT base model was utilized,
having 110 million parameters, 12 transformer layers

and 12 attention heads for each transformer layer

(Vaswani et al., 2017).

3.2.1. Word Sense Disambiguation in BERT

Turkish is a morphologically rich language with a

large number of suffixes and a variety of possible word

positioning inside a sentence. In morphologically

simpler languages such as English, POS tagging is a

much more pertinent procedure. On the contrary, in

agglutinating languages such as Turkish, the
morphological disambiguation process is challenging.

In this case, morphological disambiguation is crucial for

finding the stems of the words. Otherwise, the neural

network has difficulties in handling the suffixes and, as

a result determining the connections between the words.

BERT manages to overcome those problems by using:

 A subword--based embedding system.

 A Masked Language Model (MLM) and next

sentence prediction training.

 Bidirectional transformers.

Although BERT cannot solve the morphological

disambiguation problem of Turkish, the overall
architecture solves the word sense disambiguation

problem, as demonstrated in (Wiedemann et al., 2019)

which is enough for performing a number of NLP tasks

like text classification, machine translation, and

question answering.

3.2.2. Subword-based embedding system

Word embedding methods became popular because

they convert an input text into a numerical

representation that can be used for mathematical
operations in neural networks. Today, new generation

word embedding methods capture the contextualized

meaning even in cases with polysemy and the resulted

word vector can vary according to the context. For

example, the vector of the word ‘bank' is different when

it is used in a sentence with a finance context and when

it describes a seat in a park.

Until modern NLP solutions, morphological

disambiguation was performed with rule-based

solutions, such as Zemberek for Turkish.

‘Çekoslovakyalılaştıramadıklarımızdan mısınız?’ is the
most unusual example in Turkish. Zemberek’s output is

shown in Figure 3.

Figure 3. Morphological disambiguation result of
'Çekoslovakyalılaştıramadıklarımızdan mısınız?' using

Zemberek.

Journal of Intelligent Systems: Theory and Applications 4(2) (2021) 65-75 69

WordPiece subword-based embedding (Wu et al.,

2016) is a word segmentation algorithm that extracts

subwords from a given data set. In the initial step, the

WordPiece algorithm splits the corpus into characters,

following by recursively combining them into subwords

and calculating the loglikelihood of every candidate

subword. After several passes over corpus, the algorithm

generates a fixed-sized vocabulary by using the

frequencies of combined subwords and picks the most

frequent ones. The subword can be a word, a syllable, or
a single character. Using the vocabulary file as a

reference, most of the given text phrases can be

tokenized, and the rest are marked as unknow tokens

(UNK).

In summary, a desired subword vocabulary size is

defined and after splitting words into characters,

WordPiece generates the subwords progressively based

on likelihood criteria, until a certain threshold is

satisfied or the subword vocabulary size is reached.

Although WordPiece is not the direct solution to the

morphological disambiguation problem of the Turkish
language, the result is satisfactory for the tokenization

of the input sequences. The tokenization result of

‘Çekoslovakyalılaştıramadıklarımızdan mısınız?’ with

WordPiece is presented in Figure 4. The symbols ##

indicate that the sub word is a suffix. Consequently, by

using these generated suffixes, the tokenizer can identify

the suffixes in Turkish words and also cover many Out-

Of-Vocabulary (OOV) words, thus giving an advantage

over classical word embedding methods.

3.2.3. Masked Language Model (MLM) and Next

Sentence Prediction training (NSP)

The training operation is based on two unsupervised

tasks that are executed simultaneously: The Masked

Language Model (MLM) and the next sentence
prediction. The main logic behind the MLM is to try to

learn the relationships of words in a language by

randomly masking some tokens in the corpus and then

try to predict the original ones with an attention

bidirectional transformer network that handles the

context both from left and right. After tokenizing the

content with WordPiece tokenizer, the token

embeddings are combined with positional embedding

location for preventing long-distance mappings with

unnecessary tokens in self-attentions. After Encoder &

Decoder self-attention stacks, a Softmax classifier
compares the predicted and original words and updates

the weights of the network which builds the language

model. In MLM, the system attempts to predict 15% of

tokens in a sentence that are chosen randomly. During

this procedure these tokens are replaced 80% by the

token [MASK], 10% by a random word and 10% by the

original word. In training, only 1.5% of all tokens are

replaced with random words. Compared to traditional

language models, as a result of masking process

although the training time takes longer, the success of

the results is satisfactory. Figure 5 shows examples of

token replacements for the three cases.

Figure 4. Tokenization result of 'Çekoslovakyalılaştıramadıklarımızdan mısınız?' using WordPiece.

Figure 5. Token replacement examples: random word (blue), same word (red) and [MASK] token (green).

Figure 6. BERT pre-training architecture.

Journal of Intelligent Systems: Theory and Applications 4(2) (2021) 65-75 70

The percentage values are experimental. The reason

of adding random words or keeping the original word is

to reduce the consequences by the fact that the token

[MASK] will not be present in the fine-tuning

procedure. Next sentence prediction is a binarized task.

In this task, the next sentence is replaced 50% by a

random sentence. This procedure aims to predict the

relation between sentences by Sigmoid classification

and enlarge the contextual meaning that exists in

isolated sentences.

3.2.4. Bidirectional transformers

Figure 6 presents the pre-training architecture of

BERT. The input consists of unlabeled sentences pairs

with masked tokens and the output layer predicts the

masked tokens and the next sentence. BERT is using a

stack of bidirectional transformer encoders and decoders

(Figure 7). The transformer network has encoder and

decoders stacks that contains self-attention mechanisms

and Feed-Forward networks. This multi-layer
architecture aims to generate word vectors that will be

adaptable to the context of a sentence. In order to

achieve this goal, the encoder architecture applies a

word vector encoding that comprises three steps: the

first is based on WordPiece encoding, the second on the

position of a word in the sentence and the third on a

mechanism of comparison of sentence words between

them. This mechanism is described as attention because

a word has an attention to the other words of its

sentence.

Figure 7. The transformer architecture (Vaswani et al.,

2017).

Unlike a single context final state provided by a

RNN model, the attention-based model has multiple

hidden states, which considers all dependencies between

every word in the input sequence. Although the

connections are usually with previous or next words in

the lower layers of the transformers, the semantic

relations become more visible in the higher-level layers.

In a traditional Encoder & Decoder architecture, if the

input sequence is long, after a while. the model begins

to forget some parts of the context Attention tries to
solve this problem by focusing on finding the most

critical input sections when summarizing the sequence.

In an attention-based Encoder & Decoder architecture,

there are weight matrices that keep the semantical

relation densities of the words and highlight the

significant parts of the sequence resulting in

performance improvement of Decoder. In the

transformer network, the output of every encoder is the

input of the next encoder, like a chain. The output of the

last encoder is the input of all the decoders. After

converting the decoder's output to a logit vector at the
top of the decoder stack, the Softmax layer calculates the

probabilities, and the transformer picks the top-rated

candidate. In summary, the attention is based on vector

similarity measurements between vectors that are

generated from the input vectors and a number of weight

matrices.

The attention mechanism is applied many times with

a multi-head approach and the resulted vectors are

concatenated. The attention heads evaluate the same

input of a given layer from different viewpoints. Every

multi-head also includes a normalization process and an
additional dense neural network. As the formation of a

word vector takes into account the other words of the

sentence, the system is able to generate context-sensitive

word vectors.

3.2.5. Training procedure

The training procedures comprise the generation of

a language model in the Turkish Language, a

preprocessing of fine-tuning data sets and a fine-tuning

procedure for training the QA system for the banking
domain.

Pre-training for language model generation: The

first step was to create a vocabulary of around 32.000

words. Among them around 30.000 was created from

words existing in the data sets of Table 1 and another

2.000 words belonging to the finance sector were

selected and added by the authors. WordPiece was

utilized for token embedding. In BERT architecture

additional embeddings are added based on the position

of a word in a sentence and the sentence number. Two

training procedures were done simultaneously: one for

predicting the next sentence and another that is based on
attempting to predict masked words in a sentence.

During the training process, the three data sets of Table

1 were used together. Finally, a language model in the

Turkish language is generated.

Journal of Intelligent Systems: Theory and Applications 4(2) (2021) 65-75 71

Figure 8. The two phases of the fine-tuning procedure.

Preprocessing of fine-tuning data sets: The

automatic translation of data set documents in Table 2

resulted in some inconsistencies related to the SQuAD

format. A pre-processing operation was applied aiming

to fix problems related to an incorrect answer in a given
paragraph or the absence of a start point in a sentence.

The preprocessing required the development of some

special procedures and in some cases a manual

intervention.

Fine tuning for QA task: Fine tuning is applied in

two phases. In the first phase, the fine tuning of the

neural network which is already trained for a Turkish

language model is done by using the SQuAD (Tr) and

NewsQA (Tr) data sets. In this phase, the two data sets

are combined together. The aim is to increase the QA

skill of the system in general, or in other words, in an

open domain. In the second phase, the model is trained
with the updated parameters resulted from the previous

fine tuning, by using the Banking Sector QA (Tr) data

set. The second phase aims to increase the ability of the

system to answer questions from a closed domain, the

banking sector. Figure 8 shows an overview of the

training phases together with the data sets they utilize.

3.3. System parameters

In the Pre-training task the following parameters are

important to configure:
Maximum sequence length: Configures the

maximum length of a sequence after the WordPiece

tokenization. High values are necessary to learn

positional embeddings in long sequences.

 Maximum predictions per sequence and masked

LM probability: when multiplied between them they

define together the number of masked tokens in a

sentence.

 Do lower case and do whole word mask: Convert

the sentences to lowercase and mask the tokens of a

whole word instead of masking individual tokens,
respectively. When these parameters are applied, the

accuracy in general increases, especially for Asian

languages. In the current study the vocabulary size is

large enough to have most of the suffixed words in

Turkish language. Consequently, the selection of an

individual token masking or whole word masking

doesn't alternate significantly the accuracy results.

 Finally, for the fine-tuning task the important

parameters to configure are the following ones:

Document stride parameter: This parameter

allows to create training sentences examples that overlap

between them. Within this way the next sentence
training example will start in a given position in the

previous sentence. This superposition is performed in a

token level.

Maximum query length: The maximum number of

tokens of a question. If a question is longer this number

the rest will be truncated.

Maximum answer length parameter: The

maximum length of an answer taken from the paragraph

than belongs the related question. This parameter is

character-based rather than token-based as it is the rest

of the parameters.

3.4. Evaluation metrics

Similar to other machine reading comprehension and

SQuAD studies, the exact match (EM) and F-Score will

be used as the evaluation metrics. EM takes in account

the predicted answer only if it is the same as the real

answer and F-Score counts the predicted answers that

they have an overlap with the real one.

4. Results

In this section, the results of the study are presented.

In the beginning, the parameters that are achieving the

best performance for answering questions for a specific

domain, the banking sector are showed, followed by the

errors types in errors and answers. Then, an evaluation

of the study’s model is performed as follows: first, the

current model is compared with existing Turkish QA

systems. Then its performance is evaluated in
comparison with other BERT language models. Finally,

the model is tested with other models in the Turkish

language generated with BERT.

4.1. Neural network parameters evaluation

In order to better evaluate the accuracy of the system,

different training parameters were tested. After

experimenting with different values and considering the

average and maximum length of paragraphs, questions,

and answers in the data sets, it was observed that the
following parameters are giving the best results for fine

Journal of Intelligent Systems: Theory and Applications 4(2) (2021) 65-75 72

tuning: maximum sequence length = 512, document

stride = 256, maximum question length = 64, and

maximum answer length = 64.

From the results it can be seen that a long sequence

length (512) with a half overlapping (stride set to 256)

has an important impact on the accuracy results.

Table 3 presents different combinations and

accuracy results in terms of EM and F-Score.

4.2. Error types in questions & answers

In order to evaluate the success of the system in a real-

world environment, the team that prepared the Banking

Sector QA data set was asked to think in general rather

than focusing on a particular question type or

formulation. The examination of the results, revealed

that the system responds correctly to the majority of the

factoid questions, where the answer to the question is a

single fact. Since there is a distinct difference between

the exact match (EM) and F-Score metrics, a 3.2% of

wrong answers which have zero EM (572 out of 17708
answers) was identified. Table 4 presents the type of

errors and Table 5 gives examples for most of these

errors. The errors were categorized based on the
following reasons:

1) Multiple possible answers: Questions that have
multiple possible answers cause 30% of the errors, as

seen in the first row of the table, both the answer and the

prediction are logically correct replies to the question.

2) Questions requiring interpretation: For some

answers, it is necessary to interpret the entire paragraph.

For the moment, deep neural networks don't have this

capability.

3) Conditional answer: In some questions, the

answer varies according to the circumstances, as seen in

the third example, the answer is ‘possible’ only for the

customers of a brand.

4) Questions requiring a list of elements: These

questions require an answer, which is a set of elements,

or a list.

5) Answers with syntax variations: Since Turkish

is an agglutinating language, generating one unique

correct answer in terms of syntax is a difficult task.
Hence, sometimes a correct answer given by the system

can be enlarged or reduced when compared to the

predicted answer, thus leading to a zero EM.

6) Incorrect question: There are also incorrectly

prepared questions and answers in the data set. Some of

them have many spelling mistakes, some of them are

logically incorrect.

7) Incorrect answers: 25% of the questions are not

answered correctly, generally for the type of questions

that the system has not during the training phase or for

very long questions and answers which are truncated
during training.

4.3. Comparison with other Turkish QA systems

In this study the model of the current study was

compared with Turkish QA systems in open and closed

domain. In open domain, the system should be able to

answer generic questions and in a closed domain, the

system answers questions from a specific domain.

Table 3. Different parameter combinations and results for Banking Sector QA (Tr) data set.

Maximum
Sequence Length
(token)

Document
Stride
(token)

Maximum
Query Length
(token)

Maximum
Answer Length
(character)

EM F-Score

512 256 64 64 54,09 79,01
512 256 64 30 52,72 78,69
512 128 64 64 52,00 77,46
512 512 128 64 51,94 75,66

512 384 256 30 49,33 74,39
384 64 64 30 47,56 73,42
256 64 64 30 46,01 71,97
128 64 64 30 44,38 70,11

Table 4. Description of wrong answers with zero EM (3.2%).

Error ID Description Counts

1 Multiple possible answers 180
2 Questions requiring interpretation 85
3 Conditional answers 80
4 Questions requiring a list of elements 5
5 Answers with syntax variations 34

6 Incorrect question 49
7 Incorrect answers 139
 Total 572

Journal of Intelligent Systems: Theory and Applications 4(2) (2021) 65-75 73

 Table 5. Examples for error types 1-5.

Error ID Question Real answer Predicted answer

1 Kampanya için gerekli şartlar nelerdir? Bankanın müşteri yada kredi
kartına sahibi olmak

Kampanyadan yararlanmak isteyen
müşteriler, üyeliklerini 31/12/2019

tarihine kadar aktifleştirmelidir.
2 Tarihi geçmiş belgeler için müşteri ne

yapmalıdır?
Şubeleri ile görüşmeleri
gerekmektedir.

güncellenmelidir

3 Parmak izi ile girişi tüm müşteriler
kullanabilir mi?

sadece X marka telefonu olanlar kullanabilir

4 İşlemler ne zaman fona dönüşür? 09:15, 11:15, 13:15, 15:15 günlük
5 Kampanya kuponları hangi sitelerde

geçerlidir?
www.x.com www.x.com’da

Table 6. Comparison of Turkish QA Systems. (1) Data sets translated to Turkish. (2) Mean Reciprocal Rank, considers the rank of the first correct

answer in the list of possible answers. (3) Who, Where, When and What. (4) Author, capital, birth date, death date, language of country, birth place,

death place. (*) Phase 1: Fine tuning the model using merged SQuAD (Tr) and NewsQA (Tr) data sets. (**) Phase 2: Fine tuning the model, which is

already trained with phase 1, using Banking Sector QA (Tr) data set.

Study Data sets Domain Metric Results

BayBilmiş TREC-91 and TREC-101 Open MRR2 0,313

Automatic QA for Turkish
with Pattern Matching

Only Specific Questions3 Closed Precision 0,79 (Average)

A Factoid QA System
Using Answer Pattern
Matching

Only Specific Factoid Questions4 Closed MRR2 0,73

Current Study SQuAD (Tr)1 and NewsQA (Tr)1* Open EM 55,26

F-Score 67,07

Banking Sector QA (Tr)** Closed EM 54,09

F-Score 79,01

Table 6 presents the results of this comparison in

terms of Exact Match and F-Score. The performance of

the system was measured in open and closed domain by

taking in account its accuracy in the first phase of the
fine-tuning procedure with the SQuAD (Tr) and

NewsQA (Tr) data sets and its accuracy in the second

phase where the Banking Sector QA (Tr) data set was

additionally utilized for training.

The studies in Table 6 proposed solutions for certain

types of questions, and the accomplished success rates

have been achieved in particular data sets. Because of

different evaluation metrics and test data sets, it is

difficult to directly compare the results of the current

study with the results of the previous QA systems in

Turkish. But in general, based on the evaluation metrics
(Mean reciprocal rank), and the type of data sets

(question specific data sets) of these studies, it can be

considered that the current study proposes a solution that

is applicable to a wider range of QA’s. The proposed

method covers all types of questions, and there is no

restriction in terms of question types or text for the
evaluation data sets.

4.4. Comparison with other BERT language

models

In order to evaluate the selected data sets and training

procedure the current model was compared with models

that used data sets in other languages. Table 7 presents
the comparison with BERT models in the Arabic and

Chinese Language in terms of EM and F-Score. Existing

BERT models in the Persian, Korean and French

language didn’t present results for QA tasks.

Table 7. Comparison of BERT models with other languages. (1) Data sets translated to Turkish. (2) Multilanguage model published by Google.

(3) Arabic Reading Comprehension Dataset, which was previously translated from SQuAD to Arabic. (4) Chinese specific model published by Google.

(*) Phase 1: Fine tuning the model using merged SQuAD (Tr) and NewsQA (Tr) data sets.

Language Model Data sets Domain EM F-Score

Arabic mBERT ARCD3 Open 34,2 61,3

AraBERT ARCD3 30,6 62,7
Chinese BERT-Chinese4 CMRC 18,6 43,3

DRCD 82,2 89,2

CJRC 55,1 75,2
Turkish Current Study SQuAD (Tr) 1 57,60 68,34

NewsQA (Tr) 1 48,01 59,86

SQuAD (Tr)1 and NewsQA (Tr)1* 55,26 67,07

http://www.x.com/

Journal of Intelligent Systems: Theory and Applications 4(2) (2021) 65-75 74

Table 8. Comparison of Turkish base models. (1) Data sets translated to Turkish. (*) Phase 1: Fine tuning the model using merged SQuAD (Tr)

and NewsQA (Tr) data sets. (**) Phase 2: Fine tuning the model, which is already trained with phase 1, using Banking Sector QA (Tr) data set.

Data sets Model Domain EM F-Score

SQuAD (Tr)1 and NewsQA (Tr)1* BERTurk Open 57,43 69,36

Current Study 55,26 67,07

mBERT 54,52 65,74
Banking Sector QA (Tr)** BERTurk Closed 55,89 80,87

Current Study 54,09 79,01

mBERT 50,74 77,03

4.5. Comparison with other BERT Turkish models

The results show that the performance of this system

is, most of the time, better than other existing models.

The current Turkish language model was compared with

two others, Google’s multilingual version of BERT

model, mBERT and another model in the Turkish

language entitled BERTurk (Schweter, 2020). In Table

8, it can be observed that this model is better than

mBERT and slightly inferior but still comparable with

the BERTurk model (around 2% difference). The

selection of larger and various data sets for the training
procedure is one of the main reasons that generate those

differences.

5. Discussion

In this work, the evaluation of a QA system was done

in open and closed domains, based on a deep neural

network that generates a model language with a context-
sensitive vocabulary encoding. The results revealed the

following findings:

In Turkish QA systems, deep neural network

methodologies can cover a wider domain compared to

other approaches. The results revealed that almost all

other methods based on a semantic or rule-based

approach are successful in specific types of QAs. This

finding is expected and in general it is applicable to other

fields apart from the NLP domain.

Language training data sets play a key role. The

language model plays a significant role in the success of

a QA system and the data sets used for generating have
a major contribution. BERTurk performed slightly

better because it used a wider training corpus. Special

effort should be given by providing adequate data sets.

Translated data sets are adequate for fine tuning.

The automatic translation of English data sets, even if

they need a preprocessing step, gave high accuracy

results during the fine tuning. According to authors’

experience, this method can be applied to other

languages and also other variations of deep neural

networks based on bi-directional transformers.

The above finding let conclude that the proposed
methodology can be successfully used in QA tasks for

any language and any domain. Based on this experience,

QA tasks can be carried out in an open or any closed

domain, provided that existing data sets in English will

be translated with a preprocessing procedure and an

adequate data set will be generated for a particular

domain. Generating a data set in SQuAD format for a
closed domain even if it is time-consuming and requires

human resources, it is still necessary for obtaining a

closed domain QA system with high accuracy. Today,

researchers are focused on increasing the accuracy of

generic QA tasks in order to reduce the performance gap

between open and closed domains. As a result, new

variations of neural networks using bi-directional

transformers like BERT are proposed, and new data sets

are emerging for training purposes.

6. Conclusion

This study presented a QA system in the Turkish

language for the banking domain. This approach

required the use of various and large data sets. Even if

BERT cannot solve the morphological disambiguation

problem of Turkish, the overall architecture is sufficient

for solving the word sense disambiguation problem. For

QA tasks in open domain, a translation and

preprocessing step of some data sets was necessary and

for answering questions in the banking domain, the
generation of a new data set was required. The

experiments showed that the accuracy of the network

can significantly vary according to the choice of the

training parameters. To the best of our knowledge, this

study is the first that proposes a framework in the

Turkish language for a QA task in open and also in

closed domain using deep neural networks.

Additionally, the proposed methodology is applicable to

any language and to any domain for performing QA

tasks.

Acknowledgements

We would like to thank Prof. Dr. Kemal Oflazer for

sharing the News Corpus (Tr), described in Section 3.1

and used in the pre-training task and the QA tasks for

open and closed domain were generated using BERT

neural network. We also thank TEB - Turk Ekonomi

Bankasi and TEBArf for their support in generating the

Banking QA data set and funding the TPU servers used

in the study.

References

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2018.
BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding. arXiv preprint 2018, arXiv:
1810.04805.

Journal of Intelligent Systems: Theory and Applications 4(2) (2021) 65-75 75

Çelebi, E., Günel, B., Şen, B., 2011. Automatic question
answering for Turkish with pattern parsing. INISTA 2011

- 2011 International Symposium on INnovations in
Intelligent SysTems and Applications, pp. 389–393.
https://doi.org/10.1109/INISTA.2011.5946098

Amasyalı, M.F., Diri, B., 2005. Bir soru cevaplama sistemi:

Baybilmiş. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve
Mühendisliği Dergisi, 1(1).

Er, N.P., Cicekli, I., 2013. A factoid question answering
system using answer pattern matching. Proceedings of the

Sixth International Joint Conference on Natural Language
Processing, pp. 854–858.

Biricik, G., Solmaz, S., Özdemir, E., Amasyalı, M.F., 2013. A
Turkish Automatic Question Answering System with

Question Multiplexing: Ben Bilirim. International Journal
of Research in Information Technology (IJRIT) 1(6), 46–
51.

Akın, A.A., Akın, M.D., 2007. Zemberek, an open source nlp

framework for turkic languages. Structure, 10, 1–5.

Oflazer, K., Say, B., Hakkani-Tür, D.Z., Tür, G., 2003.
Building a Turkish Treebank. Springer, pp. 261–277.
https://doi.org/10.1007/978-94-010-0201-1_15

Eryiğit, G., Oflazer, K., 2006. Statistical dependency parsing
for turkish, in: 11th Conference of the European Chapter
of the Association for Computational Linguistics.

Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C.,
Lee, K., Zettlemoyer, L., 2018. Deep contextualized word
representations. NAACL HLT 2018 - 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language

Technologies - Proceedings of the Conference, pp. 2227–
2237. https://doi.org/10.18653/v1/n18-1202

Radford, A., Salimans, T., 2018. Improving Language
Understanding by Generative Pre-Training. OpenAI, 1–

12.

Fisch, A., Talmor, A., Jia, R., Seo, M., Choi, E., Chen, D.,
2019. MRQA 2019 Shared Task: Evaluating
Generalization in Reading Comprehension, pp. 1–13.
https://doi.org/10.18653/v1/d19-5801

Antoun, W., Baly, F., Hajj, H., 2020. AraBERT: Transformer-
based Model for Arabic Language Understanding. arXiv

preprint 2020, arXiv:2003.00104.

Martin, L., Muller, B., Suárez, P.J.O., Dupont, Y., Romary, L.,
de la Clergerie, É.V., Seddah, D., Sagot, B., 2019.
CamemBERT: a Tasty French Language Model. arXiv

preprint 2019, arXiv:1911.03894.

Farahani, Mehrdad, Gharachorloo, M., Farahani, Marzieh,
Manthouri, M., 2020. ParsBERT: Transformer-based
Model for Persian Language Understanding. arXiv

preprint 2020, arXiv:2005.12515.

Cui, Y., Che, W., Liu, T., Qin, B., Yang, Z., Wang, S., Hu, G.,
2019. Pre-Training with Whole Word Masking for
Chinese BERT. arXiv preprint 2019, arXiv:1906.08101.

Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P., 2016. SQuad:
100,000+ questions for machine comprehension of text.
EMNLP 2016 - Conference on Empirical Methods in
Natural Language Processing, Proceedings, pp. 2383–

2392.

Trischler, A., Wang, T., Yuan, X., Harris, J., Sordoni, A.,
Bachman, P., Suleman, K., 2016. Newsqa: A machine
comprehension dataset. arXiv preprint 2016,

arXiv:1611.09830.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, Ł., Polosukhin, I., 2017. Attention
is all you need. Advances in Neural Information

Processing Systems, 5999–6009.

Wiedemann, G., Remus, S., Chawla, A., Biemann, C., 2019.
Does BERT Make Any Sense? Interpretable Word Sense
Disambiguation with Contextualized Embeddings. arXiv

preprint 2019, arXiv:1909.10430.

Wu, Y., Schuster, M., Chen, Z., Le, Q. v., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, Ł.,

Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K.,
2016. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
arXiv preprint 2016, arXiv: 1609.08144.

Schweter, S., 2020. BERTurk - BERT models for Turkish.

https://doi.org/10.5281/zenodo.3770924

