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Abstract 
In the domain of Natural Language Processing (NLP), despite the progress made for some common languages, difficulties persist for 
many others for the completion of particular NLP tasks. In this scope, the current study aims to explore these challenges by proposing 
a question answering (QA) system in the Turkish language. In particular, the system will generate the best answers in terms of content 
and length from questions that are based on a set of documents related to the banking sector. In order to achieve this goal, the system 

utilizes advanced artificial intelligence algorithms and large data sets. More specifically, BERT algorithm is used for the generation of 
the language model, followed by a fine-tuning procedure for performing a machine reading for question answering (MRQA) task. In 
this work, various experiments were conducted using original and translated data sets in an effort to solve the challenges that arise from 
morphologically complex languages as Turkish. Finally, the system achieved a performance that overall is applicable to a wider range 
than any other QA system in the Turkish language. The proposed methodology is not only proper to the Turkish language, but can also 
be adapted to any other language for performing various NLP tasks. 

Keywords: machine reading comprehension, machine reading for question answering, deep learning, BERT. 

Derin Öğrenme Sinir Ağlarına Dayalı Türkçe Soru Cevaplama Sistemi 

Öz 
Doğal Dil İşleme (NLP) alanında, yaygın diller için kaydedilen bazı ilerlemelere rağmen, diğer dillerde belli başlı NLP görevleri için 
zorluklar devam etmektedir. Bu kapsamda, mevcut çalışma Türkçe dilinde bir soru cevaplama (QA) sistemi önererek bu zorluklara 
çözüm araştırmayı amaçlamaktadır. Sistem, bankacılık sektöründen seçilen dokümanları kullanarak, sorulan sorulara içerik ve uzunluk 
açısından en iyi yanıtları üretecektir. Bu amaca ulaşmak için sistem, gelişmiş yapay zeka algoritmaları ve büyük veri kümeleri kullanır. 
Daha spesifik olarak, dil modelinin oluşturulması için BERT algoritması kullanılmış, ardından sistemin soru cevaplama (MRQA) 
becerisini arttırmak için bir iyileştirme (fine-tuning) uygulanmıştır. Bu çalışmada, Türkçe gibi morfolojik açıdan karmaşık dillerden 
kaynaklanan zorlukları çözmek için orijinal ve İngilizce’den çevrilmiş veri setleri kullanılarak çeşitli deneyler yapılmıştır. Son olarak, 
sistem, genel olarak Türkçe dilinde diğer tüm QA sistemlerinden genel olarak daha yeni bir yelpazede yüksek bir performans elde 

etmiştir. Önerilen metodoloji sadece Türk diline özgü olmayıp aynı zamanda çeşitli NLP görevlerini yerine getirmek için başka diğer 
dillerde de uyarlanabilir. 

Anahtar Kelimeler: makine okuma anlama, soru cevaplama için makine okuma, derin öğrenme, BERT. 

1. Introduction 

In recent years, novel artificial intelligence 

algorithms proposed solutions in problems from various 

domains and outperformed previous methodologies and 

architectures. Even if some of the algorithmic ideas were 

not new, the dramatic increase of available data and 

process power, various parallelization techniques, 

cloud-based processing methodologies and the use of 
graphic processor units (GPU) allowed developing a 

series of different types of neural networks that 

demonstrated astonishing results. In the domain of 

Natural Language Processing (NLP), the use of deep 
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neural networks outperformed almost all previous types 

of approaches. Their ability to create language models 

from large amounts of data is one of the main reasons 

for their success. Moreover, recent models managed to 

generate word representations that change according to 

their current context, thus giving a dynamic approach 

and increasing the system performance in various NLP 

tasks. These networks are configured and tested mainly 

for English and some other common languages because 

of the available data sets. 
Despite some efforts to create multilingual models, 

there is still a lack of available data and little experience 

in the way that these algorithms should be trained and 

utilized for different languages. In particular, Turkish 

language has been proven to be challenging for Natural 

Language Processing because it is an agglutinative 

language with a derivational structure and 

morphologically rich. Consequently, the main 

motivation of this study is to explore the challenges of 

generating a Turkish language model and performing a 

particular NLP task, a question answering system (QA). 
Additionally, another motivation of this work is to 

explore the difficulties that could arise and propose 

adequate methods and guidelines for the generation of a 

language model and the completion of particular tasks 

in a language structurally different from English. 

More specifically, the proposed system will be able 

to give the best and shorter answer to a question related 

to the banking sector. In order to achieve this goal, the 

system will be trained from a variety of data sets. In 

general, this task is called “Machine Reading for 

Question Answering” (MRQA) and it is essential for 
QA systems and search engines in general. To the best 

of our knowledge, in the Turkish language, a performant 

MRQA system doesn’t exist, as most of the systems 

follow a semantic approach. 

Today, in the domain of NLP the machine learning 

system that outperforms the state of the art is the 

Bidirectional Encoder Representatives from 

Transformers (BERT) (Devlin et al., 2018). Its success 

lies in the fact that in the generated language model 

words have a contextual, dynamic representation rather 

than a fixed one, resulting in a context-sensitive 

language model. Moreover, as its structure is agnostic 
and not configured for a particular task or domain, it can 

be fine-tuned with little effort and perform various NLP 

tasks. Although BERT proposed a multi-language 

model, its performance in the Turkish language is not 

satisfactory. In this context, the purpose of this study is 

first to create a model of Turkish language based on 

BERT and then use this model in order to generate a 

MRQA system oriented to the banking sector. Figure 1 

presents a general overview of the study. 

2. Related Work 

In Turkish questioning (QA) systems, most of the 

research is focused on improving the skills of search 

engines by introducing two modules: one that 

ameliorates the structure of a user’s query with specific 

preprocessing steps, and another that generates a 

selected list of the most appropriate search results 

(Amasyalı and Diri, 2005; Biricik et al., 2013; Çelebi et 

al., 2011; Er and Cicekli, 2013). 

One of the tasks of the first module is to detect the 

question type with the help of a predefined table. Using 
specialized libraries for Turkish language processing 

like Zemberek (Akın and Akın, 2007) or Treebank 

(Eryiğit and Oflazer, 2006; Oflazer et al., 2003), the 

module analyzes the sentence morphologically and 

generates the stems of the words. The module can also 

create simplified variations of the query or eliminate 

prepositions, conjunctions, stop words, and replicates 

the query with synonyms of terms using the thesaurus. 

In general, these studies utilize rule-based 

approaches. Their success is limited, and most of them 

are suitable for factoid questions only. To the best of our 

knowledge, there is still no approach that utilizes neural 
networks for a Turkish QA system. Today, NLP domain 

approaches that are based on neural networks 

outperform all rule-based systems. Neural networks 

solutions with pre-trained language representations were 

available with ELMo (Peters et al., 2018) and 

Generative Pre-trained Transformer (GPT) (Radford 

and Salimans, 2018). ELMo presented a bidirectional 

architecture but it was difficult to be adapted to different 

tasks. On the other hand, GPT required minimal 

architectural changes but it was unidirectional. In 2018, 

Bidirectional Encoder Representations from 
Transformers (BERT) was published by Google. BERT 

managed to have a bidirectional architecture by 

requiring minimal architectural changes for performing 

various NLP tasks. Within this way, BERT and its recent 

variations managed to achieve remarkable results.  

 

 

Figure 1. Diagrammatic representation of the study. 
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A recent competition for generalized MRQA tasks in 

English language (Fisch et al., 2019) included also 

solutions based on BERT architecture. In this contest, 

the presence of big multinational corporations 

demonstrated the increasing interest in the MRQA task 

worldwide. After its success in English, BERT has been 

implemented to other languages. Despite the fact that 

BERT proposes a multilingual model (mBERT), its 

performance is relatively low. For this reason, for a 

particular language a special effort has to be made for 
the generation of a new language model. In (Antoun et 

al., 2020) the authors generated a BERT model in the 

Arabic language named AraBERT and tested it in 

several NLP tasks, including QA. In tests conducted 

with the Arabic Reading Comprehension Dataset 

(ARCD), they utilized an English question answering 

datasets (SQuAD) translated to Arabic. When tested, 

AraBERT presented a similar performance to mBERT. 

There exists also a BERT model for the French language 

named CamemBERT (Martin et al., 2019), for the 

Korean language named KoBERT1, and another for the 
Persian language named ParsBERT (Farahani et al., 

2020) but these models do not report accuracy results on 

QA tasks. Finally, there is a model for the Chinese 

language trained by Google. This model was tested in 

the following Machine Reading Comprehension (MRC) 

datasets generated for Chinese: CMRC 2018, DRCD, 

CJRC (Cui et al., 2019). 

Based on the above, it can be concluded that the 

existing QA systems in the Turkish language have 

limited success because of the approaches they utilize. 

Moreover, despite the progress made for systems in 

English language, there is still little progress for QA 

platforms in other languages. In the following section, 

the methodology for the creation of an MRQA system in 

the Turkish language is presented. 

3. Methodology 

3.1. Data sets 

When a QA architecture incorporates neural 

networks, one of the challenges is to generate adequate 

data sets for the training procedure. In this work, special 

attention and effort were given in the choice and the 

generation of pertinent data sets. Two types were 

generated: one dedicated for a pre-training task for 

training the language model in Turkish and another for 
a fine-tuning task in order to perform a QA task for the 

banking domain. Table 1 presents the data sets used for 

training the language model. Here, the first data set is 

based on Wikipedia pages2, the second on a news article 

collection in Turkish and the third on a corpus based on 

the specific domain of the final QA system prepared by 

the authors of this study. All sentences are in the Turkish 

language. 

Table 2 presents the data sets utilized for the QA task 

or fine tuning the model. All documents were created 

based on the Stanford Question Answer Data Set 
(SQuAD) structure (Rajpurkar et al., 2016), published in 

2016. 

Table 1. Data sets for the fine-tuning task (QA system for the banking domain).  

Name Size Content Information 

Wikipedia Corpus (Tr) 456.5 MB 4.5M sentences Turkish Wikipedia dump 
922335 pages (08/2019) 

News Corpus (Tr) 2.5 GB 20M sentences News articles collection in Turkish 
Economy Corpus (Tr) 15.5 MB 270K sentences Turkish economy blogs from Web 

 

Table 2. Data sets for the fine-tuning task (QA system for the banking domain).  

Name Size Content Information 

SQuAD (Tr) 24.42 MB 490 documents 
20963 paragraphs 
45872 questions 
56117 answers 

Q&A from paragraphs from Wikipedia articles. 
(Machine translation from English to Turkish) 

NewsQA (Tr) 19.66 MB 8379 documents 

8343 paragraphs 
21270 questions 
21270 answers 

Q&A from articles from CNN news. 

(Machine translation from English to Turkish) 

Banking Sector QA (Tr) 5 MB 679 documents 
1637 paragraphs 
17708 questions 
17708 answers 

Q&A from documents from the banking sector. 
(in Turkish) 

 

                                                        
1 GitHub (2020). KoBERT GitHub Page [online]. 

Website https://github.com/SKTBrain/KoBERT 

[accessed 25 05 2020]. 

2 Wikimedia (2020). Wikipedia Dump [online]. 

Website https://dumps.wikimedia.org/backup-

index.html [accessed 25 05 2020]. 
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Figure 2. BERT architecture. 

A SQuAD based data set includes a set of paragraphs 

accompanied with a set of questions and answers for 

each paragraph. The questions are related to the 

associated paragraph and the answers are generated 

from its text. The first data set is the original SQuAD 

data set translated automatically in Turkish. The second 

is the NewsQA data set (Trischler et al., 2016) translated 

also automatically in Turkish having also a similar 

structure with the SQuAD data set.  
Finally, the third data set is created by a team 

working in a private Turkish bank and supervised by the 

authors of this study. This data set follows the SQuAD 

structure: a set of paragraphs with a set of related 

questions and answers for each paragraph. 

3.2. BERT 

In 2018 Google proposed the Bidirectional Encoder 

Representations from Transformers (BERT) neural 

network. First it generates a context-sensitive language 
model (pre-training task) and then it can perform a series 

of NLP tasks (fine tuning task). The language model is 

generated by applying two training procedures 

simultaneously. The first aims to predict a number of 

masked words from a sentence and the second aims to 

predict the following sentence. When the language 

model is generated, BERT can do a particular NLP task 

by using a supplementary data set. During the fine-

tuning procedure, the weighs of the BERT network are 

slightly modified. Figure 2 presents the architecture of 

BERT. In this study, the BERT base model was utilized, 
having 110 million parameters, 12 transformer layers 

and 12 attention heads for each transformer layer 

(Vaswani et al., 2017). 

3.2.1. Word Sense Disambiguation in BERT 

Turkish is a morphologically rich language with a 

large number of suffixes and a variety of possible word 

positioning inside a sentence. In morphologically 

simpler languages such as English, POS tagging is a 

much more pertinent procedure. On the contrary, in 

agglutinating languages such as Turkish, the 
morphological disambiguation process is challenging. 

In this case, morphological disambiguation is crucial for 

finding the stems of the words. Otherwise, the neural 

network has difficulties in handling the suffixes and, as 

a result determining the connections between the words. 

BERT manages to overcome those problems by using: 

 A subword--based embedding system. 

 A Masked Language Model (MLM) and next 

sentence prediction training. 

 Bidirectional transformers. 

Although BERT cannot solve the morphological 

disambiguation problem of Turkish, the overall 
architecture solves the word sense disambiguation 

problem, as demonstrated in (Wiedemann et al., 2019) 

which is enough for performing a number of NLP tasks 

like text classification, machine translation, and 

question answering. 

3.2.2. Subword-based embedding system 

Word embedding methods became popular because 

they convert an input text into a numerical 

representation that can be used for mathematical 
operations in neural networks. Today, new generation 

word embedding methods capture the contextualized 

meaning even in cases with polysemy and the resulted 

word vector can vary according to the context. For 

example, the vector of the word ‘bank' is different when 

it is used in a sentence with a finance context and when 

it describes a seat in a park.  

Until modern NLP solutions, morphological 

disambiguation was performed with rule-based 

solutions, such as Zemberek for Turkish. 

‘Çekoslovakyalılaştıramadıklarımızdan mısınız?’ is the 
most unusual example in Turkish. Zemberek’s output is 

shown in Figure 3.  

 

 

Figure 3. Morphological disambiguation result of 
'Çekoslovakyalılaştıramadıklarımızdan mısınız?' using 

Zemberek. 
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WordPiece subword-based embedding (Wu et al., 

2016) is a word segmentation algorithm that extracts 

subwords from a given data set. In the initial step, the 

WordPiece algorithm splits the corpus into characters, 

following by recursively combining them into subwords 

and calculating the loglikelihood of every candidate 

subword. After several passes over corpus, the algorithm 

generates a fixed-sized vocabulary by using the 

frequencies of combined subwords and picks the most 

frequent ones. The subword can be a word, a syllable, or 
a single character. Using the vocabulary file as a 

reference, most of the given text phrases can be 

tokenized, and the rest are marked as unknow tokens 

(UNK). 

In summary, a desired subword vocabulary size is 

defined and after splitting words into characters, 

WordPiece generates the subwords progressively based 

on likelihood criteria, until a certain threshold is 

satisfied or the subword vocabulary size is reached. 

Although WordPiece is not the direct solution to the 

morphological disambiguation problem of the Turkish 
language, the result is satisfactory for the tokenization 

of the input sequences. The tokenization result of 

‘Çekoslovakyalılaştıramadıklarımızdan mısınız?’ with 

WordPiece is presented in Figure 4. The symbols ## 

indicate that the sub word is a suffix. Consequently, by 

using these generated suffixes, the tokenizer can identify 

the suffixes in Turkish words and also cover many Out-

Of-Vocabulary (OOV) words, thus giving an advantage 

over classical word embedding methods. 

3.2.3. Masked Language Model (MLM) and Next 

Sentence Prediction training (NSP) 

The training operation is based on two unsupervised 

tasks that are executed simultaneously: The Masked 

Language Model (MLM) and the next sentence 
prediction. The main logic behind the MLM is to try to 

learn the relationships of words in a language by 

randomly masking some tokens in the corpus and then 

try to predict the original ones with an attention 

bidirectional transformer network that handles the 

context both from left and right. After tokenizing the 

content with WordPiece tokenizer, the token 

embeddings are combined with positional embedding 

location for preventing long-distance mappings with 

unnecessary tokens in self-attentions. After Encoder & 

Decoder self-attention stacks, a Softmax classifier 
compares the predicted and original words and updates 

the weights of the network which builds the language 

model.  In MLM, the system attempts to predict 15% of 

tokens in a sentence that are chosen randomly. During 

this procedure these tokens are replaced 80% by the 

token [MASK], 10% by a random word and 10% by the 

original word. In training, only 1.5% of all tokens are 

replaced with random words. Compared to traditional 

language models, as a result of masking process 

although the training time takes longer, the success of 

the results is satisfactory. Figure 5 shows examples of 

token replacements for the three cases.  

 

 

Figure 4. Tokenization result of 'Çekoslovakyalılaştıramadıklarımızdan mısınız?' using WordPiece. 

 

 

Figure 5. Token replacement examples: random word (blue), same word (red) and [MASK] token (green). 

 

Figure 6. BERT pre-training architecture.
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The percentage values are experimental. The reason 

of adding random words or keeping the original word is 

to reduce the consequences by the fact that the token 

[MASK] will not be present in the fine-tuning 

procedure. Next sentence prediction is a binarized task. 

In this task, the next sentence is replaced 50% by a 

random sentence. This procedure aims to predict the 

relation between sentences by Sigmoid classification 

and enlarge the contextual meaning that exists in 

isolated sentences. 

3.2.4. Bidirectional transformers 

Figure 6 presents the pre-training architecture of 

BERT. The input consists of unlabeled sentences pairs 

with masked tokens and the output layer predicts the 

masked tokens and the next sentence. BERT is using a 

stack of bidirectional transformer encoders and decoders 

(Figure 7). The transformer network has encoder and 

decoders stacks that contains self-attention mechanisms 

and Feed-Forward networks. This multi-layer 
architecture aims to generate word vectors that will be 

adaptable to the context of a sentence. In order to 

achieve this goal, the encoder architecture applies a 

word vector encoding that comprises three steps: the 

first is based on WordPiece encoding, the second on the 

position of a word in the sentence and the third on a 

mechanism of comparison of sentence words between 

them. This mechanism is described as attention because 

a word has an attention to the other words of its 

sentence.  

 
Figure 7. The transformer architecture (Vaswani et al., 

2017). 

Unlike a single context final state provided by a 

RNN model, the attention-based model has multiple 

hidden states, which considers all dependencies between 

every word in the input sequence. Although the 

connections are usually with previous or next words in 

the lower layers of the transformers, the semantic 

relations become more visible in the higher-level layers. 

In a traditional Encoder & Decoder architecture, if the 

input sequence is long, after a while. the model begins 

to forget some parts of the context Attention tries to 
solve this problem by focusing on finding the most 

critical input sections when summarizing the sequence. 

In an attention-based Encoder & Decoder architecture, 

there are weight matrices that keep the semantical 

relation densities of the words and highlight the 

significant parts of the sequence resulting in 

performance improvement of Decoder. In the 

transformer network, the output of every encoder is the 

input of the next encoder, like a chain. The output of the 

last encoder is the input of all the decoders. After 

converting the decoder's output to a logit vector at the 
top of the decoder stack, the Softmax layer calculates the 

probabilities, and the transformer picks the top-rated 

candidate. In summary, the attention is based on vector 

similarity measurements between vectors that are 

generated from the input vectors and a number of weight 

matrices.  

The attention mechanism is applied many times with 

a multi-head approach and the resulted vectors are 

concatenated. The attention heads evaluate the same 

input of a given layer from different viewpoints. Every 

multi-head also includes a normalization process and an 
additional dense neural network. As the formation of a 

word vector takes into account the other words of the 

sentence, the system is able to generate context-sensitive 

word vectors.  

3.2.5. Training procedure 

The training procedures comprise the generation of 

a language model in the Turkish Language, a 

preprocessing of fine-tuning data sets and a fine-tuning 

procedure for training the QA system for the banking 
domain. 

Pre-training for language model generation: The 

first step was to create a vocabulary of around 32.000 

words. Among them around 30.000 was created from 

words existing in the data sets of Table 1 and another 

2.000 words belonging to the finance sector were 

selected and added by the authors. WordPiece was 

utilized for token embedding. In BERT architecture 

additional embeddings are added based on the position 

of a word in a sentence and the sentence number. Two 

training procedures were done simultaneously: one for 

predicting the next sentence and another that is based on 
attempting to predict masked words in a sentence. 

During the training process, the three data sets of Table 

1 were used together. Finally, a language model in the 

Turkish language is generated.  
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Figure 8. The two phases of the fine-tuning procedure. 

Preprocessing of fine-tuning data sets: The 

automatic translation of data set documents in Table 2 

resulted in some inconsistencies related to the SQuAD 

format. A pre-processing operation was applied aiming 

to fix problems related to an incorrect answer in a given 
paragraph or the absence of a start point in a sentence. 

The preprocessing required the development of some 

special procedures and in some cases a manual 

intervention. 

Fine tuning for QA task: Fine tuning is applied in 

two phases. In the first phase, the fine tuning of the 

neural network which is already trained for a Turkish 

language model is done by using the SQuAD (Tr) and 

NewsQA (Tr) data sets. In this phase, the two data sets 

are combined together. The aim is to increase the QA 

skill of the system in general, or in other words, in an 

open domain. In the second phase, the model is trained 
with the updated parameters resulted from the previous 

fine tuning, by using the Banking Sector QA (Tr) data 

set. The second phase aims to increase the ability of the 

system to answer questions from a closed domain, the 

banking sector. Figure 8 shows an overview of the 

training phases together with the data sets they utilize. 

3.3. System parameters 

In the Pre-training task the following parameters are 

important to configure:  
Maximum sequence length: Configures the 

maximum length of a sequence after the WordPiece 

tokenization. High values are necessary to learn 

positional embeddings in long sequences. 

 Maximum predictions per sequence and masked 

LM probability: when multiplied between them they 

define together the number of masked tokens in a 

sentence.  

  Do lower case and do whole word mask: Convert 

the sentences to lowercase and mask the tokens of a 

whole word instead of masking individual tokens, 
respectively. When these parameters are applied, the 

accuracy in general increases, especially for Asian 

languages. In the current study the vocabulary size is 

large enough to have most of the suffixed words in 

Turkish language. Consequently, the selection of an 

individual token masking or whole word masking 

doesn't alternate significantly the accuracy results. 

 Finally, for the fine-tuning task the important 

parameters to configure are the following ones: 

Document stride parameter: This parameter 

allows to create training sentences examples that overlap 

between them. Within this way the next sentence 
training example will start in a given position in the 

previous sentence. This superposition is performed in a 

token level. 

Maximum query length: The maximum number of 

tokens of a question. If a question is longer this number 

the rest will be truncated. 

Maximum answer length parameter: The 

maximum length of an answer taken from the paragraph 

than belongs the related question. This parameter is 

character-based rather than token-based as it is the rest 

of the parameters. 

3.4. Evaluation metrics 

Similar to other machine reading comprehension and 

SQuAD studies, the exact match (EM) and F-Score will 

be used as the evaluation metrics. EM takes in account 

the predicted answer only if it is the same as the real 

answer and F-Score counts the predicted answers that 

they have an overlap with the real one. 

4. Results 

In this section, the results of the study are presented. 

In the beginning, the parameters that are achieving the 

best performance for answering questions for a specific 

domain, the banking sector are showed, followed by the 

errors types in errors and answers. Then, an evaluation 

of the study’s model is performed as follows: first, the 

current model is compared with existing Turkish QA 

systems. Then its performance is evaluated in 
comparison with other BERT language models. Finally, 

the model is tested with other models in the Turkish 

language generated with BERT. 

4.1. Neural network parameters evaluation 

In order to better evaluate the accuracy of the system, 

different training parameters were tested. After 

experimenting with different values and considering the 

average and maximum length of paragraphs, questions, 

and answers in the data sets, it was observed that the 
following parameters are giving the best results for fine 
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tuning: maximum sequence length = 512, document 

stride = 256, maximum question length = 64, and 

maximum answer length = 64.  

From the results it can be seen that a long sequence 

length (512) with a half overlapping (stride set to 256) 

has an important impact on the accuracy results. 

Table 3 presents different combinations and 

accuracy results in terms of EM and F-Score. 

4.2. Error types in questions & answers 

In order to evaluate the success of the system in a real-

world environment, the team that prepared the Banking 

Sector QA data set was asked to think in general rather 

than focusing on a particular question type or 

formulation. The examination of the results, revealed 

that the system responds correctly to the majority of the 

factoid questions, where the answer to the question is a 

single fact. Since there is a distinct difference between 

the exact match (EM) and F-Score metrics, a 3.2% of 

wrong answers which have zero EM (572 out of 17708 
answers) was identified. Table 4 presents the type of 

errors and Table 5 gives examples for most of these 

errors. The errors were categorized based on the 
following reasons: 

1) Multiple possible answers: Questions that have 
multiple possible answers cause 30% of the errors, as 

seen in the first row of the table, both the answer and the 

prediction are logically correct replies to the question.  

2) Questions requiring interpretation: For some 

answers, it is necessary to interpret the entire paragraph. 

For the moment, deep neural networks don't have this 

capability. 

3) Conditional answer: In some questions, the 

answer varies according to the circumstances, as seen in 

the third example, the answer is ‘possible’ only for the 

customers of a brand.  

4) Questions requiring a list of elements: These 

questions require an answer, which is a set of elements, 

or a list. 

5) Answers with syntax variations: Since Turkish 

is an agglutinating language, generating one unique 

correct answer in terms of syntax is a difficult task. 
Hence, sometimes a correct answer given by the system 

can be enlarged or reduced when compared to the 

predicted answer, thus leading to a zero EM.  

6) Incorrect question: There are also incorrectly 

prepared questions and answers in the data set. Some of 

them have many spelling mistakes, some of them are 

logically incorrect. 

7) Incorrect answers: 25% of the questions are not 

answered correctly, generally for the type of questions 

that the system has not during the training phase or for 

very long questions and answers which are truncated 
during training.  

4.3. Comparison with other Turkish QA systems 

In this study the model of the current study was 

compared with Turkish QA systems in open and closed 

domain. In open domain, the system should be able to 

answer generic questions and in a closed domain, the 

system answers questions from a specific domain. 

 

 

Table 3. Different parameter combinations and results for Banking Sector QA (Tr) data set.  

Maximum 
Sequence Length 
(token) 

Document 
Stride 
(token) 

Maximum 
Query Length 
(token) 

Maximum 
Answer Length 
(character) 

EM F-Score 

512 256 64 64 54,09 79,01 
512 256 64 30 52,72 78,69 
512 128 64 64 52,00 77,46 
512 512 128 64 51,94 75,66 

512 384 256 30 49,33 74,39 
384 64 64 30 47,56 73,42 
256 64 64 30 46,01 71,97 
128 64 64 30 44,38 70,11 

Table 4. Description of wrong answers with zero EM (3.2%).  

Error ID Description Counts 

1 Multiple possible answers 180 
2 Questions requiring interpretation 85 
3 Conditional answers 80 
4 Questions requiring a list of elements 5 
5 Answers with syntax variations 34 

6 Incorrect question 49 
7 Incorrect answers 139 
 Total 572 
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 Table 5. Examples for error types 1-5.  

Error ID Question Real answer Predicted answer 

1 Kampanya için gerekli şartlar nelerdir? Bankanın müşteri yada kredi 
kartına sahibi olmak 

Kampanyadan yararlanmak isteyen 
müşteriler, üyeliklerini 31/12/2019 

tarihine kadar aktifleştirmelidir. 
2 Tarihi geçmiş belgeler için müşteri ne 

yapmalıdır? 
Şubeleri ile görüşmeleri 
gerekmektedir. 

güncellenmelidir 

3 Parmak izi ile girişi tüm müşteriler 
kullanabilir mi? 

sadece X marka telefonu olanlar kullanabilir 

4 İşlemler ne zaman fona dönüşür? 09:15, 11:15, 13:15, 15:15 günlük 
5 Kampanya kuponları hangi sitelerde 

geçerlidir? 
www.x.com www.x.com’da 

Table 6. Comparison of Turkish QA Systems. (1) Data sets translated to Turkish. (2) Mean Reciprocal Rank, considers the rank of the first correct 

answer in the list of possible answers. (3) Who, Where, When and What. (4) Author, capital, birth date, death date, language of country, birth place, 

death place. (*) Phase 1: Fine tuning the model using merged SQuAD (Tr) and NewsQA (Tr) data sets. (**) Phase 2: Fine tuning the model, which is 

already trained with phase 1, using Banking Sector QA (Tr) data set.  

Study Data sets Domain Metric Results 

BayBilmiş TREC-91 and TREC-101 Open MRR2 0,313 

Automatic QA for Turkish 
with Pattern Matching 

Only Specific Questions3 Closed Precision 0,79 (Average) 

A Factoid QA System 
Using Answer Pattern 
Matching 

Only Specific Factoid Questions4 Closed MRR2 0,73 

Current Study SQuAD (Tr)1 and NewsQA (Tr)1* Open EM 55,26 

F-Score 67,07 

Banking Sector QA (Tr)** Closed EM 54,09 

F-Score 79,01 

Table 6 presents the results of this comparison in 

terms of Exact Match and F-Score. The performance of 

the system was measured in open and closed domain by 

taking in account its accuracy in the first phase of the 
fine-tuning procedure with the SQuAD (Tr) and 

NewsQA (Tr) data sets and its accuracy in the second 

phase where the Banking Sector QA (Tr) data set was 

additionally utilized for training.  

The studies in Table 6 proposed solutions for certain 

types of questions, and the accomplished success rates 

have been achieved in particular data sets. Because of 

different evaluation metrics and test data sets, it is 

difficult to directly compare the results of the current 

study with the results of the previous QA systems in 

Turkish. But in general, based on the evaluation metrics 
(Mean reciprocal rank), and the type of data sets 

(question specific data sets) of these studies, it can be 

considered that the current study proposes a solution that 

is applicable to a wider range of QA’s. The proposed 

method covers all types of questions, and there is no 

restriction in terms of question types or text for the 
evaluation data sets. 

4.4. Comparison with other BERT language 

models 

In order to evaluate the selected data sets and training 

procedure the current model was compared with models 

that used data sets in other languages. Table 7 presents 
the comparison with BERT models in the Arabic and 

Chinese Language in terms of EM and F-Score. Existing 

BERT models in the Persian, Korean and French 

language didn’t present results for QA tasks.

Table 7. Comparison of BERT models with other languages. (1) Data sets translated to Turkish. (2) Multilanguage model published by Google. 

(3) Arabic Reading Comprehension Dataset, which was previously translated from SQuAD to Arabic. (4) Chinese specific model published by Google. 

(*) Phase 1: Fine tuning the model using merged SQuAD (Tr) and NewsQA (Tr) data sets. 

Language Model Data sets Domain EM F-Score 

Arabic mBERT ARCD3 Open 34,2 61,3 

AraBERT ARCD3 30,6 62,7 
Chinese BERT-Chinese4 CMRC 18,6 43,3 

DRCD 82,2 89,2 

CJRC 55,1 75,2 
Turkish Current Study SQuAD (Tr) 1 57,60 68,34 

NewsQA (Tr) 1 48,01 59,86 

SQuAD (Tr)1 and NewsQA (Tr)1* 55,26 67,07 

 

http://www.x.com/
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Table 8. Comparison of Turkish base models. (1) Data sets translated to Turkish. (*) Phase 1: Fine tuning the model using merged SQuAD (Tr) 

and NewsQA (Tr) data sets. (**) Phase 2: Fine tuning the model, which is already trained with phase 1, using Banking Sector QA (Tr) data set. 

Data sets Model Domain EM F-Score 

SQuAD (Tr)1 and NewsQA (Tr)1* BERTurk Open 57,43 69,36 

Current Study 55,26 67,07 

mBERT 54,52 65,74 
Banking Sector QA (Tr)** BERTurk Closed 55,89 80,87 

Current Study 54,09 79,01 

mBERT 50,74 77,03 

4.5. Comparison with other BERT Turkish models 

The results show that the performance of this system 

is, most of the time, better than other existing models. 

The current Turkish language model was compared with 

two others, Google’s multilingual version of BERT 

model, mBERT and another model in the Turkish 

language entitled BERTurk (Schweter, 2020). In Table 

8, it can be observed that this model is better than 

mBERT and slightly inferior but still comparable with 

the BERTurk model (around 2% difference). The 

selection of larger and various data sets for the training 
procedure is one of the main reasons that generate those 

differences. 

5. Discussion 

In this work, the evaluation of a QA system was done 

in open and closed domains, based on a deep neural 

network that generates a model language with a context-
sensitive vocabulary encoding. The results revealed the 

following findings: 

In Turkish QA systems, deep neural network 

methodologies can cover a wider domain compared to 

other approaches. The results revealed that almost all 

other methods based on a semantic or rule-based 

approach are successful in specific types of QAs. This 

finding is expected and in general it is applicable to other 

fields apart from the NLP domain. 

Language training data sets play a key role. The 

language model plays a significant role in the success of 

a QA system and the data sets used for generating have 
a major contribution. BERTurk performed slightly 

better because it used a wider training corpus. Special 

effort should be given by providing adequate data sets. 

Translated data sets are adequate for fine tuning. 

The automatic translation of English data sets, even if 

they need a preprocessing step, gave high accuracy 

results during the fine tuning. According to authors’ 

experience, this method can be applied to other 

languages and also other variations of deep neural 

networks based on bi-directional transformers.  

The above finding let conclude that the proposed 
methodology can be successfully used in QA tasks for 

any language and any domain. Based on this experience, 

QA tasks can be carried out in an open or any closed 

domain, provided that existing data sets in English will 

be translated with a preprocessing procedure and an 

adequate data set will be generated for a particular 

domain. Generating a data set in SQuAD format for a 
closed domain even if it is time-consuming and requires 

human resources, it is still necessary for obtaining a 

closed domain QA system with high accuracy. Today, 

researchers are focused on increasing the accuracy of 

generic QA tasks in order to reduce the performance gap 

between open and closed domains. As a result, new 

variations of neural networks using bi-directional 

transformers like BERT are proposed, and new data sets 

are emerging for training purposes. 

6. Conclusion 

This study presented a QA system in the Turkish 

language for the banking domain. This approach 

required the use of various and large data sets. Even if 

BERT cannot solve the morphological disambiguation 

problem of Turkish, the overall architecture is sufficient 

for solving the word sense disambiguation problem. For 

QA tasks in open domain, a translation and 

preprocessing step of some data sets was necessary and 

for answering questions in the banking domain, the 
generation of a new data set was required. The 

experiments showed that the accuracy of the network 

can significantly vary according to the choice of the 

training parameters. To the best of our knowledge, this 

study is the first that proposes a framework in the 

Turkish language for a QA task in open and also in 

closed domain using deep neural networks. 

Additionally, the proposed methodology is applicable to 

any language and to any domain for performing QA 

tasks. 
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