On n-absorbing prime ideals of commutative rings

Mohammed Issoual ${ }^{1}$ (©) , Najib Mahdou ${ }^{2}$ (©) , Moutu Abdou Salam Moutui*3 (D)
${ }^{1}$ CRMEF Khemisset, Morocco
${ }^{2}$ Laboratory of Modeling and Mathematical Structures, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco
${ }^{3}$ Division of Science, Technology, and Mathematics American University of Afghanistan, Kabul, Afghanistan

Abstract

This paper investigates the class of rings in which every n-absorbing ideal is a prime ideal, called n - AB ring, where n is a positive integer. We give a characterization of an n-AB ring. Next, for a ring R, we study the concept of $\Omega(R)=\left\{\omega_{R}(I) ; I\right.$ is a proper ideal of $\left.R\right\}$, where $\omega_{R}(I)=\min \{n ; I$ is an n-absorbing ideal of $R\}$. We show that if R is an Artinian ring or a Prüfer domain, then $\Omega(R) \cap \mathbb{N}$ does not have any gaps (i.e., whenever $n \in \Omega(R)$ is a positive integer, then every positive integer below n is also in $\Omega(R)$). Furthermore, we investigate rings which satisfy property $\left({ }^{* *}\right)$ (i.e., rings R such that for each proper ideal I of R with $\omega_{R}(I)<\infty, \omega_{R}(I)=\left|\operatorname{Min}_{R}(I)\right|$, where $\operatorname{Min}_{R}(I)$ denotes the set of prime ideals of R minimal over $I)$. We present several properties of rings that satisfy condition ${ }^{(* *)}$. We prove that some open conjectures which concern n-absorbing ideals are partially true for rings which satisfy condition $\left({ }^{* *}\right)$. We apply the obtained results to trivial ring extensions.

Mathematics Subject Classification (2020). 13F05, 13A15, 13E05, 13F20, 13B99, 13G05, 13B21

Keywords. n-absorbing ideal, prime ideal, primary ideal, Prüfer ring, Noetherian ring, Artinian ring

1. Introduction

Throughout this work, all rings are assumed to be commutative with identity element and $1 \neq 0$. Recall from [3] that a proper ideal I of R is called a 2-absorbing ideal of R if $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. A more general concept than a 2 -absorbing ideal is the concept of n-absorbing ideal. Let $n \geq 1$ be a positive integer. Also, recall from [1] that a proper ideal I of R is called an n-absorbing ideal of R if $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $a_{1} a_{2} \cdots a_{n+1} \in I$, then there are n of the a_{i} 's whose product is in I. The concept of n-absorbing ideals is a generalization of the concept of prime ideals (note that a prime ideal of R is a 1 -absorbing ideal of R). For more details on n-absorbing ideals, we refer the reader to [11-13]. We investigate rings in which every n-absorbing

[^0]ideal of R is a prime ideal, where $n \geq 2$ is an integer, called n-AB rings. Note that the authors in [6] studied rings where every 2 -absorbing ideal of R is prime.

This paper aims at studying of rings in which every n-absorbing ideal is a prime ideal. We also study the concept of $\Omega(R)=\left\{\omega_{R}(I) ; I\right.$ is a proper ideal of $\left.R\right\}$, where $\omega_{R}(I)=$ $\min \{n ; I$ is an n-absorbing ideal of $R\}$. We establish results which give the possible values for $\Omega(R)$ in several classes of rings.

In section 2 , we study the concept of n - AB ring and prove that for a ring R, the following assertions are equivalent:
(1) R is an n-AB ring.
(2) (a) The prime ideals of R are comparable. In particular, R is quasi-local with maximal ideal M.
(b) If P is a minimal prime ideal over an n-absorbing ideal I, then $I M=P$.

Next, we use the notion of minimal n-absorbing ideal introduced in [17], to establish that for a ring R, the following statements are equivalent:
(1) R is an n-AB ring.
(2) (a) The prime ideals of R are comparable. In particular, R is quasi-local with maximal ideal M.
(b) For every prime ideal P of $R, n-\operatorname{Min}_{R}\left(P^{n}\right)=\{P\}$.

Let A be a ring and E an A-module. The trivial ring extension of A by E (also called the idealization of E over A) is the ring $R=A \propto E$ whose underlying group is $A \times E$ with multiplication given by $(a, e)\left(a^{\prime}, e^{\prime}\right)=\left(a a^{\prime}, a e^{\prime}+a^{\prime} e\right)$. Recall that if I is an ideal of A and E^{\prime} is a submodule of E such that $I E \subseteq E^{\prime}$, then $J=I \propto E^{\prime}$ is an ideal of R. However, prime (resp., maximal) ideals of R have the form $P \propto E$, where P is a prime (resp., maximal) ideal of A. Suitable background on commutative trivial ring extensions is $[2,5,10,14,15]$.

Let R be a ring and I be a proper ideal of R. If I is an n-absorbing ideal for some positive integer n, then it is easy to see that I is an m-absorbing ideal of R for every positive integer $m \geq n$. We define $\omega_{R}(I)=\min \{n ; I$ is an n-absorbing ideal of $R\}$; Otherwise $\omega_{R}(I)=\infty$. It is convenient to define $\omega_{R}(R)=0$. Then for any ideal of R, we have $\omega_{R}(I) \in \mathbb{N} \cup\{0, \infty\}$ with $\omega_{R}(I)=1$ if and only if I is a prime ideal of R and $\omega_{R}(I)=0$ if and only if $I=R$. We define $\Omega(R)=\left\{\omega_{R}(I) ; I\right.$ is a proper ideal of $\left.R\right\}$. Notice that $\{1\} \subseteq \Omega(R) \subseteq \mathbb{N} \cup\{\infty\}$. In [1] page 1668, Anderson-Badawi raised the following question:

- If $n \in \Omega(R)$ for some positive integers n, then $m \in \Omega(R)$ for every integer m with $1 \leq m \leq n$?

It is worth to mention that a positive answer (to the question of Anderson-Badawi) is given for Prüfer domains. In Section 3, we give a positive answer of Anderson-Badawi's question, and we establish another characterization of Artinian rings. If I is a proper ideal of $R, \operatorname{Min}_{R}(I)$ denotes the set of prime ideals of R minimal over I. Recall that from $\left[1\right.$, Theorem 2.5], $\left|\operatorname{Min}_{R}(I)\right| \leq \omega_{R}(I)$.
In section 4, we study rings in which $\left|\operatorname{Min}_{R}(I)\right|=\omega_{R}(I)$. We say that a ring R satisfies ${ }^{(* *)}$ if for every ideal of R with $\omega_{R}(I)<\infty$, we have $\left|\operatorname{Min}_{R}(I)\right|=\omega_{R}(I)$. We prove in Theorem 4.9, that a Dedekind domain R satisfies (${ }^{* *}$) if and only if R is a field. Recall that from [1, Theorem 5.11(e)], Anderson-Badawi proved that $\Omega(R) \subseteq \Omega(R \propto E)$, where R is a commutative ring and E is an R-module. Notice that the inclusion may be strict. We end this paper by studying about when the equality between $\Omega(R)$ and $\Omega(R \propto E)$ is satisfied, where R is a ring and E an R-module. It is worth to mention that some of our proofs are easy, because we exploit earlier results. We are very grateful to $[1,7]$ for their results on n-absorbing ideals.

2. Main results on $n-\mathrm{AB}$ rings

We start this section by recalling the notion of n - AB ring defined in the introduction.

Definition 2.1. We say that a ring R is an n-AB ring for some positive integer n if every n-absorbing ideal of R is prime.

Now, we provide examples of rings which illustrate the notion of n-AB ring.
Example 2.2. Let R be a one-dimensional valuation domain with maximal ideal M which is not principal. Then R is an n-AB ring for any positive integer n.
Proof. Let I be a nonzero proper n-absorbing ideal of R. From [1, Theorem 5.5], $M^{n} \subseteq I$, as I is M-primary. On the other hand, we claim that $M^{2}=M$. Assume not. Then, there exists $t \in M$ such that $t \notin M^{2}$. One can easily check that $M=t R$, making M, a principal ideal of R, which is a contradiction. So, $M^{2}=M$. Therefore, $I=M$, making I a prime ideal. Hence, R is an n - AB ring, as desired.

Example 2.3. Let R be a two-dimensional valuation domain with prime ideals $0 \subset P \subset$ M and value group $G=\mathbb{Q} \oplus \mathbb{Q}$ (all direct sums having lexicographic order). Then R is an n - AB ring.
Proof. We need to prove that $M^{2}=M$ and $P^{2}=P$. Indeed, let $\left(q, q^{\prime}\right) \in \mathbb{Q} \oplus \mathbb{Q}$ such that $\left(q, q^{\prime}\right)>(0,0)$ if $q>0$ or $q=0$ and $q^{\prime}>0$. In the first case, $\left(q, q^{\prime}\right)=\left(q / 2, q^{\prime} / 2\right)+$ $\left(q / 2, q^{\prime} / 2\right)$. In the second case, $\left(0, q^{\prime}\right)=\left(0, q^{\prime} / 2\right)+\left(0, q^{\prime} / 2\right)$. Hence, $M^{2}=M$. With similar arguments as previously, we obtain $P^{2}=P$. Next, let n be a positive integer and $I \neq M$ be a nonzero n-absorbing ideal of R. Then $\sqrt{I}=P$, and so $P^{n}=P \subseteq I \subseteq P$. Consequently, $I=P$ which is a prime ideal of R. Thus, R is an n-AB ring, as desired.

Our next aim is to give a characterization of an $n-\mathrm{AB}$ ring. For this purpose, we establish the following lemma.
Lemma 2.4. Let R be a quasi-local ring with maximal ideal M. Then the following statements hold:
(1) If I is an n-absorbing ideal of R, then $I M$ is an $(n+1)$-absorbing ideal of R.
(2) If P is a prime ideal of R, then $P M$ is an n-absorbing ideal of R for each $n \geq 2$; moreover, $P M$ is a prime ideal of R if and only if $P M=P$.
Proof. (1) Let $x_{1}, x_{2}, \cdots, x_{n+2} \in R$ be such that $x_{1} \cdots x_{n+2} \in I M \subset I$. Since I is an n-absorbing ideal of R, then without loss of generality, we may assume that $x_{1} \cdots x_{n} \in I$. Now, if $x_{n+2} \in M$, then we are done. Otherwise; we have $x_{1} \cdots x_{n+1} \in I M$ since R is a quasi-local ring. Thus, $I M$ is an $(n+1)$-absorbing ideal of R.
(2) Let P be a prime ideal of R. By assertion (1) above, $P M$ is a 2 -absorbing ideal of R and so an n-absorbing ideal for every positive integer $n \geq 2$. If $P M=P$, then $P M$ is a prime ideal. Conversely, assume that $P M$ is a prime ideal of R and let $x \in P$. Then $x^{2} \in P M$, as R is a quasi-local ring. Thus, $x \in P M$ since $P M$ is a prime ideal and so $P M=P$, as desired.

Now, we establish the following characterization of an $n-\mathrm{AB}$ ring.
Theorem 2.5. A ring R is an $n-A B$ ring if and only if the following two assertions hold:
(1) The prime ideals of R are comparable. (In particular, R is quasi-local with maximal ideal M.)
(2) If P is a minimal prime ideal over an n-absorbing ideal I, then $I M=P$.

Proof. $(\Rightarrow)(1)$ Let P_{1} and P_{2} be two prime ideals of R. By [1, Theorem 2.1(c)], $P_{1} \cap P_{2}$ is a 2 -absorbing ideal of R and so an n-absorbing ideal from [1, Theorem 2.1(b)](as $n \geq 2$). So, $P_{1} \cap P_{2}$ is a prime ideal of R. Thus, P_{1} and P_{2} are comparable prime ideals. Now using the fact that the prime ideals of R are comparable, it follows that R is quasilocal
with maximal ideal M.
(2) Let I be an n-absorbing ideal of R and P be a minimal prime ideal over I. Then by assumption, I is a prime ideal of R. On the other hand, $\sqrt{I}=P$. Therefore, $I=P$ and so by Lemma 2.4, it follows $I M=I$.
(\Leftarrow) Assume that the assertions (1) and (2) hold. Let I be an n-absorbing ideal of R. Since the prime ideals are comparable, then \sqrt{I} is a prime ideal, say P which is the unique minimal prime ideal over I. By assertion (2) above, it follows that $P=I M \subseteq I$. Therefore, $I=P$ is a prime ideal of R. Hence, R is an n-AB ring, as desired.

As a first application of Theorem 2.5, we have the following corollary.
Corollary 2.6. Let R be a ring. If R is an $n-A B$ ring, then R is quasi-local with maximal ideal M satisfying $M^{2}=M$.

Proof. If R is an n-AB ring, then by Theorem $2.5, R$ is a quasi-local ring with maximal ideal M. On the other hand, M^{n} is an n-absorbing ideal of $R[1$, Lemma 2.8]. Consequently, M^{n} is a prime ideal of R. And so, $M^{n}=M \subseteq M^{2} \subseteq M$. Finally, $M^{2}=M$.

It is worth to mention that the converse of Corollary 2.6 is not true, in general, as shown by the next example which exhibits a quasi-local ring R which is not 2 - AB .

Example 2.7. Let R be a one-dimensional valuation domain with maximal ideal M which is not principal. Then $M^{2}=M$. Now, let I be an ideal of R such that $0 \subset I \subset M$. Clearly, I is an M-primary ideal of R. We claim that I is not an n-absorbing ideal of R for every positive integer n. Deny. by [1, Theorem 5.5$], M=M^{n} \subset I$, which is a contradiction. Therefore, the only n-absorbing ideals of R are 0 and M. Next, let $A:=R \propto R$ be the trivial ring extension of R by the R-module R. Clearly, A is a quasi-local ring with maximal ideal $m:=M \propto R$. Consider a prime ideal P of R. Then by [1, Theorem 4.10], $0 \propto P$ is a 2 -absorbing ideal of A which is not prime. Thus, A is not a 2 -AB ring.

The next corollary is another application of Theorem 2.5 which gives a characterization of n-AB rings in the special case of Noetherian setting.

Corollary 2.8. A ring R is a Noetherian $n-A B$ ring if and only if R is a field.
Proof. Assume that R is a Noetherian n-AB ring. Then by Theorem $2.5, R$ is a quasilocal ring with maximal ideal M. Let P be a prime ideal of R. By Lemma 2.4, we have $M P=P$ and so $P=0$ by Nakayama's lemma. Thus, R is a field. The converse is straightforward.

Recall that a prime ideal P of a ring R is called a divided prime ideal if P is comparable to every principal ideal of R. If every prime ideal of R is divided, then R is called a divided ring. Now, we give a necessary and sufficient condition for a divided domain to be an n - AB ring.
Theorem 2.9. Let R be a divided domain. Then R is an $n-A B$ ring if and only if $P^{2}=P$ for every prime ideal P of R.
Proof. Assume that R is an n-AB ring. Let P be a nonzero prime ideal. From [1, Theorem 3.3], P^{n} is an n-absorbing ideal of R and so a prime ideal of R. Therefore, $P^{n}=P$. It follows that $P^{2}=P$, as $P^{n} \subseteq P^{2} \subseteq P$. Conversely, assume that for every prime ideal P of $R, P^{2}=P$. Let I be a nonzero n-absorbing proper ideal of R. Using the fact that R is a divided domain, then $\sqrt{I}=P$ is a nonzero divided prime ideal. From [7], it follows that $P^{n} \subseteq I \subseteq P$. Consequently, $I=P$ is a prime ideal of R. Hence, R is an n-AB ring, as desired.

Theorem 2.9 covers the special case of valuation domains, as recorded below.

Corollary 2.10. Let R be a valuation domain. Then R is an $n-A B$ ring if and only if $P^{2}=P$ for every prime ideal of R.

Recall that in [8], Gilmer defined an ideal I of a commutative ring R to be semi-primary if its radical is a prime ideal of R. Also a ring R satisfies $\left(^{*}\right)$ if every semi-primary ideal is primary. These rings have been studied in [9]. The next theorem shows that for the class of n-AB rings which satisfy $\left({ }^{*}\right)$, every prime ideal is idempotent.

Theorem 2.11. Let R be an $n-A B$ ring which satisfies (${ }^{*}$). Then every prime ideal of R is idempotent.

Proof. Let R be an n-AB ring which satisfies (*). Consider a prime ideal P of R. Then from assumption, P^{n} is a P-primary ideal of R and so an n-absorbing ideal of R by [1, Theorem 3.1]. It follows that $P^{n}=P$ which is a prime ideal of R. Consequently, $P^{2}=P$, as $P^{n} \subseteq P^{2} \subseteq P$.

Now, we establish another characterization of an n - AB ring using the notion of minimal n-absorbing ideal introduced by Moghimi and Naghani in [17], in the following way:
Definition 2.12 ([17]). Let I be an ideal of a ring R. An n-absorbing ideal P of R is said to be a minimal n-absorbing ideal over I, if there is no n-absorbing ideal Q of R such that $I \subseteq Q \subset P$. And the set of minimal n-absorbing ideals over I is denoted by $n-\operatorname{Min}_{R}(I)$.

Theorem 2.13. Let R be a ring. Then the following statements are equivalent:
(1) R is an $n-A B$ ring.
(2) (a) The prime ideals of R are comparable. In particular, R is quasi-local with maximal ideal M.
(b) If P is a minimal prime over an n-absorbing ideal I, then $I M=P$.
(3) (a) The prime ideals of R are comparable. In particular, R is quasi-local with maximal ideal M.
(b) For every prime ideal P of $R, n-\operatorname{Min}_{R}\left(P^{n}\right)=\{P\}$.

Proof. (1) $\Leftrightarrow(2)$ Follows from Theorem 2.5. (2) $\Rightarrow(3)$ By Theorem 2.5, it remains to show that for every prime ideal P of $R, n-\operatorname{Min}_{R}\left(P^{n}\right)=\{P\}$. Let P be a prime ideal of R. By [17, Corollary 2.2], we have $n-\operatorname{Min}_{R}\left(P^{n}\right) \neq \emptyset$. Therefore, it is sufficient to show that $n-\operatorname{Min}_{R}\left(P^{n}\right) \subseteq\{P\}$. Let $J \in n-\operatorname{Min}_{R}\left(P^{n}\right)$. Then J is an n-absorbing ideal of R, and hence J is a prime ideal of R. Since $P^{n} \subseteq J$, it follows that $P \subseteq J$, which implies $P^{n} \subseteq P \subseteq J$. Since P is an n-absorbing ideal of R, we have $J=P$.
$(3) \Rightarrow(1)$ Suppose that P is a minimal prime ideal over an n-absorbing ideal I. Then by $[7], P^{n} \subseteq I \subseteq P$. Since $n-\operatorname{Min}_{R}\left(P^{n}\right)=\{P\}$, then $I=P$ and so $I M=P M=P$ by Lemma 2.4.

The next result is an immediate consequence of Theorem 2.13 with the well-known fact that the prime ideals of a divided ring are comparable.

Corollary 2.14. Let R be a divided ring with unique maximal ideal M. Then the following statements are equivalent:
(1) For every minimal prime P over an n-absorbing ideal I of $R, I M=P$.
(2) For every prime ideal P of R, we have $n-\operatorname{Min}_{R}\left(P^{n}\right)=\{P\}$.

Moreover, if one of the above equivalent statements holds, then R is an $n-A B$ ring.
In the following result, we show that for each prime ideal P of an n - AB ring, either P idempotent or P^{j} is not an n-absorbing ideal of R for every positive integer j with $2 \leq j \leq n$.
Corollary 2.15. Let R be an $n-A B$ ring. For each prime ideal P of R, either $P^{2}=P$ or P^{j} is not an n-absorbing ideal of R for every positive integer j with $2 \leq j \leq n$.

Proof. Assume that there exists a positive integer j with $2 \leq j \leq n$ such that P^{j} is an n-absorbing ideal. Then P^{j} is a prime ideal of R and so $P^{j}=P$. Hence $P^{2}=P$.

We end this section by studying the transfer of $n-\mathrm{AB}$ ring notion to trivial ring extension.
Theorem 2.16. Let A be a ring, E be a finitely generated A-module and $R:=A \propto E$. Then the following statements are equivalent:
(1) R is an $n-A B$ ring,
(2) A is an $n-A B$ ring and $E=0$.

Proof. (1) \Rightarrow (2) Assume that R is an n-AB ring. Since $R / 0 \propto E \simeq A$, it follows that A is an n - AB ring. Let M be the unique maximal ideal of A. By Corollary 2.6, we have $M^{2}=M$ and so $(M \propto E)^{2}=M \propto M E=M \propto E$ (since $M \propto E$ is the unique maximal ideal of $A \propto E$). Therefore, $M E=E$ and so by Nakayama's lemma, $E=0$.
(2) \Rightarrow (1) Straightforward since $A \simeq A \propto 0=R$.

Recall that from [2, Corollary 3.4], if A is an integral domain and E is a divisible A module, then every ideal of $A \propto E$ has the form $I \propto E$ for some ideal I of A or $0 \propto N$ for some submodule N of E. The next theorem develops a result on the transfer of $n-\mathrm{AB}$ property for the special case of trivial extensions of integral domains by vector spaces over their quotient fields.

Theorem 2.17. Let A be an integral domain with quotient field K and E be a K-vector space and $R:=A \propto E$. Then the following statements are equivalent:
(1) R is an $n-A B$ ring.
(2) A is an $n-A B$ ring and $E=0$.

Proof. (1) \Rightarrow (2) Assume that R is an n - AB ring. Then it is easy to see that A is an n-AB ring. Recall that from [11, Theorem 2.2], if F is an A-submodule of E, then $0 \propto F$ is a 2-absorbing ideal of R if and only if F is a K-subspace of E. Therefore, for $F=0$, we obtain $0 \propto 0$ is a 2 -absorbing ideal and so a prime ideal of R. We conclude that R is an integral domain, making $E=0$. (2) \Rightarrow (1) Clear since $A \simeq A \propto 0=R$.

The next result establishes the transfer of the $n-\mathrm{AB}$ property to trivial ring extension in the special case of Noetherian setting.

Corollary 2.18. Let A be a Noetherian ring, E be a finitely generated A-module and $R:=A \propto E$. Then R is an $n-A B$ ring if and only if so is A and $E=0$.

Proof. Assume that R is an n - AB ring. From [2, Theorem 4.8], it follows that R is Noetherian. By Corollary 2.8, R is a field. Thus, A is a field and $E=0$. The converse is trivial.

3. On $\Omega(R)$ where R is a ring

Recall that $\omega_{R}(I)=\min \{n ; I$ is an n-absorbing ideal of $R\}$; Otherwise $\omega_{R}(I)=\infty$. It is convenient to define $\omega_{R}(R)=0$. Then for any ideal of R, we have $\omega_{R}(I) \in \mathbb{N} \cup\{0, \infty\}$ with $\omega_{R}(I)=1$ if and only if I is a prime ideal of R and $\omega_{R}(I)=0$ if and only if $I=R$. Also recall that $\Omega(R)=\left\{\omega_{R}(I) ; I\right.$ is a proper ideal of $\left.R\right\}$. Then $\{1\} \subseteq \Omega(R) \subseteq \mathbb{N} \cup\{\infty\}$. The first result of this section gives a characterization of Artinian rings.
Theorem 3.1. Let R be a ring. Then R is an Artinian ring if and only if R is a Noetherian ring and $\Omega(R)=\{1, \ldots, n\}$ for some positive integer n.

The proof of this theorem involves the following lemma.
Lemma 3.2. Let M be a finitely generated maximal ideal of a ring R. If $\Omega(R)=\{1, \ldots, n\}$ for some positive integer n, then $h t(M)=0$.

Proof. From [1, Lemma 2.8], it follows that M^{n+1} is an $(n+1)$-absorbing ideal of R with $\omega_{R}\left(M^{n+1}\right) \leq n$ (since $\Omega(R)=\{1, \ldots, n\}$). We claim that $M^{n+1}=M^{n+2}$. Deny. $M^{n+2} \subset$ M^{n+1} and so by [1, Lemma 2.8], $n+1 \in \Omega(R)=\{1, \cdots, n\}$, which is a contradiction. Hence, $M^{n+1}=M^{n+2}$. Now the result follows from [1, Lemma 5.10].
Proof of Theorem 3.1. Assume that R is a Noetherian ring with $\Omega(R)=\{1, \ldots, n\}$ for some positive integer n. By Lemma 3.2, $h t(M)=0$ for every maximal ideal M of R. Therefore, $\operatorname{dim}(R)=0$, and so R is an Artinian ring. The converse is clear from [1, Theorem 5.11] and the fact that an Artinian ring is Noetherian.
Recall that incomparable prime ideals in a Prüfer domain are comaximal since R is locally a valuation domain. In the case of a Prüfer domain, we give a positive answer to the following Anderson-Badawi's question: if $n \in \Omega(R)$ for some positive integer, is $m \in \Omega(R)$ for every positive integer m with $1 \leq m \leq n$?
Theorem 3.3. Let R be a Prüfer domain and n be a positive integer in $\Omega(R)$. Then $m \in \Omega(R)$ for every positive integer $m \in\{1, \ldots, n\}$.
Proof. Let n be a positive integer in $\Omega(R)$ and let I be an n-absorbing ideal of R with $\omega_{R}(I)=n$. By [1, Theorem 5.7], the ideal I is a product of a prime ideals of R. We may assume that $I=P_{1}^{n_{1}} \ldots P_{k}^{n_{k}}$, where P_{1}, \cdots, P_{k} are comaximal prime ideals of R since R is a Prüfer domain and $n_{i}^{\prime} s$ are positive integers with $n=n_{1}+\cdots+n_{k}$. Now let m be a positive integer such that $1 \leq m \leq n$. We may set $m=m_{1}+\cdots+m_{k}$ where $m_{i}^{\prime} s$ are non-negative integers such that $1 \leq m_{i} \leq n_{i}$ for every positive integer $1 \leq i \leq k$ and consider the ideal $J:=P_{1}^{m_{1}} \ldots P_{k}^{m_{k}}$ of R. From [1, Theorem 5.7], J is an m-absorbing ideal of R and so $\omega_{R}(J)=m$. Hence, $\{1, \cdots, n\} \subseteq \Omega(R)$, as desired.

4. Rings satisfying $\left|\operatorname{Min}_{R}(I)\right|=\omega_{R}(I)$ if $\omega_{R}(I)<\infty$

Let I be an n-absorbing ideal of a ring R for some positive integer n. We denote by $\operatorname{Min}_{R}(I)$ the set of minimal prime ideals over I. Recall that from [1, Theorem 2.14], if I has exactly n minimal prime ideals, say P_{1}, \cdots, P_{n}. Then $P_{1} \ldots P_{n} \subseteq I$ and so $\omega_{R}(I)=n$. In this section, we investigate rings in which every n-absorbing ideal has exactly n minimal prime ideals.
Remark 4.1. Let I be a proper ideal of a ring R. Notice that if I is an n-absorbing ideal of R for some positive integer n, then $\sqrt{I}=\cap_{P \in \operatorname{Min}_{R}(I)} P$ is also an n-absorbing ideal of R. Set $\operatorname{Min}_{R}(I)=\left\{P_{1}, \cdots, P_{m}\right\}$. Since P_{1}, \cdots, P_{m} are incomparable prime ideals, then by [1, Remark 2.2], $m=\omega_{R}(\sqrt{I})=\omega_{R}\left(\cap_{i=1}^{m} P_{i}\right)=\left|\operatorname{Min}_{R}(I)\right| \leq \omega_{R}(I)$.

Now, we introduce the following definition:
Definition 4.2. We say that a ring R satisfies the property (${ }^{* *}$) if for every proper ideal I such that $\omega_{R}(I)<\infty$, we have $\omega_{R}(I)=\left|\operatorname{Min}_{R}(I)\right|$.

As illustrative examples of Definition 4.2, we provide families of rings satisfying the property (${ }^{* *}$).
Example 4.3. If R is a field, then R satisfies (${ }^{* *}$).
Example 4.4. If R is a Von Neumann regular ring, then R satisfies (${ }^{* *}$), since every ideal of I is a radical ideal.

Example 4.5. Let R be a two-dimensional valuation domain with prime ideals $0 \subset P \subset$ M and value group $G=\mathbb{Q} \oplus \mathbb{Q}$. Notice that $M^{2}=M$ and $P^{2}=P$; so $0, P$ and M are the only n-absorbing ideals of R with $\omega_{R}(0)=\omega_{R}(P)=\omega_{R}(M)=1$. Then R satisfies (${ }^{* *}$).

The next example exhibits a ring R satisfying the property (${ }^{* *}$) and having an ideal I that is not n-absorbing ideal.

Example 4.6. The ring $R=\prod_{i=1}^{\infty} \mathbb{Z}_{2}$ satisfies (**) since it is a Von Neumann regular ring. Let $I=\left\{\left(x_{i}\right) \in R ; x_{2 i+1}=0, i \in \mathbb{N}\right\}$ be an ideal of R. One can easily check that I is not an n-absorbing ideal of R for every positive integer n. Therefore, $\omega_{R}(I)=\infty$.

Now, we give the following characterization of an n-absorbing ideal I of an integral domain R which satisfies $\left({ }^{* *}\right)$ with $\operatorname{dim}(R) \leq 1$ or a ring R satisfying $\left({ }^{* *}\right)$ with $\operatorname{dim}(R)=0$ with $\omega_{R}(I)=n$ for some positive integer n.

Theorem 4.7. Let R be a ring satisfying (${ }^{* *}$) and which is either an integral domain with $\operatorname{dim}(R) \leq 1$ or $\operatorname{dim}(R)=0$. Let I be a proper ideal of R. Then I is an n-absorbing ideal of R with $\omega_{R}(I)=n$ if and only if I is a product of n incomparable prime ideals.
Proof. Assume that R is an integral domain satisfying (${ }^{* *}$) with $\operatorname{dim}(R) \leq 1$ and pick an ideal I of R with $\omega_{R}(I)=n$. Then I has exactly n minimal prime ideals which are comaximal by assumption. From [1, Corollary 2.15], we obtain $I=P_{1} \ldots P_{n}$ where P_{i} is a minimal prime ideal over I, for every $i=1,2, \ldots, n$. The converse is straightforward via [1, Remark 2.2].
Now, assume that R satisfies $\left({ }^{* *}\right)$ with $\operatorname{dim}(R)=0$. Let I be an n-absorbing ideal of R. Since $\omega_{R}(I)=n$, then the ideal I has exactly n minimal prime ideals, say P_{1}, \ldots, P_{n} which are maximal, as $\operatorname{dim}(R)=0$. From [1, Corollary 2.15], $I=P_{1} \ldots P_{n}$. The converse follows from [1, Theorem 2.9].

Let $n \geq 1$ be an integer and I be a proper ideal of a ring A. Recall that Anderson and Badawi in [1] proposed the following three conjectures.
(1) Conjecture one: I is an n-absorbing ideal of A if and only if I is a strongly n absorbing ideal of A.
(2) Conjecture two: If I is an n-absorbing ideal of A, then $(\sqrt{I})^{n} \subseteq I$. Notice that an affirmative answer to this conjecture is given in [7].
(3) Conjecture three: If I is an n-absorbing ideal of A, then $I[X]$ is an n-absorbing ideal of $A[X]$.
The next theorem studies some properties of a ring R which satisfies (${ }^{* *}$).
Theorem 4.8. Let R be a ring which satisfies (**), I be an ideal of R and P be a prime ideal of R. Then the following statements hold:
(1) If there exists a positive integer $n \geq 2$ such that P^{n} is P - primary, then P is idempotent. In particular, this holds if R is a valuation domain.
(2) Every maximal ideal of R is idempotent.
(3) Assume that P is a divided prime ideal of R such that $\operatorname{Nil(}(R) \subset P$. Then P is idempotent. Moreover, if I is an ideal of R such that $\sqrt{I}=P$, then I is an n-absorbing ideal of R for some positive integer if and only if $I=P$.
(4) If $P^{2} \neq P$, then there is no n-absorbing ideal of R between P and P^{2} for every positive integer n.
(5) The Conjecture three holds for every radical ideal of R.
(6) The Conjecture one holds for every radical ideal of R.
(7) Let n be a positive integer in $\Omega(R)$, then $\{1, \cdots, n\} \subseteq \Omega(R)$.

Proof. (1) Let P be a prime ideal of R such that P^{n} is P-primary for some positive integer $n \geq 2$. From [1, Theorem 3.1], P^{n} is an n-absorbing ideal of R and so P^{n} is a prime ideal of R since $\omega_{R}\left(P^{n}\right)=\left|\operatorname{Min}_{R}\left(P^{n}\right)\right|=1$. Therefore, $P^{n}=P$. Hence, $P^{2}=P$, as desired.
The "In particular" statement follows from [1, Theorem 5.5].
(2) Let M be a maximal ideal of R. Then M^{2} is an M-primary ideal of R, and hence M is idempotent by assertion (1) above.
(3) Suppose $\operatorname{Nil}(R) \subset P$. Let n be a positive integer. From [1, Theorem 3.3], P^{n} is a P-primary ideal of R which satisfies $\left({ }^{* *}\right)$. Then $\omega_{R}\left(P^{n}\right)=1$. Consequently, P^{n} is a prime ideal and so $P^{2}=P$. Next, let I be an ideal of R. If $I=P$, then the claim is clear. Conversely, assume that I is an n-absorbing ideal of R such that $\sqrt{I}=P$. Then P is the unique minimal prime ideal over I. Suppose that $\omega_{R}(I)=n$ for some positive integer n. So, $P^{n}=P \subseteq I \subseteq P$. Hence, $I=P$.
(4) Assume by the way of contradiction that there exists an n-absorbing ideal I such that $P^{2} \subset I \subset P$. One can easily check that $\sqrt{I}=P$. Therefore, by statement (3) above, it follows that $I=P$, which is a contradiction. Hence, there is no n-absorbing ideal between P and P^{2} for every positive integer n.
(5) Let I be a radical ideal, which is an n-absorbing ideal of R and $\omega_{R}(I)=n$. Since R satisfies $\left(^{* *}\right)$, the ideal I has exactly n minimal prime ideals, say P_{1}, \cdots, P_{n}. It is well known that $I[X]$ has exactly n-minimal prime ideals, say $P_{1}[X], \cdots, P_{n}[X]$. Then $\sqrt{I[X]}=P_{1}[X] \cap \cdots \cap P_{n}[X]=\left(P_{1} \cap \cdots \cap P_{n}\right)[X]=\sqrt{I}[X]=I[X]$. From [1, Remark 2.2], we have $\omega_{R[X]}(I[X])=n=\omega_{R}(I)$. Therefore, $I[X]$ is an n absorbing ideal of $R[X]$. Hence, Conjecture three holds for I.
(6) Let I be a radical ideal of R which is n-absorbing. By assertion (5) above, we have $I[X]$ is an n-absorbing ideal of $R[X]$. By [16, Proposition 2.9(i)], it follows that I is a strongly n-absorbing ideal of R. The converse is trivial. Hence, Conjecture one holds for I.
(7) Let $n \in \Omega(R)$ be a positive integer. Then there exists an n-absorbing ideal I of R that $\omega_{R}(I)=n$. Since R satisfies $\left({ }^{* *}\right)$, the ideal I has exactly n minimal prime ideals, say $P_{1}, P_{2}, \ldots, P_{n}$. Let $k \in\{1, \ldots, n\}$. Consider the ideal $J=P_{1} \cap \ldots \cap P_{k}$ of R. We infer by [1, Remark 2.2] that $k=\omega_{R}(J)$. Therefore, $k \in \Omega(R)$, as desired.

The next theorem gives a characterization of a Dedekind domain satisfying $\left(^{* *}\right)$.
Theorem 4.9. Let R be a ring. Then R is a Dedekind domain which satisfies (${ }^{* *}$) if and only if R is a field.

The proof of this theorem requires the following lemma.
Lemma 4.10. Let R be a Dedekind domain and I be a proper ideal of R. Then I is a radical ideal if and only if $\omega_{R}(I)=\omega_{R}(\sqrt{I})$.
Proof. Assume that R is a Dedekind domain and I be a proper ideal of R such that $\omega_{R}(I)=\omega_{R}(\sqrt{I})$. Since $I \subseteq \sqrt{I}$, then the result follows readily from [17, Lemma 2.17].

Proof of Theorem 4.9. Assume that R is a Dedekind domain which satisfies (${ }^{* *}$) and let I be a proper ideal of R. Since I is a product of prime ideals, then $\omega_{R}(I)<\infty$, set $\omega_{R}(I)=n$, where n is a positive integer. So, $\sqrt{I}=\cap_{i=1}^{n} P_{i}$, where P_{i} is a minimal prime ideal over I, for every $1 \leq i \leq n$. Since P_{1}, \cdots, P_{n} are incomparable prime ideals, we have $\cap_{i=1}^{n} P_{i}$ is an n-absorbing ideal of R. Moreover, $\omega_{R}\left(\cap_{i=1}^{n} P_{i}\right)=n$. Therefore, $\omega_{R}(\sqrt{I})=\omega_{R}(I)$ and $I \subseteq \sqrt{I}$. Since R is a Dedekind domain, then by Lemma 4.10, $\sqrt{I}=I$. Hence, R is a field as it is a Von Neumann regular domain.

Let R be a ring, E be an R-module and $R \propto E$ be the trivial ring extension of R by E. It is well known that $\Omega(R) \subseteq \Omega(R \propto E)$ [1, Theorem 5.11]. Notice that the inclusion may be strict. This allows us to investigate about when the equality between $\Omega(R)=\Omega(R \propto E)$ is satisfied. In the next theorem, we show that $\Omega(R \propto E)=\Omega(R) \cup\{2, \infty\}$ in the case R is an integral domain and E is a divisible R-module. Note that in this case, the ideals of $R \propto E$ are the form $I \propto E$ or $0 \propto N$ where I is a proper ideal of R and N a submodule of E such that $I E \subseteq N$ [2, Theorem 3.11].

Theorem 4.11. Let R be an integral domain which is not a field with quotient field K and E be a K-vector space. Then $\Omega(R \propto E)=\Omega(R) \cup\{2, \infty\}$.

Proof. Notice that $\Omega(R) \subseteq \Omega(R \propto E)$ from [1, Theorem 5.11(e)]. On the other hand, $0 \propto E$ is not an n-absorbing ideal for every positive integer n from [4, Corollary 3.3]. So, $\infty \in \Omega(R \propto E)$. Thus $\Omega(R) \cup\{\infty\} \subseteq \Omega(R \propto E)$. Now if N is a proper K-subspace of E and by [4, Theorem 3.2], $0 \propto N$ is a 2-absorbing ideal of $R \propto E$ which is not a prime ideal of $R \propto E$. Then $\omega_{S}(0 \propto N)=2 \in \Omega(R \propto E)$. Hence, $\Omega(R) \cup\{2, \infty\} \subseteq \Omega(R \propto E)$. Now let $n \in \Omega(R \propto E)$ and let J be a proper ideal of $R \propto E$ such that $\omega_{S}(J)=n$. If $J=I \propto E$, then from [1], we have $\omega_{R}(I)=n \in \Omega(R)$. If $J=0 \propto E$, then J is a prime ideal (as R is an integral domain) and so $\omega_{S}(J)=1$. If N is a proper K-subspace of E, the ideal $0 \propto N$ is a 2-absorbing ideal of $R \propto E$ by [4, Theorem 3.3]. Therefore, $n=2$. If N is not K-subspace of E, then the ideal $0 \propto N$ is not n-absorbing ideal of $R \propto E$ for every positive integer n [4, Corollary 3.3]. Thus, $\omega(J)=\infty$. Finally, we conclude that $\Omega(R \propto E)=\Omega(R) \cup\{2, \infty\}$.

For the special case of trivial extensions of a Prüfer domain R or an integral domain R with $\operatorname{dim}(R)=0$ by vector spaces over their quotient fields, we obtain the following result.
Corollary 4.12. Let R be an integral domain which is not a field with quotient field K and E be a K-vector space. Then the following assertions hold:
(1) If R is a Prüfer domain, then $\Omega(R \propto E)=\Omega(R) \cup\{\infty\}$.
(2) If $\operatorname{dim}(R)=0$, then $\Omega(R \propto E)=\Omega(R) \cup\{\infty\}$.

Proof. (1) By Theorem 2.15, we have $\Omega(R \propto E)=\Omega(R) \cup\{2, \infty\}$. Since R is a Prüfer domain, then there exists $n \geq 2$ such that $2 \in \Omega(R)$, thus $2 \in\{1, \ldots, n\} \subseteq \Omega(R)$ by Theorem 2.14. Hence, $2 \in \Omega(R)$ and so $\Omega(R \propto E)=\Omega(R) \cup\{\infty\}$, as desired.
(2) Let $P \neq Q$ be two prime ideals, which are incomparable since $\operatorname{dim}(R)=0$. From [1, Theorem 2.1], we have $P \cap Q$ is a non-prime 2-absorbing ideal. Consequently, $2 \in \Omega(R)$. Hence, $\Omega(R \propto E)=\Omega(R) \cup\{\infty\}$.

The next example completes Theorem 4.11 by treating the case the ring R is a field. In this case, we show that $\Omega(R \propto R)=\Omega(R) \cup\{2\}$.
Example 4.13. Let K be a field and $S:=K \propto K$ be the trivial ring extension of K by the K-vector space K. It is clear that the only proper ideals of S are $0 \propto K$ and $0 \propto 0$. Furthermore, $\omega_{S}(0 \propto K)=1$ and $\omega_{S}(0 \propto 0)=2$. So, $\Omega(S)=\{1,2\}$ and $\Omega(K)=\{1\}$. Therefore, $\Omega(S)=\Omega(K) \cup\{2\}$.
Acknowledgment. The authors would like to express their sincere thanks to the anonymous referee for his/her helpful suggestions and comments.

References

[1] D.F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Commun. Algebra, 39 (5), 1646-1672, 2011.
[2] D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1 (1), 3-56, 2009.
[3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc. 75, 417-429, 2007.
[4] A. Badawi, M. Issoual and N. Mahdou, On n-absorbing ideals and (m, n)-closed ideals in trivial extension rings, J. Algebra Appl. 18 (7), 2019.
[5] C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extension definided by Prûfer conditions, J. Pure App. Algebra 214, 53-60, 2010.
[6] D. Bennis and B. Fahid, Rings in which every 2-absorbing ideal is prime, Beitr. Algebra Geom. 59 (2), 391-396, 2018.
[7] H.S. Choi and A. Walker, The radical of an n-absorbing ideal, J. Commut. Algebra, 12 (2), 171-177, 2020.
[8] R.W. Gilmer, Ring in which every semi-primary ideals are primary, Pacific J. Math. 12 (4), 1273-1276, 1962.
[9] R.W. Gilmer and J. Leonard Mott, Multiplication rings as rings in which ideals with prime radical are primary, Trans. Amer. Math. Soc. 114, 40-52, 1965.
[10] S. Glaz, Commutative coherent rings, Springer-Verlag, Lecture Notes in Mathematics, 13-71, 1989.
[11] M. Issoual and N. Mahdou, Trivial extensions defined by 2-absorbing-like conditions, J. Algebra Appl. 17 (11), 1850208, 2018.
[12] M. Issoual, N. Mahdou and M.A.S. Moutui, On n-absorbing and strongly n-absorbing ideals of amalgamation, J. Algebra Appl. 19 (10) 2050199, 2020.
[13] M. Issoual, N. Mahdou and M.A.S. Moutui, On (m, n)-closed ideals in amalgamated algebra, Int. Electron. J. Algebra, 29, 134-147, 2021.
[14] S. Kabbaj, Matlis' semi-regularity and semi-coherence in trivial ring extensions : a survey, Moroccan J. Algebra Geometry Appl. In Press.
[15] S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra, 32 (10), 3937-3953, 2004.
[16] A. Laradji, On n-absorbing rings and ideals, Colloq. Math. 147 (2) 265-273, 2017.
[17] H.F. Moghimi and S.R. Naghani, On n-absorbing ideals and the n-Krull dimension of a commutative ring, J. Korean Math. Soc. 53 (6), 1225-1236, 2016.

[^0]: *Corresponding Author.
 Email addresses: issoual2@yahoo.fr (M. Issoual), mahdou@hotmail.com (N. Mahdou), mmoutui@auaf.edu.af (M.A.S. Moutui)
 Received: 26.09.2020; Accepted: 11.09.2021

