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ABSTRACT

Increasing the deformation capacities of code-incompliant RC columns by wrapping their
potential plastic hinge regions with fiber-reinforced polymer (FRP) has become a rather
popular strengthening technique in recent years. FRP design guidelines are included in the
7™ chapter of the Turkish Earthquake Code (TEC-07) that became effective in 2007. This
study intends to scrutinize the design approach of TEC-07 in light of the test results of 10
columns tested under axial load and cyclic displacement excursions at METU and the test
results of 18 columns gathered from literature. After careful investigations, it was clearly
seen that in TEC-07, the FRP wrapped column performance limits were over conservative
and led to uneconomical designs. Two different design methods were developed. The first
one is compatible with the current code procedure and the other is based on interstory
drifts in order to obtain simpler and more economical FRP design in addition to its
accuracy.
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1. INTRODUCTION

The use of fiber reinforced polymer (FRP) materials in columns for strengthening and
repair purposes has been widely utilized in recent years and many researchers demonstrated
this technique as a practical method that can be used in buildings and bridge columns [1-
10]. For the columns under seismic loading, FRP confinement permits to meet
displacement demands without a significant increase in column’s lateral strength. Thus,
FRP wrapping can be implemented as a substantially efficient method in order to retrofit
the plastic hinge regions of the columns having insufficient confinement. Among all
retrofitting methods for the buildings with inadequate seismic performance, FRP wrapping
method is an alternative economical and easy-to-implement retrofitting method to increase
the deformation capacities of the columns having insufficient confinement. For this
purpose, FRP design method to increase column ductility was introduced in Turkish
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Earthquake Code (TECO07) [11]. The equations denoted below (Equations 1-4) enable the
calculation of concrete strength and crushing strain according to the code.
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Figure 1. FRP confined concrete model indicated in the code

Herein, the parameters of f, x,, ps & E; fon denote FRP confinement pressure, shape
efficiency coefficient, FRP volumetric ratio, FRP design rupture strain, FRP elasticity
modulus and unconfined concrete compressive stress, respectively. In the third equation
given above, & value cannot be taken more than half of the rupture strain recommended by
the manufacturer. According to TEC07, FRPs will not increase the column ductility if the
increase in uniaxial compressive strength is less than 20%. For the analyses in which linear
elastic method is used, in order to consider FRP retrofitted section as confined section, the
crushing strain value that was stated in Equation 2 should exceed 0.018. If the linear
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inelastic methods are used, the damage limits need to be determined by modeling the FRP
confined concrete behavior under lateral pressure by bilinear stress strain relationship. This
research intends to reexamine and to improve the design rules for ductility improvement in
FRP confined columns in the light of experimental and analytical studies according to
TECO07. The points of commencement of this study are the following observations related
to FRP design rules denoted in TEC07:

1) The concrete strain limit introduced in Equation 2 may not represent realistic column
damage levels since this equation was suggested using the experimental results of FRP
confined columns under axial load alone.

2) The design rules should be examined in light of experimental results of columns
subjected to combined and lateral loads. In this way, economical and safe designs can be
ensured.

3) In the FRP design method of TECO07, a 20 percent absolute axial capacity gain for
ductility improvement is recommended for the cross section analyses. Instead of such an
approach, simple and sound design equations are needed for safe and economical designs.

An experimental and analytical study was, therefore, carried out to overcome the
shortcomings of the present code requirements of FRP design. First, the column test results
conducted at METU were summarized and specimen performances were predicted by using
the design method indicated in TECO7. Afterwards, two different design methods were
recommended based on METU test results and additional FRP confined column test results
reported by other researchers. In the first method, an approach that depends on the
determination of column drift levels (or chord rotations) is introduced; and in the second
method, a code compatible approach that employs strain limits is recommended. Improved
recommendations for future updates of the code are proposed based on the experimental
and analytical results.

2. METU TESTS

The experimental study reported in this paper was conducted on near full-scale column
models that emulate RC columns with code incompliant designs (widely spaced stirrups,
90-degree hooks and low compressive strength concrete) that can be encountered in this
country and elsewhere. In this study, 3 references and 10 FRP confined flexural columns
were tested and the effects of (a) the level of FRP confinement provided, (b) the level of
axial load and (b) the longitudinal reinforcement ratio on column seismic performance were
investigated. The properties of the test specimens are shown in Table 1. In the conducted
tests, all columns were tested under constant axial load and reversed cyclic displacement
excursions. Herein, for the column tests that comprised of 3 series, one as-built reference
column that belonged to each test series was used. The reinforcement properties used for
the columns and the test setup are shown in Figure 2.
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Table 1. The properties of the test specimens

. . b h L R fum As p n* DR,
Series  Specimen , Ka )

mm mm mm mm MPa mm % % %

S-L-0-00 350 350 2000 - 14.0 20358 - 1.66 35 - 2.6

S-L-1-00 350 350 2000 30 19.4 2035.8 0.542 1.66 27 0.091 4.9
Series 1 S-L-1-34 350 350 2000 30 14.0 2035.8 0.542 1.66 34 0.126 5.1
S-L-2-00 350 350 2000 30 11.4 2035.8 0.542 1.66 40 0.309 6.3
S-L-2-32 350 350 2000 30 15.6 2035.8 0.542 1.66 32 0.226 6.0
S-H-0-00 350 350 2000 - 20.0 3041.1 - 248 27 - 33
Series 2 S-H-1-00 350 350 2000 30 20.0 3041.1 0.542 2.48 27 0.088 4.1
S-HC-1-00 350 350 2000 10 22.0 3041.1 0.407 2.48 27 0.066 3.6
R-NC-0-00 200 400 2000 - 12.0 20358 - 254 35 - 1.8
R-HC-1-16P 200 400 2000 30 10.0 2035.8 0.755 2.54 35 0.322 6.1
Series 3 R-MC-1-8P 200 400 2000 30 10.5 2035.8 0.437 2.54 35 0.178 3.7
R-MC-1-NP 200 400 2000 30 9.0 2035.8 0.437 2.54 35 0.207 3.9
R-MC-1-16P 200 400 2000 30 15.0 2035.8 0.755 2.54 35 0.215 4.0

N, applied N, applied

Ny 085f,'bh+4f,

*n

Note: &, p, n and ¢ parameters denote shape efficiency coefficient, longitudinal reinforcement ratio, axial load
ratio and FRP lateral confinement ratio (Equations 1-4). DR, denotes the column drift ratio at which the column
lateral strength dropped to 80% of capacity.

For the test specimens of the first series that are shown in Table 1, FRP confinement
amount and concrete compressive strength were taken as the major parameters.
Subsequently three column specimens were tested in order to examine the effect of
longitudinal reinforcement ratio and corner rounding radius on column behavior. The
parameters investigated for the remaining five specimens were designated to be column
aspect ratio and FRP confinement amount. The lateral load (P) versus lateral deflection (A)
curves and the important events such as column-stub interface cracking, FRP debonding,
FRP rupture and reinforcement buckling that were observed during the tests are shown in
Figures 3-5. All detailed observations related to test results are not repeated here since these
observations were explained in detail in the previous studies [1, 14-16]. In the tests, it was
determined that increasing the FRP amount enhanced the deformation capacities of
columns significantly and consequently provided improved ductility levels. The parameter
that is shown as the FRP confinement ratio (¢) in Table 1 is the ratio of lateral confinement
pressure (f;) to the concrete compressive strength (f.,,). The drift ratios (DR) were obtained
by dividing the measured column tip deflection by the column height. Column ultimate
drift capacity (DR,) was obtained by dividing the column tip deflection corresponding to 20
percent decrease in strength to the column height. As can be seen in Figure 6, increasing the
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FRP confinement ratio led to an increase in the column drift capacities (DR,) for different
longitudinal reinforcement ratios. On the other hand, as the longitudinal reinforcement ratio
gradually increased from 1.6% to 2.5%, a reduced amount of increase in column drift
capacities were observed. Considering the lateral drift ratios in Table 1, it can be seen that
increasing the ratios of axial load and/or longitudinal reinforcement led to deterioration in
column seismic performance. As can be seen in the test results, these three major
parameters (¢: FRP confinement ratio, n: axial load ratio, p: longitudinal reinforcement
ratio) have a significant influence on the deformation capability of flexural columns.

3. EVALUATION ACCORDING TO TEC07

In the evaluations, the bilinear stress strain relationship for FRP confined concrete
described in TEC07 was used. The yield curvature (X)) and corresponding moment (M)
values were calculated by section analysis using the FRP confined concrete and steel
models denoted in TECO7. The results are shown in Table 2. The yield deflection (4,) and
corresponding lateral load values (F,) were determined by assuming that the yield curvature
develops at the column base and linear curvature distribution along column height. In the
calculations, the yield curvature was defined as the ratio of yield moment to the cracked
concrete rigidity, i.e. M,/E.I.,. The E.l, value shown in Table 2 is the cracked concrete
rigidity specified by the code and it was calculated by proportioning between 0.4EI and
0.8EI values since the axial load ratios in the tests varied between 10% and 40%. In the
calculation of ultimate deflection (4,) and corresponding lateral load (P,), the ultimate
curvature value (K,) was calculated considering the strain value &, as stated in Equation 2.
The calculated curvature was assumed to be uniformly distributed along the plastic hinging
height (0.5%) as stated in TECO7. Additionally, the curvature distribution was assumed
linear outside the plastic moment region and this distribution was taken into account in the
calculations (Figure 7). In the calculations, the curvatures were integrated along the column
height and as shown in Equation 5, thus the yield and the probable ultimate deflection
values were calculated.

x, I L
— __J P
B, =A,+8, == +(Ku—Ky)Lp( ——j 5)

2

In the analyses, for FRP confined columns, bilinear lateral load (P) — deflection (A) graphs
were obtained and compared by the experimental data (Figure 3-5). In the analyses of
reference columns (S-L-0-00, S-H-0-00 and R-NC-0-00), instead of the FRP confined
concrete model, the unconfined concrete and steel models described in TEC07 were used.
In this study, since the FRP confined concrete was the major investigation subject, the
results related to unconfined concrete are not presented in Table 2.

The comparison of the experimental results with the estimations of the TEC07 indicated
that, while the column drift capacity (DR,) calculated for the FRP confined columns does
not exceed 1% (20 mm), the experimental results showed that the columns could attain drift
ratios of at least two times the ratios found by the code as can be seen in Table 1. In flexure
dominated columns, the components that constitute the tip deflection can be classified as
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elastic bending, plastic rotation developing at column ends, shear and bond slip motivated
deflections. Since the tip deflection can only be comprised of elastic bending and plastic
rotation motivated deflections according to TECO7, the other factors were ignored. Besides,
the TECO07 assumption of plastic hinge length being 0.5k appears to be considerably safe
[1, 3]. Similarly, taking the FRP ultimate strain value as half of the value given by the
manufacturer or 0.004 leads to over safe designs.

Table 2. The analytical results for the test specimens

K, M, MJEly K, Mi 4 P, 4, P,

Specimen

rad/km  kN-m  rad/km  rad/km — kN-m mm kN mm kN
S-L-1-00 9.79 124.61 7.24 24.65 14094 | 9.65 62.31 15.48 70.47
S-L-1-34 11.59 116.10 6.86 2338 122.62| 9.14 58.05 14.67 61.31
S-L-2-00 13.07 110.26 6.58 3482 11574 | 8.77 55.13 18.23 57.87
S-L-2-32 10.83 120.22  7.06 3422 13324 | 942 60.11 18.51 66.62
S-H-1-00 9.86 151.92 8.67 23.54 169.13 | 11.56 75.96 16.54 84.57
S-HC-1-00 948 15392 838 2135 173.14 | 11.17 76.96 15.51 86.57

R-HC-1-16P 10.78 96.57 7.81 31.55 101.13 | 10.41 48.29 18.36 50.57
R-MC-1-8P 10.81 9721  7.67 2236 100.53 | 10.23 48.61 15.14 50.27
R-MC-1-NP 11.14 9223  7.86 23.79  95.00 |10.48 46.12 15.81 47.50
R-MC-1-16P 10.04 113.88 7.52 26.12 121.14|10.02 56.94 16.25 60.57
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Figure 3. Comparison graphs for the 1* series columns (Cont’d)
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4. PROPOSED DESIGN METHODS
4.1. Method 1: Column Drift Based Design

Eighteen FRP confined column specimens failing in flexure that were tested elsewhere
were added to expand the test database and a simplified drift based design method was
developed considering the parameters of FRP confinement ratio (¢), axial load ratio (z) and
longitudinal reinforcement ratio (p). The drift capacities (DR,) were estimated to be linked
with these three parameters by using nonlinear regression analysis. The experimental
column drift capacity was considered as the drift ratio at which the experimental column
lateral strength dropped to 80 percent of its ultimate value. The exponential function that
was obtained as a result of the regression analysis and given in Equation 6a had the best
agreement with the experimental data (Figure 8a). This equation could not provide
sufficient safety considering design regulations since it gives a best estimate for the average
value of the tests. It is, therefore, necessary to develop an approach that may be used in
design safely. As a result of a series of analyses by using all data in the database, Equation
6b was obtained that can safely predict all experimental data while being economical.

0.64
¢

DRu =247+ SOW (63)

p

DR, =2+452 (6b)
np

In these equations the values of ¢, n and p are defined in percentiles. The comparisons of
analytical drift ratios obtained by this equation with experimental results are given in
Figure 8b.It is clear that Equation 6b is a design formula that yields safe results in all
circumstances. The numerical comparison of the data in Figure 8 is presented separately in
Tables 3a and 3b. As can be observed in these tables, while the standard deviation of the
results obtained by Equation 6a from the experimental results is in the range of £30%, the
results obtained by Equation 6b are consistently safe, remaining below the experimental
data. While the safety margin sometimes reaches up to 70%, it yields an unsafe result of 5%
only for the test carried out by Memon et al. in 2002. The comparison between the design
which was obtained by the Method 1 and the experimental lateral load — lateral deflection
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envelopes is shown in Figures 3-5. As can be seen in these figures, the proposed column
drift based design method represents the effect of FRP confinement safely and can easily be
implemented in design. For FRP confined columns, the column drift capacities (DR,) that
were predicted by Method 1 approximately correspond to the ultimate drift ratio at which
the column could undergo three stable cycles. These results prove that Method 1 as a
design method can be employed safely. The complexity of the FRP design method denoted
in TECO07 was simplified by the proposed drift based design method.

14
= Bousias et al. 2004 14
—_ 12 '« Tacobucci et al. 2003 ° X 12 °
£ | o Sause et al. 2004 =
g 10 <10
g + Memon et al. 2002 3
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(@) (b)

Figure 8. Method 1: (a) best correlation and (b) the comparison of design equation with the
experimental data

4.2. Method 2: Strain Based Design

In the second method, the ultimate strain at the utmost fiber in FRP confined concrete
section was calibrated by using the experimental column drift ratios. The main three
parameters in Method 1 and previously stated FRP confined column database of 28
columns were also used in this method. Firstly, the yield moment values (M,) were
determined for all the columns in the database by using rectangular stress block and elasto-
plastic steel model with standard section analysis. In the next step, column yield moments
were divided into cracked concrete rigidity and yield curvatures (K,) were obtained. The
experimental drift ratios for all columns were converted into ultimate lateral deflection (4,)
and yield deflection (4,). The plastic hinge length was assumed to be the longer dimension
of the column section (%). The reliability of this assumption as opposed to the 0.54 value
given in TEC07 can be justified based on the results of this experimental study and various
tests carried out in the literature [14-16]. Afterwards, the ultimate curvatures (K,) consistent
with the experimental ultimate deflections were calculated using Equation 5. For all
columns in the database, the ultimate strain of FRP confined concrete (&..) was evaluated
by using rectangular stress block and elasto-plastic steel model (Tables 4a, b). The strain
values obtained this way were used in a nonlinear regression analysis where the three
parameters (FRP confinement ratio (¢), axial load ratio (n) and longitudinal reinforcement
ratio (p) were the independent parameters (Equation 7a). At the end of these analyses, the
ultimate concrete strains that yield the best fit for experimental ultimate lateral deflections
was determined. Similar to Equation 6a, Equation 7a could not provide sufficient safety for
design purposes since it gives the best estimate for the average values of the tests. Thus,
Equation 7b was obtained which can predict all experimental results safely and provides the
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condition that unconfined ultimate strain is 0.004 for unconfined concrete The calculated
&cp values are provided in Table 4a.

6. =0019+0.418—2 (7a)
Jnp
£ =0.004+3.6-2- (7b)
np

In Figures 9a and b, the comparisons of the experimentally obtained strain values with
those obtained by using the proposed design equations are presented. The comparisons
between lateral loads — deflection envelopes that were obtained by Method 2 and
experimental results are also shown in Figure 3-5. As can be observed, Method 2 predicts
ultimate drift ratios with a slightly higher safety margin compared to Method 1. However,
Method 2 permits rather more economical designs when compared with TEC07 design
regulations. In the second approach (Method 2), the concrete and steel models stated in the
code were further simplified. A rectangular stress block was used for the concrete in
compression along with the elasto-plastic steel model. It can be observed that Method 1
predictions of ultimate lateral displacement correspond to displacements at which three
stable cycles of displacement excursions did not result in significant lateral strength drop.
Furthermore, similar to Method 1, the FRP confinement ratio, the axial load ratio and the
longitudinal reinforcement ratio are included to determine the seismic performance of FRP
confined columns. In short, in order to determine the column displacement performance
limits for the design of FRP confined concrete, a strain based methodology similar to the
current TECO7 approach is tailored.
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e -
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3 3 P
£ 0,04 £o004 7 o ot
3 3 O eo® / -
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Figure 9. Method 2: (a) Best correlation and (b) The comparison of design equation with
the experimental data

4.3. Recommendations for TEC07 for FRP Retrofit Design

The complicated material models specified in TEC07 are far from being adequate in
estimating the inelastic behavior of FRP confined columns. In addition, the column
deflections obtained by integrating the curvature distribution using these models are usually
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on the excessively safe side. In this study, it was shown that safe and more economical
designs could be obtained for FRP confined columns in the light of two different design
methods based on column drift ratio and concrete strain. While the design method based on
column drift ratio is simpler, the second method, being compatible with the current code
regulations, provides a more detailed perspective. Both methods allow the users to estimate
the column drift ratio for FRP confined columns or the required FRP confinement amount
for a target column drift demand. In the case of Method 1, the required FRP confinement
amount for a given column drift demand or column drift capacity of FRP confined column
can be determined by using Equations 6a and 6b. For the second method, since a standard
section analysis is needed, the material models were simplified (using rectangular stress
block for concrete, elasto-plastic steel model and equal yield and ultimate moments). The
authors consider that plastic hinge length should be taken as the section dimension in the
direction of bending in the calculation of lateral deflections. This dimension is the section
diameter for circular columns and section height for square columns; it should be used as
the longer dimension of the section for the columns with rectangular sections. For FRP
confined concrete, FRP design can be carried out using Equation 7b. In order to determine
the damage limits in the current code, the strain limits are required. For both methods
proposed in this study, the collapse prevention limit (CP) may be taken as the column drift
capacity (DR,). In a similar manner75 percent of DR, may be taken as the life safety limit,
(LS). The transition point that corresponds to the yield deflection of the column, on the
other hand, may be used to represent the immediate occupancy (IO) performance limit. The
design example presented in appendix is believed to shed light on the numerical application
of the design methods. As can be seen in the example design, the current TECO7
regulations do not provide economical solutions; and, therefore, discourage the use of FRPs
in retrofit designs. The methodologies proposed in this study, however, have shown
analytically and experimentally that economical FRP retrofitting is possible and the designs
attained this way provide sound alternatives to classical column retrofit methodologies
available in the literature.

5. RESULTS

In this study, the ability of TEC07 design equations to estimate the load-deformation
response of the tests conducted at METU was investigated experimentally and analytically.
It was found that estimations made by TECO07 are excessively safe and uneconomical for
the FRP confinement implementations. Current code regulations unnecessarily augment the
FRP amount to achieve the required ductility level and therefore discourage retrofitting of
columns using FRPs in Turkey. In the final stages of this work, in addition to the data
generated in the experimental phase of this study, the data assembled from the literature
was used to form a sound database. Based on this database, two different design methods
were developed. The first design method is based on column drift ratio. In this method, the
column drift ratios were expressed as a function of three parameters to render a direct
solution for FRP design. The second is a method based on ultimate concrete strain limit, the
column drift ratios were evaluated by integrating elastic and plastic curvatures. In this
proposed design technique the rectangular stress block and the elasto-plastic steel model
were used in view of their simplicity. It was proved that both methods can be used in the
FRP retrofit design of columns effectively and provide economical design solutions without
sacrificing structural safety
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6. APPENDIX: DESIGN EXAMPLE - METHOD 1 AND 2

In this design example, the FRP confinement design for the test specimen S-L-1-00 that
was tested in METU by applying proposed design methods is presented. Here, the drift
demand of the unconfined column was determined according to TEC07 by using a single
degree of freedom column model. The drift demand of the column was determined by using
the design spectrum for assumed soil conditions and the calculation steps that are related to
FRP confinement are presented below. The converted spectral acceleration and deflection
values for unconfined column are shown in Figure 10.

Column Properties:

e Cross sectional dimensions of the column: 350 x 350
e  Column height: 2000 mm
e f.=20 MPa, Clear cover: 30 mm
e  Corner rounding radius: 30 mm
e  Axial load: N=700 kN,
e By standard section analysis:
Column yield load: 70.6 kN, yield curvature: 9.8x 10 rad/mm
e Longitudinal reinforcement: 8¢18 mm
e Transverse reinforcement: ¢$10/200 mm
o =287 MPa, £,=0.05, £,=0.001435 (Elasto-plastic)
e Soil conditions: Z2, T,=0.15s, Tg=0.4s

m= LI(NZ =71.36kNs? / m (Axial load compatible mass)
9.81m/s
350* 6 4 o
I, =0.6131=0.613 TN 767.0x10°mm” (Cracked moment of inertia)
3EI 6
k="" = 3X28000X7367X10 =8053.5kN /m
L 2000
T= 2n\/E —om [ 130 0505 w2 = K 2112052 5 w=10.657!
k 8053.5 m
S . .
g = See 0.73x981 _ 0\
w2 112.9
a, = 70.6kN =0.101 (acceleration coefficient at yielding)
700kN
S
R, =—"= L 9.92
a, 0.101
Cry =1(T>Tp)

Sy = CriSpe =1x63.1=63.4mm ~ 65mm — DR, ~3.25%
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As can be seen above, for a column of 2.0 meters in height Sy = 65.0 mm corresponds to a
drift demand of 3.25 percent. The values are presented graphically in Figure 10. The layer
number of FRP that provides calculated drift ratio will be determined by standard section
analysis as stated below. In the calculations, rectangular stress block and elasto-plastic steel
model was used.

1,2
Tn

wl \/
§0,6 \

0,4 \
’ \

0,2

63.4 mm
0.101
0 T T
0 0,1 0,2 0,3
SD, m
Figure 10. The determination of spectral acceleration and displacement for sample design
column

Design according to current code
K, L* L,
Auz 3 +(Ku—Ky)Lp h—T
-6 2
A, = 2810 ;2000 +(Ku —9.8x106)%(2000—%j = 65mm

K, =165.0rad/km — €., = 0.024 (Yield and ultimate states were calcualated by section analysis)

0.75 0.75
€., =0.002 1+15[E] = 0.002[1+ 15(ij J =0.024 — f; =25.24MPa
f 20

C

- 3% 3502

(b+h)E;et; (350+350)230000x0.015x t; X 2(350-2x30)’
T 350x350 '

J =25.24MPa

t; =2.36mm — % =14.3 =15layers (FRP thickness was used as 0.165 mm)

As can be clearly observed, the design performed according to de current code is found to
be over safe and uneconomical.
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Design according to Method 1

DR, :2+4.5i:2+4.5L:3.25 —>¢$=0.120

np 26x1.66
_ (b+h)E et . (350+350)230000x0.015xt; '{1_ 2(350-2x30) J 0.0
bhf,'  * 350x350%20 3x350°
0.224

t; =0.224mm — —— =1.35 = 2layers
0.165

Design according to Method 2

K, =10rad/km (Using rectangular stress block and elasto-plastic steel model)

L L,
A, =65mm=Ky?+(Ku—Ky)Lp L_T ,L, =h=350mm

350

65=10x10"%x +(k, —10)x107° x350x(2000—7) — 1k, =90.9rad / km

20002
3

8cc — 8sl — 852 — 853
c c—cc h/2-¢ h-c—cc

N =0.85f,'0.85cb,, + Ay fy +Apfy — Ayl
0.85% x 200 350 +3719° x 287 — 2197 x90.9x107° x (175 —¢) 2x10° — 319> x 287 = 700000N

(cc: clear cover)

c=162.1mm — g, =K,.c=90.9x107°x162.1=0.0147

0.0147 gy B €y a €3
162.1  162.1-30 350/2-162.1 350-162.1-30
gq =0.0120

€, =0.00117 > All longitudinal reinforcement yielded except the midbars
gy =0.0143

Since the calculated concrete strain will be provided by FRP confinement, if the ¢/np ratio
will be determined the following results are obtained.

Epe = 0.004+3.6£ = 0’004+3’626+¢1.&5 =0.0147 > ¢ =0.128
_ (b+h)E 1, . (350+350)230000x0.015x¢; .{1_ 2(350-2x30)’ J 0128
bhf, ' “ 350x350%20 3x350°
0.239

t; =0.239mm — ——=1.45 = 2layers
0.165
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As can be seen, both methods provide approximately 7 times more economical FRP designs
according to the current code.

Index

b, h, L, r: Column width, length, height and corner rounding radius
cC = clear cover

fems feet Unconfined and confined concrete strength

fi: Lateral pressure of FRP

&, &cpt FRP confined concrete ultimate strain and design value

Kyt Shape efficiency coefficient of FRP

p, pr: Longitudinal reinforcement ratio and FRP volumetric ratio

&, &u: FRP strain and ultimate FRP strain

Es: FRP elasticity modulus

¢: FRP confinement ratio

DR, DR: Drift ratio and ultimate drift ratio

DRy p: Design ultimate drift ratio

Ag: Area of longitudinal reinforcement

n: Axial load ratio

El: Cracked section rigidity

Ay, Ay, Fy, Fy: Deflection and lateral loads for yield and ultimate states
K, K,, My, M;: Curvature and moments for yield and ultimate states
Ap, L: Plastic deflection and plastic hinge length

t;: FRP thickness
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