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Abstract: In capacitated vehicle routing problem (CVRP), a fleet of vehicles with a 
certain capacity starts at a central depot and returns to this starting point after 
serving some customers by using the optimal set of routes with the minimum cost. 
However, in real-life, environments may include obstacles such as holes, machines, 
or trees of different sizes. In this research, a CVRP extension is proposed that is the 
problem of the classical one for the environments with various sized circular 
obstacles. To solve this problem, a hybrid meta-heuristic algorithm based on 
genetic algorithms improved by a local search was developed. Additionally, a visual 
simulation tool was designed to place obstacles and locations in the working space. 
The developed algorithm was tested for different customer-obstacle counts and 
obstacle sizes with various obstacle occupancies in the environment. The results 
obtained are presented and the problem’s potential applications are discussed. 

  
  

Kapasiteli Araç Rotalama Probleminin (KARP) Dairesel Engeller İçeren Ortamlar için 
Çözümü 

 
  
Anahtar Kelimeler 
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Özet: Kapasiteli araç rotalama probleminde (KARP), belirli kapasitedeki bir araç 
filosu merkezî bir depodan harekete geçer ve en düşük maliyetli en uygun rota 
kümesini kullanarak birtakım müşterilere hizmet verip bu başlangıç noktasına geri 
döner. Gerçek hayatta ise ortamlar farklı büyüklüklerdeki delik, makine veya ağaç 
gibi engeller içerebilmektedir. Bu çalışmada, klasik KARP’nin çeşitli 
büyüklüklerdeki dairesel engeller içeren ortamlar için genişletilmiş bir biçimi 
önerilmektedir. Bu problemi çözmek için yerel arama ile iyileştirilmiş genetik 
algoritmalar tabanlı melez bir üst-sezgisel algoritma geliştirilmiştir. Ek olarak, 
çalışma uzayına engeller ve konumlar yerleştirmek için bir görsel benzetim aracı 
tasarlanmıştır. Geliştirilen algoritma ortam üzerinde çeşitli engel doluluklarıyla 
farklı müşteri-engel sayıları ve engel büyüklükleri için sınanmıştır. Elde edilen 
sonuçlar sunulmuş ve problemin potansiyel uygulamaları tartışılmıştır. 

  
 
1. Introduction 
 
Vehicle routing problem (VRP) is both a linear 
programming and a combinatorial optimization 
problem proposed by Dantzig and Ramser [1] in 
1959. This well-studied problem is widely 
encountered in computer networks, demand-sensitive 
transportation systems, logistics, operational research, 
and supply-chain management with many 
applications for a number of problems including (i) 
cleaning of buildings/streets, (ii) fuel/mail/milk 
distribution, (iii) garbage/waste collection, (iv) 
pickup and delivery of objects/packages/parcels, (v) 

routing of personal services, salespeople, school 
buses or unmanned vehicles, and (vi) shipment of 
goods. VRP has three main components: (1) locations 
distributed homogeneously or heterogeneously, (2) 
requests that are homogeneous or heterogeneous, 
and (3) vehicles that are identical or not. In VRP, it is 
aimed to meet customer requests with the minimum 
cost while satisfying all operational constraints. In 
capacitated VRP (CVRP), on the other hand, each 
vehicle is identical with a limited capacity and all 
requests are known and met [2]. The optimal set of 
routes R to be used by m vehicles is determined that 
are at the capacity q and the velocity v (Figure 1).  
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Figure 1. A simple CVRP solution for 36 customers 

 
This vehicle fleet makes the deliveries through a 
central depot with the minimum cost C in order to 
meet all the requests of n customers distributed at 
different points on a geographical area. 
 
In CVRP, depot-customer locations, the amounts of 
requests and vehicle capacity are known in advance, 
and the distance between any point pair is the cost 
between them. For the problem; 
 

Four basic assumptions are as follows: 
1. There is no request for the depot and it has 

enough goods stock to meet all requests 
2. Each customer has only one request 
3. Sufficient number of vehicles are available at 

the depot for transportation 
4. The amounts of requests and vehicle capacity 

are defined as positive integers and vehicle 
capacity therefore may be utilized in full 

Three hard-constraints are as follows: 
1. Each vehicle starts at and returns to the 

depot after serving a subset of customers 
2. Each customer is visited only once by one 

exact vehicle 
3. The total load on any route cannot be over 

than the vehicle capacity 
The output is the following: 
1. The optimal set of routes at the minimum 

number while aiming the shortest or near-
shortest total route length 

 
In Figure 1, the dashed line on any route represents 
the last move between the last customer on that 
route and the depot. The solution consists of six 
routes in which six customers are assigned per each 
one. 
 
In traveling salesman problem (TSP), a number of 
cities are given with the distances between all the city 
pairs and the shortest route is found that visits each 
city only once and ends at the starting point. In TSP, 
all locations have to be visited. When a traveling 
seller has the capacity to carry all requests, he/she 
can visit all cities in only one route. VRP is included 
between bin packing problem and TSP [3]. Therefore, 
it requires both assignment to vehicles and routing. 
In the arc routing problem (ARP), a postman has to 

visit all the roads of a city once and return to the 
starting point. In the location routing problem, the 
locations of depots are decided in addition to VRP. In 
VRP with time-windows, deliveries have time-
intervals and each request is met within this time. In 
VRP with multiple routes, any vehicle may have more 
than one route. VRP with pickup and delivery 
requires the transportation of a set of goods from 
certain pickup locations to other delivery locations. 
In last-in-first-out (LIFO) VRP, on the other hand, any 
item to be delivered is the last item received. The 
periodic VRP consists of determining the optimal set 
of routes with the minimum cost for every day of a 
planning horizon given. Each customer is visited a 
required number of times while receiving the 
required amount of product every time. Moreover, in 
VRP with stochastic requests, a vehicle with a finite 
capacity leaves the depot with a full load and serves 
some customers whose requests are to be known 
when the vehicle arrives at them. In VRP with 
distance constraints, vehicles can travel up to the 
maximum distance allowed. VRP has many variations 
studied in literature. 
 
Yücenur and Demirel [4] proposed a hybrid meta-
heuristic method based on genetic algorithms (GA) 
and ant colony optimization (ACO) in solving multi-
depot VRP. They used genetic clustering method for 
grouping customers into depots and ACO for routing. 
Wang and Lu [5] proposed a new hybrid GA with the 
optimal combination of cross-over and mutation 
probabilities. Yurtkuran and Emel [6] used a 
population-based hybrid algorithm and improved the 
solutions obtained with an iterative swap procedure 
as a new local search (LS). Fung et al. [7] developed 
many methods to transform a directional/non-
directional ARP to VRP as its counterpart. Longo et al. 
[8] used the transformation into CVRP in solving 
capacitated ARP. 
 
Luo and Chen [9] presented an improved solution 
method and its multi-phase model to solve the multi-
depots VRP with/without time-windows in which 
depots are considered as the centroids of the clusters 
for all customers. They did clustering analyses to 
generate new clusters based on the best solution 
achieved by the preceding process and inherited the 
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improved path information to the new ones. 
Stanojević et al. [10] developed a new heuristic for 
CVRP that combines routes to generate better ones. 
Tlili et al. [11] studied the CVRP with distance 
constraints and proposed a hybrid swarm-based 
meta-heuristic combining the particle swarm 
optimization (PSO) and the variable neighborhood 
search. Marinakis et al. [12] introduced a new hybrid 
algorithm based on PSO to solve the VRP with 
stochastic requests. Moreover, Bortfeldt [13] 
considered the CVRP with 3D (three-dimensional) 
load and additional packing constraints, as its 
generalization where the requests are 3D and 
stackable, and introduced a hybrid algorithm 
including tree-search algorithms for assignment and 
tabu search for routing. Cacchiani et al. [14] 
addressed the periodic VRP as a generalization of 
VRP in which the number of routes per day cannot be 
over than the number of available vehicles and a few 
days of planning are taken into consideration for 
routing. Hà et al. [15] considered the generalized VRP 
with a flexible fleet size in which the number of 
vehicles is a decision variable. To minimize the daily 
routing cost, the appropriate fleet size may have been 
determined. 
 

Patle et al. [16] presented the mobile robot (MR) 
navigation techniques used while considering the 
classical approaches such as artificial potential field 
(APF), cell decomposition and roadmap approach, and 
reactive approaches such as ACO, artificial bee colony, 
bacterial foraging optimization, cuckoo search, firefly 
algorithm, fuzzy logic, GA, neural networks, PSO and 
shuffled frog leaping algorithm. According to them, 
the reactive approaches are robust and widely used 
for MRs’ path planning (PP). Patle et al. [17] 
illustrated the new dimension on MR navigation for 
the dynamic and static environments by the matrix-
binary codes based GA and compared their controller 
with the other navigational controllers such as ACO, 
artificial neural networks and fuzzy logic for the same 
environmental conditions. 
 
Nguyen and Le [18] developed and implemented a 
new PP method for MRs that could find the target 
with the near-shortest path length while avoiding 
some infinite loop traps of many obstacles in 
unknown environments, generate the MRs’ trajectory 
both in dynamic and static environments by updates 
on the information of the onboard sensors. 
Sudhakara et al. [19] proposed an enhanced APF that 
generates the trajectories for wheeled MRs’ mobility. 
The repulsive potential is built by repulsive function 
for discretizing outline of an arbitrarily shaped 
obstacle with its boundary points. Hassani et al. [20] 
proposed an algorithm based on a turning point 
strategy and free segments to solve the robot PP 
problem in a static environment with a sliding mode 
to control the stabilization of an autonomous MR to 
track a desired trajectory. 
 

Sun et al. [21] presented a combinatorial approach 
for PP which aims to cover mission domains with 
different task-periods while guaranteeing both (i) 
obstacle avoidance and (ii) minimizing the number of 
robots used. The algorithm (i) deploys the sensors in 
the region to satisfy coverage requirements with the 
minimum cost, (ii) solves the TSP to obtain the closed 
path’s frame, (iii) divides this path into the least 
segments while satisfying the coverage period 
constraints, and (iv) generates the closed route for 
each robot on the basis of this path’s divided 
segments. 

 
Bai et al. [22] designed a PP algorithm to minimize 
the time for a vehicle to travel between two given 
locations through the drift field while avoiding any 
obstacle and proposed an algorithm to assign the 
targets to the vehicles by using only local 
communication. Wang et al. [23] constructed a safety 
model of obstacle avoidance by analyzing a human 
driver’s obstacle avoidance behavior. Then, based on 
this model, they improved the APF method and 
rebuilt the repulsive field range of obstacles, 
generated a collision-free path for autonomous 
driving vehicles based on the enhanced APF. 

 
In this research, CVRP was addressed for the 
environments with circular obstacles (CVRP_EWCO) as 
its special case in real-life that has not been studied 
before as known from literature. For the solution, a 
hybrid meta-heuristic algorithm based on GA 
improved by a LS was developed. Additionally, a 
visual simulation tool was designed to place circular 
obstacles and depot-customer locations in the 
working space. Two main contributions to literature 
here are as follows: 

 
1. defining the CVRP extension that will be able 

to be used on the enviroments (obstacles in 
different forms can be approximated by a 
circle shape simply) encountered frequently 
in daily life 
 

2. conducting comprehensive experimental 
study by developing a solution method 

 
Real-life environments may include buildings, chairs, 
columns, containers, furniture, holes, lakes, machines, 
pools, rows, shelves, tables, trees or worksites inside 
of any place such as airport, bank, campus, facility, 
factory, fairground, forest, harbor, indoor, land, 
marketplace, room, working-area or workshop. Such 
an environment with obstacles requires obstacle 
avoidance for MRs, traveling sellers, underwater 
vehicles and such vehicles or people. Moreover, for 
the problems including the navigation, PP and 
routing of these vehicles, some paths may not be 
passable. In adapting the problem to such an 
environment, a solution method is proposed with the 
following two steps: 
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1. distance calculation: the shortest distances 
between point pairs are found; 
a. determining the visibility cases between 

point pairs by finding the obstacles on 
the potential/candidate line/segment 
between each point pair 

b. finding new distances between point 
pairs having obstacles between them by 
using guide points 

2. CVRP solution: the problem transformed into 
the classical CVRP is solved; 
a. determining the paths between point 

pairs by using the weighted adjacency 
matrices 

b. applying the developed algorithm to 
CVRP by using the new path and 
distance information 

 
This paper’s rest is organized as follows. In Section 2, 
the studied problem is defined and the solution 
method proposed is described in detail. In Section 3, 
the performance of the developed algorithm is 
shown. In Section 4, the results obtained are 
discussed and the final thoughts are summarized. 

 
2. Material and Method 
 
In this section, all the details regarding the studied 
problem and the solution method proposed are given. 
 
2.1 Problem definition 
 
In CVRP, cost matrices are known or the costs for the 
given locations in 2D (two-dimensional) 
environments are calculated by the Euclidean 
distance. However, in the problem proposed, there 
are obstacles between these locations, vehicles 
cannot pass through the obstacles, and therefore the 
paths between these locations have to be found by 
taking into consideration the obstacles before 
determining the routes. The obstacles can be either 
circular or be modelled with circles covering them 
which is one of the easiest approaches. 
 
The CVRP_EWCO is the problem of the classical 
capacitated vehicle routing on 2D environments with 
various sized circles. Any obstacle having multiple 
edges in real-life may generally be defined as a circle 
approximately. Therefore, the obstacles having 
various shapes were easily modelled in the form of 
circles enclosing themselves with the given centers 
and radius. In this problem, circles are placed in the 
environment of the classical CVRP that represent the 
obstacles at regular spaces between each other in 
addition to the depot-customer locations and the 
vehicles can neither pass through these circles nor 
move in a curvilinear manner. Each vehicle has to 
move between all the point pairs along its route with 
the shortest path by taking into consideration all the 

obstacles in the environment. In the solution, it may 
cause to longer paths for vehicles not to move 
through the guides at certain distances to the 
obstacles. This solution therefore only and 
particularly intends for developing convenient routes 
inside of the floor in e.g. factories through the 
potential movement points (an example in Figure 2) 
to be defined on movable area with an algorithm. 
Guides were used for the following reasons: 

• reducing the number of calculations 
(complexity of the solution) 

• When a vehicle is not defined as a point, 
vehicles occupy a 2D space and the routes 
that are at certain distances to the obstacles 
need to be determined. Furthermore, there 
may be narrow spaces in the environment 
and/or it may be essential to use the paths at 
certain distances to the obstacles in avoiding 
dangerous situations (e.g. hot objects) 
regarding the vehicles and obstacles. 

 

 
Figure 2. An environment with six (6) obstacles (trees) and 
five (5) customers (faces) 
 

In this problem, it is assumed that the environment is 
known, 2D, limited, static and continuous; obstacles 
do not move; each location of the depot, a customer, 
or a guide is a point and the distance between any 
point pair is not known in advance. Each vehicle, 
defined as a point, can pass among the obstacles 
while moving on the continuous area outside the 
obstacles placed in the environment regularly. In the 
solution, each route includes the related locations 
that do not intersect with any obstacle. To illustrate 
this new problem, a sample is given in Figure 3 with 
its solution generated for one route in which “12 (3 × 
4)” circular obstacles and “20 (4 × 5)” guides are 
placed in the environment regularly with the random 
locations of one depot and four customers. 
 
In Figure 3, the locations of the depot, customers and 
guides are shown with a big square, little squares and 
little circles, respectively, with the related orders. The 
guides shown with arrows are placed in the 
environment regularly so that each guide pair on the 
same horizontal/vertical line can only see each other. 
Therefore, there is no intersection on the line 
between them with any obstacle (visible to each 
other). As seen, in the navigations between the 
locations that do not see each other directly, when 
obstacles exist on the potential line between point 
pairs, a new and passable path is determined on 
which the guides are visited to move to the target 
location from the current one. 
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Figure 3. The shortest path in the environment with certain sized circular obstacles and guides for one route 

 
2.2 Solving CVRP for the Environments with 
Circular Obstacles 
 

In this subsection, the flow of the solution method 
proposed is shown and the way of obtaining the 
weighted adjacency matrices is described followed by 
the solution. 
 

2.2.1 Generic solution method to the problem 
 

When calculating the distance between any point 
pair, the intersections of the potential line between 
them with the obstacles are taken into consideration. 
After calculating the distances between all point 
pairs, the developed algorithm is applied to CVRP. 
The workflow of this method is given in Figure 4. 
 

 
Figure 4. The workflow of the proposed method regarding 
the problem’s solution 

 
Each value of the final distance matrix including the 
distances between all customer pairs is generated in 
two steps: (1) the guide matrix is generated after 
calculating the distances between all guide pairs, and 
(2) based on this matrix, for each customer pair who 
are not visible to each other, the straight-line distance 
matrix is generated by determining the path between 
them and its total distance. 

2.2.2 Creating straight-line distance matrices for 
customer pairs 
 
On the CVRP_EWCO, the path between any customer 
pair who are not visible to each other is determined 
and the vehicles are allowed to move through the 
defined guides that are not so close to the obstacles. 
In Figure 5, a sample environment is given with one 
obstacle and four guides, and it is not possible to 
move between C1 - C2 customer pair directly since an 
obstacle exists on the dashed line between them. The 
navigation between them can be done through the 
guide G4, a path that is longer than the Euclidean 
distance. This approach is employed since circular 
movements around obstacles may not be appropriate 
for each type of vehicle. 
 

 
Figure 5. The shortest path between C1 - C2 customer pair 
in the environment with a circular obstacle and four guides 

 
To determine the intersections, the following cases 
between a circle and a line are considered: (i) no 
intersection, (ii) tangent line (intersection at one 
point), or (iii) secant (intersection at two points). 
When one point intersection becomes the case, the 
corresponding point is the tangent that belongs to the 
circle corresponding to the related obstacle. The 
ellipse that refers to the circle corresponding to the 
related obstacle is firstly located at the center and its 
semi-axes values (half the width (semi-major axis) 
and half the height (semi-minor axis)) are calculated. 
Quadratic parameters and discriminant are then 

customer 

based on the final distance matrix, solve the CVRP with 
the developed memetic algorithm 

using the guide matrix and the Dijkstra’s algorithm, 
generate the final distance matrix for all customer pairs 

display the routes and results 

considering the obstacles, generate the 
guide matrix for all guide pairs 

C2 

C3 

C4 

G4 G3 

G2 G1 

C1 

circular obstacle 

guide 

route 
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calculated. A quadratic formula and its discriminant 
are given in Equation (1) and Equation (2), 
respectively. 
 

𝐴𝑡2 + 𝐵𝑡 + 𝐶 = 0 (1) 
 

𝐵2 − 4𝐴𝐶 (2) 
The formula to find the values of 𝑡 that satisfy the 
Equation (1) is given in Equation (3). 
 

𝑡 =
−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴
 (3) 

 

The number of real solutions to the Equation (3) 
depends on the discriminant as follows: 

• discriminant < 0: There are no real solutions. 
• discriminant = 0: There is one solution. 
• discriminant > 0: There are two solutions. 

 

While one solution is obtained if the delta (𝛥: t in the 
Equation (3)) is zero, two solutions are obtained 
when it is positive. For the intersections, the roots are 
found from this value. The algorithm to determine 
the circular obstacles on the line between any point 
pair is given as pseudo-code in Table 1. 
 
Table 1. Pseudo-code to determine the circular obstacles 
on the line between two points 

Algorithm: determineObstaclesOnTheLine(Point p1, 
Point p2) 
1. for an obstacle in all the obstacles in the 

environment do 
2.  if “the potential line between p1 - p2 intersects 

with this obstacle” then 
3.   return true // no move between p1 - p2 directly 
4.  end if 
5. end for 
6. return false // no intersection 

 

In Table 1, when the result is false, the distance 
between p1 - p2 becomes the Euclidean distance 
between them; otherwise, it is taken into 
consideration as “∞”. 
 

For the example in Figure 5, calculating the distances 
between all the guide pairs, the guide matrix of “4 × 
4” (four guides) including the distances is generated 
only once. When calculating the distance between any 
customer pair who are not visible to each other, two 
rows and two columns are firstly added to the guide 
matrix; and then, the straight-line distance matrix of 
“6 × 6” including the distance between them and the 
distances between them and all the guide pairs is 
generated with the visibility graph approach. The 
matrix generated for C1 - C2 customer pair is given in 
Table 2. 
 

In Table 2, Gi and Cj refer to the guide location a and 
the customer location b with the ith and jth indices, 
respectively, and cab is the distance/cost between a 
and b. For each customer pair who are not visible to 
each other, a new straight-line distance matrix is 
generated by only changing two rows at the bottom 

and two columns at the right. Applying the Dijkstra’s 
shortest path algorithm on it, the shortest path 
between the related customer pair passing through 
the guides and its total cost/distance are found. 
 
Table 2. Straight-line distance matrix generated for C1 - C2 
customer pair 

Location G1 G2 G3 G4 C1 C2 

G1 0 cG1G2 cG1G3 cG1G4 cG1C1 cG1C2 
G2 cG2G1 0 cG2G3 cG2G4 cG2C1 cG2C2 
G3 cG3G1 cG3G2 0 cG3G4 cG3C1 cG3C2 
G4 cG4G1 cG4G2 cG4G3 0 cG4C1 cG4C2 

C1 cC1G1 cC1G2 cC1G3 cC1G4 0 cC1C2 
C2 cC2G1 cC2G2 cC2G3 cC2G4 cC2C1 0 

 

2.2.3 Creating final distance matrix 
 

Based on the four customers (C1, C2, C3, C4) in the 
example in Figure 5, the calculations are repeated for 
six customer pairs (C1 - C2, C1 - C3, C1 - C4, C2 - C3, C2 
- C4, C3 - C4) and the upper triangle of the final 
distance matrix of “4 × 4” (Table 3) is completed that 
includes only the distances between all the customer 
pairs. The problem is thus transformed into the 
classical CVRP. 
 
Table 3. Final distance matrix 

Customer C1 C2 C3 C4 
C1 0 cC1C2 cC1C3 cC1C4 
C2 cC2C1 0 cC2C3 cC2C4 
C3 cC3C1 cC3C2 0 cC3C4 
C4 cC4C1 cC4C2 cC4C3 0 

 

The final distance matrix in Table 3 does not include 
any distance related to any guide. The distance 
obtained by using the straight-line distance matrix for 
any customer pair only forms the corresponding 
element in the final distance matrix. For the solution, 
the developed algorithm is applied on this matrix. 
 

2.3 Optimization based on GA improved by a LS 
 

VRP is a NP-hard problem since the complexity 
(solution time) increases exponentially with the 
increase of the problem size. In solving such complex 
and hard problems, GA is a robust optimization 
technique as a global search method from the field of 
evolutionary computing. Although the best one is not 
guaranteed, it provides a good solution set. To 
overcome this problem and prevent getting stuck at 
local optimum, it was hybridized with a LS. The 
workflow of the developed memetic algorithm (the 
third step in Figure 4) is given in Figure 6. 
 

The details of the basic components of the memetic 
algorithm [24] example in Figure 6 are given in the 
following subsections. As a hybrid algorithm based 
on GA improved by a LS (2-opt), Uğur [25] had used it 
to solve the special 3D TSP in which all cities and 
solution paths were on the surfaces of a cuboid while 
it was used in this research for a completely different 
CVRP extension with circular obstacles in 2D 
environment. 
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Figure 6. The workflow of the developed memetic algorithm 

 
2.3.1 Chromosome representation 
 
In the representation with one vector, each route 
separated from each other with the depot location 0 
(zero) includes the orders of the customers on its 
own. Each customer takes place only once in each 
representation whose length may dynamically 
change. The representation of “{0 1 3 5 0 4 2 0 6}” 
consists of three routes given in Example 1: 

Example 1: 
Route#1: depot 1 3 5 
Route#2: depot 4 2 
Route#3: depot 6 

 
In Example 1, the customers are clustered in three 
routes. The number of locations in the representation 
is the sum of the number of customers (n) and the 
number of routes (zeros). When each vehicle meets 
only one request, the number of locations in the 
representation becomes 2n. The representation of an 
appropriate candidate solution requires each of its 
routes to satisfy the problem-specific constraints. 
 
2.3.2 Initial population creation 
 
The nearest neighbor algorithm was used to create an 
initial population and the genetic process was 
configured so that any unfeasible solution did not 
exist in the search space. After calculating the 
distances between all customer pairs, for each 
location, a certain number of locations that are the 
closest ones to this location are firstly determined; 
and then, pairs of consecutive points that are closer 
to each other can be generated. 
 
2.3.3 Fitness evaluation 
 
In cost calculation, it was aimed to minimize both (i) 
the number of routes and (ii) the total distance in the 
solution. The fitness of the ith chromosome in the 

population is calculated with the multi-objective 
function F in Equation (4). 
 

𝐹(𝑖) = 𝛼 × 𝑚𝑖 + 𝛽 × 𝐶𝑖  (4) 
 
where 𝛼 is the coefficient for the number of routes 
(m) and 𝛽 is the coefficient for the sum of the lengths 
of all routes (C). 
 
2.3.4 Genetic operators 
 
The single-point and double-point permutation cross-
overs were applied to the parents selected and the 
offspring obtained were subjected to a LS. 
 
2.3.5 Local search 
 
LS is an effective technique that improves the current 
solution iteratively by using its neighborhoods. In 2-
opt algorithm, a chromosome is broken from two 
points and recreated so that this range would be in 
reverse. This continues as long as the local minimum 
is not achieved. Using this algorithm, it is aimed to 
further shorten the total route length and better/fast 
converge to the solution while providing diversity, 
and to decrease the total distance with the location 
changes of inner-route and inter-routes. After the 
change in the sequence (solution), inter-routes loads 
are balanced so that the number of routes either 
becomes fixed or is decreased by one when two 
consecutive zeros exist in a new feasible chromosome 
as in Example 2: 

Example 2: 
Old  : 0 1 3 5 0 4 2 0 6 → before 2-opt 
New : 0 1 3 5 0 0 2 4 6 → 0 1 3 5 0 2 4 6 

 
The improved LS (2-opt algorithm) is given as 
pseudo-code in Table 4 that was applied at each 
generation when it would become the case to 
improve the chromosome in preventing its slowness. 

Y 

N termination 
criteria is 
satisfied? 

selection 

cross-over 

apply improved local search 

elitism 

generate a new population 

display the best 
solution 

create an initial population 
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Table 4. Pseudo-code of the improved LS applied 
Algorithm: 
applyImprovedLocalSearch(Chromosome chrome) 
1. while “the improvement is the case for chrome” do 
2.  specify the best edge pair of “i, i + 1” and “j, j + 1” 

for chrome 
3.  if dist(i, i + 1) + dist(j, j + 1) > dist(i, j) + dist(i + 1, j + 

1) then 
4.   exchange the edges and update the fitness of 

chrome 
5.  end if 
6. end while 

 
In Table 4, i and j refer to the genes in the chrome 
while dist is the matrix including the distances 
between all customer pairs. 
 
2.3.6 Next generation creation 
 
At each generation, elitism is firstly applied and the 
best two chromosomes are directly passed to the next 
one. Then, to maintain the population size (n), “n − 2” 
offspring are produced and the chromosomes 
obtained are exchanged with the parents starting 
with the worst one. To obtain better chromosomes, 
offspring who are not better than their parents are 
also given the chance to live. 
 

2.3.7 Termination criteria 
 

The algorithm execution is stopped when the 
maximum number of generations is reached. 
 

3. Results 
 

In this section, the details for data set and 
experimental setup are firstly given. Then, to show 
the performance of the developed algorithm, the 
experiments in the environments without obstacle 
are presented for benchmarking. Lastly, to show the 
applicability, the details in placing circular obstacles 
and the experiments conducted on the CVRP_EWCO 
are given. 
 

3.1 Data set and experimental setup 
 

The working space is considered as a land, map, or a 
scene that is in accordance with the dimensions 
(width/height) of the simulation tool of “554 × 554” 
unit2 (Figure 7). Predetermined environment size 
allows to change the obstacle radius easily. When 
obstacles are small, their impacts may not be 
observed sufficiently. The scene is set as squared so 
that it can contain a certain number of obstacles. 
 
The developed algorithm was tested as follows: (i) in 
the environments without obstacle by using a few 
CVRP instances from the VRPLIB library in literature, 
and (ii) on the CVRP_EWCO for different customer-

obstacle counts and obstacle sizes with various 
obstacle occupancies where the obstacles are placed 
in the environment regularly. In the first experiments 
(Section 3.2), location data, the amounts of requests 
and vehicle capacity were used for each CVRP 
instance. These experiments were repeated with the 
same point sets. In other experiments (Section 3.4 
and Section 3.5) on the CVRP_EWCO, random point 
sets were used while the amounts of requests and 
vehicle capacity were fixed. In these experiments, 
each customer request is 10 while the vehicle 
capacity is 250. For example, the number of routes 
becomes four for the solution of each problem 
including 100 customer locations since the total 
request is “1000 (100 × 10)”. In the experiments in 
which the number of customers changes (Section 
3.4), the number of routes in the solution may also 
change. These experiments were repeated with 
different point sets. For each run in each experiment, 
the number of routes and the total cost/distance, the 
number of generations in which the best value was 
found and the run-time at that moment, and the total 
run-time were saved. The GA parameters and their 
values used in all the experiments are given in Table 
5. 
 
Table 5. Test parameters and the related values 

Parameter Value 
population size 100 

maximum number of generations 1000 
selection method tournament 

probabilities for cross-over and LS 0,80 – 0,05 
𝛼 and 𝛽 [26] 0,7 – 0,5 

 
When using the nearest neighbor algorithm to create 
an initial population, the nearest neighbor value and 
the probability for applying this algorithm are 5 and 
0,90, respectively. 
 
For the developed algorithm, a computer graphics 
supported visual simulation tool was designed (a 
screenshot in Figure 7) and the experiments were 
conducted by using C# on Microsoft Visual Studio 
2010 on a Windows 7 operating system installed 
Intel Pentium Dual CPU notebook at 2.13 GHz 
processor with 3GB main memory. 
 
3.2 Testing the developed algorithm in the 
environments without obstacle 
 
To show the statistical success of the developed 
algorithm, it was run on a few CVRP instances [27], 
10 times per each one. The number of routes, the 
paths and the minimum/maximum distances were 
determined with average distance, average error (the 
formula in Equation (5)) and standard deviation, and 
vehicle occupancy (the formula in Equation (6)). The 
results obtained are given in Table 6. 
 

 



M. Karakoç and A. Uğur / Solving Capacitated Vehicle Routing Problem (CVRP) for the Environments with Circular Obstacles 

291
 

 
Figure 7. The computer graphics supported visual simulation tool designed 
 
Table 6. Results regarding the classical CVRP’s solution 

Instance best-known value [28] n m q (*) (^) 
att-n48-k4 40002 47 4 15 40002 0,73 
A-n34-k5 778 33 5 100 778 0,92 

A-n80-k10 1763 79 10 100 1763 0,94 
B-n39-k5 549 38 5 100 549 0,88 
E-n22-k4 375 21 4 6000 375 0,94 
E-n23-k3 569 22 3 4500 569 0,75 
E-n30-k3 534 29 3 4500 534 0,94 
E-n51-k5 521 50 5 160 521 0,97 

E-n101-k8 815 100 8 200 815 0,91 
F-n45-k4 724 44 4 2010 724 0,90 
F-n72-k4 237 71 4 30000 237 0,96 

* (average distance obtained with the developed algorithm) 
^ (vehicle occupancy) 

 

𝑒𝑟𝑟𝑜𝑟 (%) =
𝑚𝑒𝑎𝑛 − 𝑏𝑒𝑠𝑡_𝑘𝑛𝑜𝑤𝑛

𝑏𝑒𝑠𝑡_𝑘𝑛𝑜𝑤𝑛
× 100 (5) 

 
where mean is the average distance and best_known 
is the best-known value. 
 

𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 = 𝑄 ÷ (𝑚 × 𝑞) (6) 
 
where Q is the total load on vehicles (total amount of 
the requests of all customers), m is the number of 
vehicles, and q is the vehicle capacity. 
 
In Table 6, n is the number of customers. As seen, in 
each run for each instance, the minimum number of 
routes/vehicles and the shortest total route length 
were found that have been reported in literature [28]. 
Since average errors and standard deviations are 
zero, the results obtained are fairly successful with 
the complete convergence provided. 
 
3.3 Placement of circular obstacles 
 
Before generating the depot-customer locations, the 
obstacles and guides to be distributed onto the 
environment homogeneously are generated at 
regular spaces in matrix form. The parameters 
considered here are as follows: 
 

• W and H are the width and height of the 
working space 

• R and C are the numbers of row and column 
of the matrix for the obstacles to be placed in 
this form 

• radius and diameter are the radius and 
diameter of each obstacle 

 

The algorithm to generate circular obstacles is given 
as pseudo-code in Table 7. 
 

Table 7. Pseudo-code to generate circular obstacles 
Algorithm: createCircularObstacles 
1. wR = W / (1 + R) 
2. if wR < diameter then 
3.  error: “obstacles cannot be created with these 

inputs!” 
4.  return 
5. end if 
6. hR = H / (1 + C) 
7. if hR < diameter then 
8.  error: “obstacles cannot be created with these 

inputs!” 
9.  return 
10. end if 
11. clear the obstacle list 
12. x = −radius 
13. for r = 1 to R do 
14.  x = x + wR 
15.  y = −radius 
16.  for c = 1 to C do 
17.   y = y + hR 
18.   create the obstacle at “x, y” with radius and add it to 

the list 
19.  end for 
20. end for 



M. Karakoç and A. Uğur / Solving Capacitated Vehicle Routing Problem (CVRP) for the Environments with Circular Obstacles 

292
 

With the algorithm in Table 7, “R × C” regular 
obstacles are generated and distributed onto the 
environment homogeneously (see Figure 3). 
 
The obstacle radius is set so that it is not over than 
the maximum value in which the maximum number 
of obstacles can be placed in the environment 
without intersecting with each other. The gap 
between (i) each pair of consecutive obstacles on the 
same horizontal/vertical line, or (ii) an edge of the 
environment and the obstacles on the obstacle line 
that is the closest one to this edge depends on the 
environment size and obstacle count-size. 
 
3.3.1 Creation of guides 
 
Guides are placed in the environment so that each 
obstacle is seen from the four corners by the four 
guides that are the closest ones to this obstacle and 
the center of gravity of these guides becomes the 
center of the circle corresponding to this obstacle. 
The algorithm to generate guides is given as pseudo-
code in Table 8. 
 
Table 8. Pseudo-code to generate guides 

Algorithm: createGuides 
1. rUpper = (R + 1) × 2 
2. cUpper = (C + 1) × 2 
3. wR = W / rUpper 
4. hR = H / cUpper 
5. clear the guide list 
6. r = 1 
7. while r < rUpper do 
8.  x = r × wR – 1 
9.  c = 1 
10.  while c < cUpper do 
11.   y = c × hR − 1 
12.   create the guide at “x, y” and add it to the list 
13.   c = c + 2 
14.  end while 
15.  r = r + 2 
16. end while 

 
With the algorithm in Table 8, “(R + 1) × (C + 1)” 
regular guides are generated for “R × C” regular 
obstacles and distributed onto the environment 
homogeneously (see Figure 3). 
 
3.3.2 Creation of depot-customer locations 
 
As the depot-customer locations, the area outside the 
obstacles and guides is used. Therefore, firstly 
obstacles and guides, and random depot-customer 
locations are then generated and placed in the 
environment while taking into consideration the 
cases in which a point is both not enclosed by a circle 
and does not intersect with a guide. 

 
3.3.3 Setup regarding the experimental study 
 
In the experimental study on the CVRP_EWCO, 
obstacles and guides are placed in the environment 
regularly. Depot-customer locations are randomly 

generated with neither being placed on any obstacle 
nor overlapping with the guides. In the experiments, 
it was analyzed how the changes of customer-
obstacle counts and obstacle size affected the paths 
and the total distances determined through the 
guides. However, the changes of the amounts of 
requests, vehicle capacity and the number of routes 
were not considered. In the experiments, to use the 
scene well, obstacles were placed in the environment 
so that there would occur enough space on it outside 
the obstacles and the gap between any obstacle pair 
was not so narrow. Additionally, in each experiment, 
the obstacle occupancy in the environment (area 
covered by all the obstacles on it) was also calculated. 
 
3.4 Experiments for different customer counts 
 
In these experiments, the number of customers is 
changed while the number of obstacles is “100 (10 × 
10)” and the obstacle radius is 10 (maximum value for 
100 obstacles). Firstly, 100 obstacles are placed in the 
environment, and the experiment is started with 100 
customers and repeated 10 times. Then, for the same 
obstacle setup, 15 random locations are removed 
from the current set of customer locations and the 
next one is obtained. The experiments are conducted 
in this manner by reducing the number of customers 
until it becomes 10 for the related setup. This was not 
repeated for different customer placements. While 
the obstacle occupancy in the environment is 10,24%, 
the results with a sample are given in Figure 8, Graph 
1 and Table 9. 
 

 
Figure 8. 25 customers, 100 obstacles and “121 (11 × 11)” 
guides in the environment for one route 
 

 
Graph 1. Total route lengths for different customer counts 
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In Graph 1, for the same obstacle setup, with the 
increase of the number of customers in the 
environment, the complexity and the total distance 
increase linearly. 
 
3.5 Experiments for various obstacle occupancies 
in the environment 
 
In these experiments, while the number of customers 
was 100, both different obstacle counts and different 
obstacle sizes were used as the baseline. 
 
3.5.1 Experiments for different obstacle counts 
 
In these experiments, the number of obstacles is 
changed while the obstacle radius is 10 (maximum 
value for 100 obstacles). With the change of the 
number of obstacles, the locations of the obstacles 
and both the number and the locations of the guides 
change. Moreover, customer locations cannot be 
placed on a common area for all obstacle placements. 
Therefore, in each experiment, 100 customer 
locations are placed in the environment and the 
routes are determined. This was repeated 10 times 
for different customer placements. The results with a 
sample are given in Figure 9, Graph 2 and Table 10. 
 

 
Figure 9. 100 customers, “30 (10 × 3)” obstacles and “44 
(11 × 4)” guides in the environment for two routes (the 
vehicle capacity is 500) 

 

 
Graph 2. Total route lengths for different obstacle counts 

 

In Graph 2, with the increase in the number of 
obstacles, the complexity increases fairly. Moreover, 
the total distance may either increase or decrease. 
When the number of obstacles changes, the locations 
of them also change. Therefore, in these experiments, 
since customer locations cannot be a set of common 
points for each experiment, a certain set of customer 
locations was not used. The increase in the number of 
obstacles increases the number of guides and the 
path alternatives, and the total distance therefore 
might be decreased. For example, the increase of the 
number of guides has caused the total distance to 
decrease at the end of the graph. 
 
3.5.2 Experiments for different obstacle sizes 
 
In these experiments, the obstacle radius is changed 
while the number of obstacles is “100 (10 × 10)”. 
Firstly, 100 customer locations are placed in the 
environment so that the largest sized 100 obstacles 
covering the largest area are placed in the 
environment. In each experiment, without changing 
the locations, the obstacle radius is reduced until it 
becomes the minimum. This was repeated 10 times 
for the same customer placement. The results with a 
sample are given in Figure 10, Graph 3 and Table 11. 
 

 
Figure 10. 100 customers, 100 obstacles and “121 (11 × 
11)” guides in the environment for two routes (the vehicle 
capacity is 500 and the obstacle radius is 10) 

 

 
Graph 3. Total route lengths for different obstacle sizes 
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Table 9. The change of customer count with the fixed obstacle count-size (“100 (10 × 10)” / the obstacle radius is 10) 

CC 10 25 40 55 70 85 100 

RC 1 1 2 3 3 4 4 

TL 
Avg 1981 2696 3429 4015 4540,2 5172,7 5728,6 

SD 0 0 0 0 4,94 59,68 25,21 

RT 
Avg 1,4 49,4 355,4 585,7 1899,7 3731,5 5762,9 

SD 4,2 104,3 186,39 356,59 583,07 875,34 622,81 

CC: customer count / RC: route count 
TL: total length / RT: run-time during the genetic process (ms) / SD: standard deviation 

 
Table 10. The change of obstacle count with the fixed customer count and obstacle size (100 / the obstacle radius is 10) 

OC 
X 1 x 10 2 x 10 3 x 10 4 x 10 5 x 10 6 x 10 7 x 10 8 x 10 9 x 10 10 x 10 

0 10 20 30 40 50 60 70 80 90 100 

GC 0 22 33 44 55 66 77 88 99 110 121 

OFR 0 1,02 2,05 3,07 4,09 5,12 6,14 7,17 8,19 9,21 10,24 

TL 
Avg 4863,9 5174,9 6144,5 5258,3 5715,8 5281,2 6018,7 6113,9 5898,2 5828,5 5447,9 

SD 34,57 33,27 56,91 130,05 29,42 52,32 47,6 48,17 39,81 26,65 91,03 

RT 
Avg 6608,8 6018 7020,8 5787,4 6506,8 6204 6094,8 6119,1 5915,2 6629 6959,8 

SD 732,48 902,24 1170,6 1070,84 1425,56 542,79 1150,55 1101,82 1201,11 576,71 433,17 

OC: obstacle count / GC: guide count / OFR: obstacle occupancy (%) 
TL: total length / RT: run-time during the genetic process (ms) / SD: standard deviation 

 
Table 11. The change of obstacle size with the fixed customer-obstacle counts (100 / “100 (10 × 10)”) 

OR 0 1 2 3 4 5 6 7 8 9 10 

OFR 0 0,10 0,41 0,92 1,64 2,56 3,68 5,02 6,55 8,29 10,24 

TL 
Avg 4863,9 5127,5 5154,3 5162,4 5239,9 5315,9 5351,4 5403,9 5515,1 5548,8 5657,4 

SD 34,57 25,17 27,63 17,52 24,01 21,98 15,08 20,67 35,57 26,6 41,44 

RT 
Avg 6608,8 62895,6 61126,7 63413,2 64833,9 60147 61283,4 59522,8 61381,7 59529,4 61816,1 

SD 732,48 3679,75 3016,79 2286,31 2301,07 4298,14 3201,89 2469,57 3169,54 3627,4 3998,45 

OR: obstacle radius / OFR: obstacle occupancy (%) 
TL: total length / RT: run-time during the genetic process (ms) / SD: standard deviation 

 
In Graph 3, the increase of the obstacle radius 
increases the obstacle occupancy in the environment 
squarely. For different obstacle sizes, neither the 
centers of the obstacles nor the locations of the 
guides change. As the obstacles get larger, the total 
distance increases linearly. The passable points for 
the larger sized obstacles are also passable for the 
smaller sized ones. As the obstacles get smaller for 
the same set of customer locations, the total distance 
decreases linearly. While the obstacle radius is zero 
(the environment without obstacle), all customer pairs 
are visible to each other. Therefore, when it becomes 
1 (the environment with obstacles), the total distance 
increases dramatically. 
 
4. Discussion and Conclusion 
 
In the experimental study on the CVRP_EWCO, depot-
customer locations and obstacle count-size were set 
for different point sets and different obstacle setups. 
The optimal set of routes was determined with the 
minimum cost obtained within a small number of 
generations (100 on average). The appropriate 
solutions were able to be achieved within short run-

times and the developed algorithm could converge to 
the best values fast with the successful results. 
 
When the guides are away from the obstacles, longer 
paths (total distances) may become the case. On the 
other hand, obstacles may be neither identical nor 
placed in the environment regularly. Therefore, 
obstacle size, in most cases, may cause bigger 
differences for the total distances rather than the 
number of obstacles. The optimization of solution 
guarantees the length of each route in the solution 
would be the minimum or near-minimum. To further 
shorten the length of any route, it may be an 
alternative to move closer to the obstacles. 
 
As observed, the increase of the number of customers 
increases the total distance. The increase of the 
number of customers/obstacles increases the 
number of calculations fairly since the cases between 
all customer pairs and all guide pairs are taken into 
consideration. With the increase of obstacle count-
size; (i) the available free space in the environment is 
reduced, (ii) it might not be possible to reach at the 
customers through other customers around the 
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obstacles directly, and (iii) the total distance 
therefore may increase. On the other hand, 
depending on the different customer placements, the 
experiments for the change of the number of 
obstacles do not affect the outcomes very much (see 
Section 3.5.1). 
 

In this research, CVRP was addressed for the 
environments with circular obstacles (CVRP_EWCO) as 
its special case in real-life. With the transformation of 
the problem into the classical CVRP, the navigations 
between depot-customer locations were done 
through the guides at certain distances to the 
obstacles placed in the environment regularly. 
Moreover, the optimal solutions could be provided to 
the problem with the developed memetic algorithm. 
Using the solution method proposed, it will be 
possible to adapt VRP to the working-areas that may 
include obstacles through which the vehicles cannot 
pass. Thus, this problem might be extended to apply 
in narrow and confined areas such as bus terminals, 
construction zones, factories or harbors. 
Furthermore, the solution method proposed can be 
adapted to solve other VRP types or similar 
problems. 
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