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Abstract: In this study, known integral transforms such as Fourier and Hartley are studied and these integral transforms are stud-
ied in detail for bicomplex numbers. In addition, the properties of the bicomplex Hartley transform have been investigated. Also,
the relation between Hartley and Fourier transform for bicomplex numbers is given.
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1 Introduction

The concept of bicomplex number was first defined by Corrada Segre (1863− 1924) in 1892 . This number system has been considered as
a generalization of complex numbers and is defined as BC = {z1 + z2j|z1, z2 ∈ C, j2 = −1} where j plays a role as an imaginary unit
[10]. Any bicomplex number Z can be written as a linear combination of bases e1 and e2: Z = (z1 − z2i)e1 + (z1 + z2i)e2, where the
relationships between bases e1 and e2 are e1 + e2 = 1, e1e2 = e2e1 = 0. The idempotent coefficients are z1 − iz2 and z1 + iz2.
The aim of this study is to first recall the Fourier and Hartley transformations and then examine these transformations in a set of bicomplex
numbers. As well known that the Fourier transform plays an important role in solving differential equations and integral equations. Especially
in mathematical statistics, statistical mechanics problems, problems related to free vibration, diffusion, in geophysical engineering; measuring
the resistance and strength of fault lines, the two-dimensional wave equation or Cauchy problems, solution of unknown f(x) functions in
integral equations, Fourier transforms are used effectively.
The Fourier transform of a function f(x) with k ∈ R is represented by the symbol F{f(x)}, and it is defined as

F{f(x)} =
1√
2π

∫∞
−∞

eikxf(x)dx. (1)

This integral is called complex Fourier transform or exponential Fourier transform. The only condition for obtaining the Fourier transform of a
function f(x) is its absolute integration.
The inverse Fourier transform is represented by the symbol F−1{F (k)} = f(x) and is given as

F−1{F (k)} = f(x) =
1√
2π

∫∞
−∞

eikxF (k)dk (2)

where, F−1 is called the inverse Fourier transform operator. Let a and b be any real constants. If the Fourier transforms of functions f(x)
and g(x) are denoted by F{f(x)} = F (k) and F{g(x)} = G(k), respectively, the properties of the Fourier transform associated with these
functions can be given in the following table.

F{af(x) + bg(x)} = aF{f(x)}+ bF{g(x)} = aF (k) + bG(k) Linearity property
F{eiaxf(x)} = F (k − a) Translation Property
F{f(x− a)} = e−ikaF (k) Shifting Property

F{f(ax)} = 1
|a|F (ka ) Scaling property

F{xnf(x)} = (i)n dn

dxn {F (k)} The property of multiplication by xn

If it′s fn(x)→ 0 for |x| → ∞, then F{fn(x)} = (ik)nF (k) Fourier Transform of Derivative
Table 1 Properties of the Fourier transform

Example. If f(x) = e−a|x| with a ∈ R and w = u+ iv ∈ C, then we find the Fourier transform of the function f(x).
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f̂(w) =

∫∞
−∞

eiwxf(x)dx =

∫∞
−∞

eiwxe−a|x|dx

f̂(w) =

∫0
−∞

eiwxeaxdx+

∫∞
0
eiwxe−axdx

f̂(w) =

∫0
−∞

e(iw+a)xdx+

∫∞
0
e(iw−a)xdx.

If we write u+ iv instead of w, we get the following equality.

f̂(w) =

∫0
−∞

e(iu−v+a)xdx+

∫∞
0
e(iu−v−a)xdx.

When the necessary operations are done, we get the following equality:

f̂(w) =
2v

a2 + u2 − v2 + 2iuv
. (3)

Now, let us mention from bicomplex Fourier transform. In this section, our aim is to extend the Fourier transform F : D ⊂ R→ BC in bicomlex
variables from its complex version and examine its fundamental properties.

2 Bicomplex Fourier Transform

There are some studies on bicomplex Fourier transform in the literature. One of them belongs to Banerjee. In this section, we will first discuss
and remind you of these transformations. Let f(t) be a real valued continuous function for the values t, −∞ < t <∞. Accordingly,

|f(t)| ≤ c1e−αt, t ≥ 0, α > 0 (4)

|f(t)| ≤ c2eβt, t ≤ 0, β > 0. (5)

The above equations show that f is absolutely integrable in the whole real plane [1].
The complex Fourier transform of f(t) satisfying the condition |f̂1(w1)| <∞ where w1 is a complex frequency, is defined as

f̂1(w1) = F{f(t)} =

∫∞
−∞

eiw1tf(t)dt, w1 = x+ iy.

Then,

|f̂1(w1)| = |
∫∞
−∞

eiw1tf(t)dt| ≤
∫∞
−∞
|e−ytf(t)|dt =

∫0
−∞

e−yt|f(t)|dt+

∫∞
0
e−yt|f(t)|dt.

Thus, we write

|f̂1(w1)| ≤ c2
∫0
−∞

e(β−y)tdt+ c1

∫∞
0
e−(α+y)tdt =

c2
β − y +

c1
α+ y

.

Note that in order to be |f̂1(w1)| <∞ it must be ˘α < y < β.
That is, |f̂1(w1)| is holomorphic in the Ω1 region below:

Ω1 = {w1 ∈ C : −∞ < Re(w1) <∞, −α < Im(w1) < β}. (6)

Similarly, the complex Fourier transform of f(t) associated with the other complex frequency w2 is as follows:

f̂2(w2) = F{f(t)} =

∫∞
−∞

eiw2tf(t)dt, w2 ∈ C.

f̂2(w2) is holomorphic in the Ω2 region below:

Ω2 = {w2 ∈ C : −∞ < Re(w2) <∞, −α < Im(w2) < β}. (7)

The complex functions f̂1(w1) and f̂2(w2) can be written as follows with the help of idempotent bases e1 and e2:

f̂1(w1)e1 + f̂2(w2)e2 =

∫∞
−∞

eiw1tf(t)dte1 +

∫∞
−∞

eiw2tf(t)dte2

f̂1(w1)e1 + f̂2(w2)e2 =

∫∞
−∞

ei(w1e1+w2e2)tf(t)dt =

∫∞
−∞

eiwtf(t)dt = f̂(w).

Since f̂1(w1) and f̂2(w2) are complex holomorphic functions in Ω1 and Ω2, respectively, then the bicomplex function f̂(w) will be
holomorphic in the region Ω:

Ω = {w ∈ BC : w = w1e1 + w2e2, w1 ∈ Ω1 and w2 ∈ Ω2}. (8)

The complex-valued holomorphic functions f̂1(w1) and f̂2(w2) are absolutely convergent in the regions Ω1 and Ω2, respectively. Then the
region of absolute convergence of f̂(w) is region Ω.
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Let w1 = x1 + ix2, w2 = y1 + iy2, x1, x2, y1, y2 ∈ R be with w1, w2 ∈ C. For w1 ∈ Ω1 and w2 ∈ Ω2

−∞ < x1, y1 <∞, −α < x2 < β, −α < y2 < β.

Using the last inequalities and the idempotent elements e1, e2, w transforms to 4− component form as follows:

w =
x1 + y1

2
+ i

x2 + y2
2

+ j
y2 − x2

2
+ ij

x1 − y1
2

= a0 + ia1 + ja2 + ija3

where a0, a1, a2, a3 ∈ R. For the elements x2, y2 we have three possible states with respect to these. That is

1) If x2 = y2, then
−α < a1 < β, a2 = 0.

2) If x2 > y2, then

−α− a2 < a1 < β + a2, −
α+ β

2
< a2 < 0.

3) If x2 < y2, then

−α+ a2 < a1 < β − a2, 0 < a2 <
α+ β

2
.

In the above all three cases we have −∞ < a0, a3 <∞. Thus, considering these inequalities we get the following results:

−∞ < a0, a3 <∞

−α+ |a2| < a1 < β − |a2| 0 ≤ |a2| <
α+ β

2
.

And so, the convergence region Ω of f̂(w) is as follows:

Ω = {w ∈ BC : −∞ < a0, a3 <∞, α+ |a2| < a1 < β − |a2|, 0 ≤ |a2| <
α+ β

2
}. (9)

Now, let us investigate the existence of the bicomplex Fourier transform f̂(w):

If w = a0 + ia1 + ja2 + ija3 ∈ Ω, then we have

−∞ < a0, a3 <∞, α+ |a2| < a1 < β − |a2| 0 ≤ |a2| <
α+ β

2
.

If we can write the number w using idempotent bases, that is

w = {(a0 + a3) + i(a1 − a2)}e1 + {(a0 − a3) + i(a1 + a2)}e2 = w1e1 + w2e2,

then we get the following inequalities:

1) If a2 = 0,−α < a1 < β, then
−α < a1 − a2 < β, −α < a1 + a2 < β.

2) If a2 < 0, using by the first side of inequality −α− a2 < a1 < β + a2, we get

−α < a1 + a2, a1 − a2 < β.

Since a2 < 0, if we combine these two results, we get

−α < a1 + a2 < a1 − a2 < β.

From here, this state can be interpreted as

−α < a1 + a2 < a1 − a2, a1 + a2 < a1 − a2 < β.

3) If a2 > 0, from the first side of inequality we get

−α+ a2 < a1 < β − a2, −α < a1 − a2.

And a1 + a2 < β is obtained from the end side. Since a2 > 0, if we combine the two result, the we have

−α < a1 − a2 < a1 + a2 < β.

So, we can write as
−α < a1 − a2 < a1 + a2, a1 − a2 < a1 + a2 < β.

Let f(t) be a real valued continuous function in the interval (−∞,∞) that satisfies (4) and (5). Then the Fourier transform of f(t) is as
follows:

f̂(w) = F{f(t)} =

∫∞
−∞

eiwtf(t)dt, w ∈ BC. (10)

We know that the Fourier transform f̂(w) exists and holomorphic for all w ∈ Ω, where Ω is the convergence region of f̂(w) [1].
That is if the function f(t) satisfies (4) and (5) is a continuous and real-valued function for −∞ < t <∞, then the Fourier transform f̂(w)
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exist in the region (9). Let’s give this theorem.

Theorem 1. [1] Let the Fourier transforms of f(t) and g(t) functions be f̂(w) and ĝ(w), respectively. If f̂(w) = ĝ(w), then

f(t) = g(t). (11)

Now, let’s give some of basic Properties of the Fourier transform.

1. Linearity Property. Let the Fourier transforms of f(t) and g(t) be f̂(w) and ĝ(w), respectively. Then linearity property can be given
as follows:

F{af(t) + bg(t)} = af̂(w) + bĝ(w)

where a and b are constants in the region Ω [1].

2. Shifting Property. Let f̂(w) be the Fourier transform of the continuous function f(t). Then, F{f(t− a)} = eiwaf̂(w) with t− a ∈ Ω [1].

3. Scaling Property. Let f̂(w) be the Fourier transform of the continuous function f(t). Then, with a 6= 0,

F{f(at)} =
1

|a| f̂(
w

a
).

Before giving the convolution theorem for the Fourier transform, let us give the convolution property.
4. Convolution Property. If f(t) and g(t) functions are piecewise continuous in the interval [0,∞), then convolution of f and g is as follows
and denoted by f ∗ g:

f(t) ∗ g(t) =

∫ t
0
f(x)g(t− x)dx.

Theorem 2. (Convolution Theorem) [1] If the Fourier transforms of f(t) and g(t) functions be f̂(w) and ĝ(w) respectively, then

Ff(t) ∗ g(t) = F{
∫∞
−∞

f(u)g(t− a)du} = f̂(w)ĝ(w).

Theorem 3. [1] If f(t) and trf(t) functions are integrable in the interval −∞ < t <∞ with r = 1, 2, . . . ., n, then

F{tnf(t)} = in
dn

dwn
f̂(w). (12)

Where, f̂(w) is the Fourier transform of the function f(t).

Proof: For n = 1, let’s examine the right side of the equation.

d

dw
f̂(w) =

∂

w1
f̂1(w1)e1 +

∂

w2
f̂2(w2)e2

=
∂

w1

∫∞
−∞

eiw1tf(t)dte1 +
∂

w2

∫∞
−∞

eiw2tf(t)dte2

When the necessary operations are done, we obtain the following equality:

d

dw
f̂(w) = iFtf(t).

Thus, F{tf(t)} = −i ddw f̂(w). Similarly, let’s see for n = 2.

d2

dw2
f̂(w) =

d

dw
[
d

dw
f̂(w)] = i

d

dw
[

∫∞
−∞

eiwtf(t)dt]

= i
∂

w1

∫∞
−∞

eiw1ttf(t)dte1 + i
∂

w2

∫∞
−∞

eiw2ttf(t)dte2

When the necessary operations are done, we obtain the following equality:

d2

dw2
f̂(w) = −Ft2f(t).

Thus, F{t2f(t)} = (−i)2 d2

dw2 . If this is continued, the following result will be obtained:

F{tnf(t)} = in
dn

dwn
f̂(w).

�
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Theorem 4. [1] If f(t) and f (r)(t), r = 1, 2, ...., n, are piecewise smooth and tend to 0 as |t| → ∞ and f with its derivatives of order up to
n are integrable in −∞ < t <∞, then

F{fn(t)} = (−iw)nf̂(w), (13)

where f̂(w) is the Fourier transform of the function f(t) and fr(t) = dr

dtr f(t).

Example. If f(t) =

{
e−2t, t > 0

0, x ≤ 0
, where α = 2, β any positive number,

then we get f̂(w) = 1
2−iw . Actually,

f̂(w) =

∫∞
0
e−2teiwtdt =

∫∞
0
e−t(2−iw)dt = [

e−t(2−iw)

2− iw ]∞0 =
1

2− iw .

Its the convergent region is

Ω = {w = a0 + ia1 + ja2 + ija3 ∈ BC : 0 ≤ |a2| <
2 + β

2
, a1 > −2}

where β ∈ Z+.

Example. If f(x) = e−a|x| with a ∈ R and w = w1 + jw2 ∈ BC, then we find the Fourier transform of the function f(x). Where w1 is
Fn + iFn+1, w2 is Fn+2 + iFn+3 and Fn is nth Fibonacci number.
The Fourier transform of f̂(w) could be written as follows with the help of idempotent bases:

f̂(w) = f̂1(w1)e1 + f̂2(w2)e2.

Let’s first find the f̂1(w1) Fourier transform.

f̂1(w1) =

∫∞
−∞

eiw1xe−a|x|dx

=

∫0
−∞

eiw1xeaxdx+

∫∞
0
eiw1xe−axdx

=

∫0
−∞

e(iw1+a)xdx+

∫∞
0
e(iw1−a)xdx.

If we write Fn + iFn+1 instead of w1, we get the following equality:

f̂1(w1) =

∫0
−∞

e(iFn−Fn+1+a)xdx+

∫∞
0
e(iFn−Fn+1−a)xdx.

When the necessary operations are done, we get the following equality:

f̂1(w1) =
2a

a2 + F 2
n − F 2

n+1 + 2iFnFn+1
.

Now, let’s find the f̂2(w2) Fourier transform.

f̂2(w2) =

∫∞
−∞

eiw2xe−a|x|dx

=

∫0
−∞

eiw2xeaxdx+

∫∞
0
eiw2xe−axdx

=

∫0
−∞

e(iw2+a)xdx+

∫∞
0
e(iw2−a)xdx.

If we write Fn+2 + iFn+3 instead of w2, we get the following equality:

f̂2(w2) =

∫0
−∞

e(iFn+2−Fn+3+a)xdx+

∫∞
0
e(iFn+2−Fn+3−a)xdx.

When the necessary operations are done, we get the following equality:

f̂2(w2) =
2a

a2 + F 2
n+2 − F 2

n+3 + 2iFn+2Fn+3
.

Thus,

f̂(w) = 2a(
1

a2 + F 2
n − F 2

n+1 + 2iFnFn+1
e1 +

1

a2 + F 2
n+2 − F 2

n+3 + 2iFn+2Fn+3
e2).
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3 Bicomplex Hartley Transform

Let us briefly mention about the Hartley transformation. The Hartley transform is an integral transformation that maps to a real valued frequency
function through the kernel casvx = cosvx+ sinvx. This new version of the Fourier transform was discovered by Ralph Vinton Lyon Hartley
in 1942. Sinusoids are waves that acting between certain frequencies and certain amplitudes that repeat. The Fourier transform involves the
complex sum of real and imaginary numbers and sinusoidal functions. The Hartley transform includes the real sum of real numbers and
sinusoidal functions. Both transformations were effective in solving fluctuating events.Hartley transform is a transform obtained by taking the
function cas instead of the exponential kernel in the Fourier transform. The Hartley transformation is as

H(f) =

∫∞
−∞

caswtV (t)dt =

∫∞
−∞

cas2πftV (t)dt. (14)

Where t is time, V (t) is a absolute integrable function in the (−∞,∞) depends on t, f is frequency, w is angular frequency and cast =
cost+ sint. This integral transform is called the Hartley transform of the V (t) function. Additionally, w = 2πf . V (t) function is found as

V (t) =

∫∞
−∞

caswtH(f)dt =

∫∞
−∞

cas2πftH(f)dt. (15)

Now, let’s mention about the bicomplex Hartley transformation. So, let us first give the complex Hartley transform.
Let’s define the complex Hartley transform H : D ⊂ R→ C. We can define the complex Hartley transformation of V (t) satisfying the condition
|H1(w1)| <∞, where w1 is a complex frequency as

H1(w1) =

∫∞
−∞

cas2πw1tV (t)dt.

The transform H1(w1) is holomorphic in the region

Ω1 = w1 ∈ C : −∞ < Re(w1) <∞.

Similarly, the complex Hartley transform of V (t) associated with the other complex frequency w2 is as follows:

H2(w2) =

∫∞
−∞

cas2πw2tV (t)dt.

The transform H2(w2) is holomorphic in the region

Ω2 = w2 ∈ C : −∞ < Re(w2) <∞.

The complex functions H1(w1) and H2(w2) are written with the help of idempotent bases e1 and e2 as follows:

H1(w1)e1 +H2(w2)e2 =

∫∞
−∞

cas2πw1tV (t)dte1 +

∫∞
−∞

cas2πw2tV (t)dte2

=

∫∞
−∞

(cos2πw1t+ sin2πw1t)V (t)e1 +

∫∞
−∞

(cos2πw2t+ sin2πw2t)V (t)e2

=

∫∞
−∞

cas2πwtV (t)dt = H(w).

Since H1(w1) and H2(w2) are complex holomorphic functions in the regions Ω1 and Ω2, respectively, the H(w) bicomplex function is
holomorphic in the region

Ω = w ∈ BC : w = w1e1 + w2e2, w1 ∈ Ω1 and w2 ∈ Ω2. (16)

The complex valuedH1(w1) andH2(w2) holomorphic functions are convergent in the regions Ω1 and Ω2, respectively. Then, the convergence
region of H(w) is region Ω.
Let w1 = x1 + ix2, w2 = y1 + iy2, x1, x2, y1, y2 ∈ R be with w1, w2 ∈ C.

Where,−∞ < x1, y1 <∞ for w1 ∈ Ω1 and w2 ∈ Ω2. Using the e1 = 1+ij
2 and e2 = 1−ij

2 equations, w is transformed into a 4-component
form.

w =
x1 + y1

2
+ i

x2 + y2
2

+ j
y2 − x2

2
+ ij

x1 − y1
2

= a0 + ia1 + ja2 + ija3.

Where, a0, a1, a2, a3 ∈ R. There are three possible cases:

1. If x1 = y1, then
a3 = 0.

2. If x1 > y1, then
x1 − y1

2
> 0.

That is, a3 > 0.
3. If x1 < y1,then

x1 − y1
2

< 0.

That is, a3 < 0.
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Thus, from these three cases we get the following inequalities:

−∞ < a0 <∞, −∞ < a3 <∞. (17)

So, the region of convergence of H(w) is as follows:

Ω = {w ∈ BC : −∞ < a0 <∞,−∞ < a3 <∞}. (18)

Let V (t) be a real valued continuous function in the (−∞,∞). The Hartley transformation of V (t) is as follows:

H(w) =

∫∞
−∞

cas2πwtV (t)dt, w ∈ BC. (19)

The Hartley transform H(w) exists and holomorphic for all w ∈ Ω, where Ω is the convergence region of H(w). We give the following
theorems without proof.

Theorem 5. If the function V (t) is a continuous and real-valued function for −∞ < t <∞, Then the Hartley transform H(w) exists in the
region (18).

Theorem 6. Let Hartley transformations of V1(t) and V2(t) functions be H1(w) and H2(w), respectively. If H1(w) = H2(w), then V1(t) =
V2(t).

4 Conclusion

In future studies, different properties of these special integral transforms, which we have defined and examined here, can be examined.
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