Advances in the Theory of Nonlinear Analysis and its Applications 5 (2021) No. 1, 1–6. https://doi.org/10.31197/atnaa.817804 Available online at www.atnaa.org Research Article

Geometric interpretations and reversed versions of Young's integral inequality

Feng Qi^{a,b,c}, Aying Wan^d

^a College of Mathematics and Physics, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China ^bSchool of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China

^cInstitute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, Henan, China

^dCollege of Mathematics and Statistics, Hulunbuir University, Hailaer 021008, Inner Mongolia, China

Abstract

The authors retrospect Young's integral inequality and its geometric interpretation, recall a reversed version of Young's integral inequality, present a geometric interpretation of the reversed version of Young's integral inequality, and conclude a new reversed version of Young's integral inequality.

Keywords: Young's integral inequality; geometric proof; geometric interpretation; generalization; refinement; reversed version. 2010 MSC: 26D15, 26D99.

1. Young's integral inequality

In this section, we retrospect Young's integral inequality and its geometric interpretation.

1.1. Young's integral inequality

Let h(x) be a real-valued, continuous, and strictly increasing function on [0, c] with c > 0. If h(0) = 0, $a \in [0, c]$, and $b \in [0, h(c)]$, then

$$\int_{0}^{a} h(x) \,\mathrm{d}\, x + \int_{0}^{b} h^{-1}(x) \,\mathrm{d}\, x \ge ab, \tag{1.1}$$

Received October 27, 2020; Accepted: December 25, 2020; Online: December 27, 2020

Email addresses: qifeng6180gmail.com, qifeng6180hotmail.com, qifeng6180qq.com (Feng Qi), wanaying10aliyun.com (Aying Wan)

where h^{-1} denotes the inverse function of h. The equality in (1.1) is valid if and only if b = h(a).

In the literature, the inequality (1.1) was first stated and proved in [27], so we call it Young's integral inequality. For more information since [27], please refer to [13, Section 2.7], [14, Chapter XIV], the papers [1, 2, 3, 4, 5, 6, 7, 9, 12, 15, 16, 17, 18, 19, 20, 22, 23, 26, 28], and closely related references therein.

1.2. Geometric interpretation

The geometric interpretation of Young's integral inequality (1.1) can be demonstrated by Figures 1 and 2. In Figure 1, we have

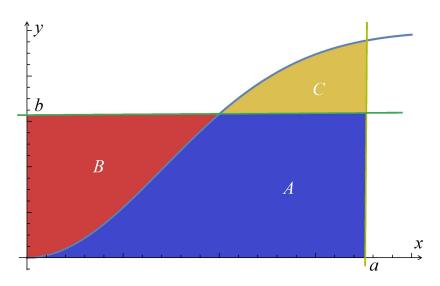


Figure 1: Geometric interpretation of the inequality (1.1)

$$A + C = \int_0^a h(x) \, \mathrm{d}\, x, \quad A + B = ab, \quad B = \int_0^b h^{-1}(x) \, \mathrm{d}\, x,$$
$$A + B + C = \int_0^a h(x) \, \mathrm{d}\, x + \int_0^b h^{-1}(x) \, \mathrm{d}\, x \ge ab = A + B.$$

In Figure 2, we have

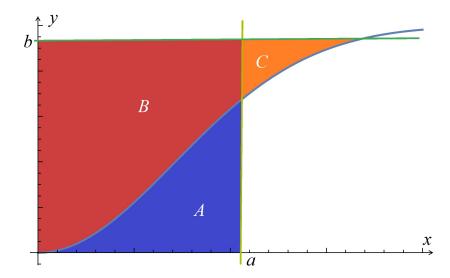


Figure 2: Geometric interpretation of the inequality (1.1)

$$A = \int_0^a h(x) \, \mathrm{d} \, x, \quad A + B = ab, \quad B + C = \int_0^b h^{-1}(x) \, \mathrm{d} \, x,$$
$$A + B + C = \int_0^a h(x) \, \mathrm{d} \, x + \int_0^b h^{-1}(x) \, \mathrm{d} \, x \ge ab = A + B.$$

Therefore, the inequality (1.1) means that the area $C \ge 0$.

In the papers [8, 10, 11, 21, 24], Young's integral inequality (1.1) was refined by estimating the area C and bounding $\int_0^a h(x) dx + \int_0^b h^{-1}(x) dx$ with lower and upper bounds in terms of derivatives of h(x).

2. Reversed version of Young's integral inequality

In this section, we recall a reversed version of Young's integral inequality, which was analytically established in [25], and supply a geometric interpretation, or say, a geometric proof, for it.

2.1. Reversed version of Young's integral inequality

Under the same conditions as required by Young's integral inequality (1.1), the inequality

$$\min\left\{1, \frac{b}{h(a)}\right\} \int_0^a h(x) \,\mathrm{d}\, x + \min\left\{1, \frac{a}{h^{-1}(b)}\right\} \int_0^b h^{-1}(x) \,\mathrm{d}\, x \le ab, \tag{2.1}$$

where the equality in (2.1) is valid if and only if b = h(a), was established in [25, Theorem 3].

2.2. Geometric interpretation

We now discuss the geometric interpretation of the inequality 2.1. In other words, we now provide a geometric proof of the inequality 2.1.

When $a > h^{-1}(b)$, or say, h(a) > b, as showed in Figure 1, the inequality (2.1) becomes

$$\frac{b}{h(a)} \int_0^a h(x) \,\mathrm{d}\, x + \int_0^b h^{-1}(x) \,\mathrm{d}\, x \le ab.$$
(2.2)

When $a < h^{-1}(b)$, or say, h(a) < b, as showed in Figure 2, the inequality (2.1) becomes

$$\int_0^a h(x) \,\mathrm{d}\, x + \frac{a}{h^{-1}(b)} \int_0^b h^{-1}(x) \,\mathrm{d}\, x \le ab.$$
(2.3)

The inequalities (2.2) and (2.3) can be rewritten as

$$\int_{0}^{a} \frac{bh(x)}{h(a)} \,\mathrm{d}\,x + \int_{0}^{b} h^{-1}(x) \,\mathrm{d}\,x \le ab$$
(2.4)

and

$$\int_{0}^{a} h(x) \,\mathrm{d}\, x + \int_{0}^{b} \frac{ah^{-1}(x)}{h^{-1}(b)} \,\mathrm{d}\, x \le ab$$
(2.5)

respectively. These two inequalities (2.4) and (2.5) can be geometrically demonstrated by Figures 3 and 4 respectively.

In Figure 3, by the transform

$$h(x) \rightarrow H(x) = \frac{bh(x)}{h(a)}, \quad x \in [0, a],$$

the area

$$C + A'' + A' = \int_0^a h(x) \, \mathrm{d} \, x$$

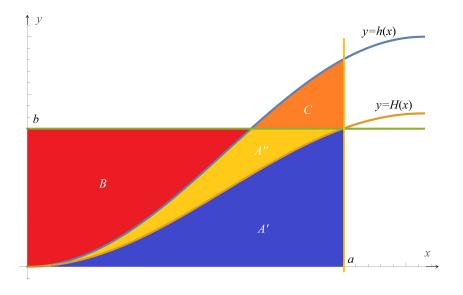


Figure 3: Geometric interpretation of the inequality (2.4)

contracts to

$$A' = \int_0^a H(x) \,\mathrm{d}\, x = \int_0^a \frac{bh(x)}{h(a)} \,\mathrm{d}\, x.$$

Then it is clear that

$$A' + A'' + B = \int_0^a \frac{bh(x)}{h(a)} \,\mathrm{d}\, x + A'' + \int_0^b h^{-1}(x) \,\mathrm{d}\, x = ab,$$

where

$$A'' = \int_0^b \left[H^{-1}(x) - h^{-1}(x) \right] \mathrm{d}x = \int_0^b \left[\frac{h(a)}{b} - 1 \right] h^{-1}(x) \,\mathrm{d}x = \left[\frac{h(a)}{b} - 1 \right] \int_0^b h^{-1}(x) \,\mathrm{d}x \ge 0.$$

Consequently, the inequality (2.4) is valid.

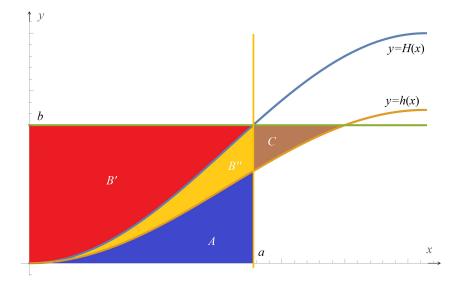


Figure 4: Geometric interpretation of the inequality (2.5)

In Figure 4, by the transform

$$h^{-1}(y) \to H^{-1}(y) = \frac{ah^{-1}(y)}{h^{-1}(b)}, \quad y \in [0, b],$$

the area

$$B' + B'' + C = \int_0^b h^{-1}(y) \,\mathrm{d}\, y$$

contracts to

$$B' = \int_0^b \frac{ah^{-1}(y)}{h^{-1}(b)} \,\mathrm{d}\, y.$$

Then it is obvious that

$$A + B' + B'' = \int_0^a h(x) \,\mathrm{d}\, x + \int_0^b \frac{ah^{-1}(y)}{h^{-1}(b)} \,\mathrm{d}\, y + B'' = ab,$$

where

$$B'' = \int_0^a [H(x) - h(x)] \, \mathrm{d}\, x = \int_0^a \left[\frac{h^{-1}(b)}{a} - 1\right] h(x) \, \mathrm{d}\, x = \left[\frac{h^{-1}(b)}{a} - 1\right] \int_0^a h(x) \, \mathrm{d}\, x \ge 0.$$

Consequently, the inequality (2.5) is valid.

3. A new reversed version of Young's integral inequality

Observing the geometric interpretation in Section 2.2 of the inequality (2.1), we conclude a new reversed version of Young's integral inequality.

Theorem 3.1. Let h(x) be a continuous and strictly increasing function on [0, c] with c > 0, let h(0) = 0, $a \in [0, c]$, and $b \in [0, h(c)]$, let h^{-1} denote the inverse function of h, and let

$$0 \le p(x) \begin{cases} \le \frac{b}{h(a)}, & h(a) > b \\ = 1, & h(a) \le b \end{cases}$$

and

$$0 \le p(x) \begin{cases} \le \frac{a}{h^{-1}(b)}, & h(a) < b \\ = 1, & h(a) \ge b \end{cases}$$

are continuous functions on [0, c]. Then

$$\int_{0}^{a} p(x)h(x) \,\mathrm{d}\,x + \int_{0}^{b} q(x)h^{-1}(x) \,\mathrm{d}\,x \le ab$$
(3.1)

and the equality in (3.1) is valid if and only if b = h(a) and p(x) = q(x) = 1.

Funding

The second author was partially supported by the Natural Science Foundation of Inner Mongolia under Grant No. 2018MS01023, China.

Conflict of interest

The authors declare that they have no conflict of interest.

References

- D. R. Anderson, Young's integral inequality on time scales revisited, J. Inequal. Pure Appl. Math. 8 (2007), no. 3, Art. 64; available online at http://www.emis.de/journals/JIPAM/article876.html.
- [2] R. P. Boas Jr. and M. B. Marcus, Generalizations of Young's inequality, J. Math. Anal. Appl. 46 (1974), no. 1, 36-40; available online at https://doi.org/10.1016/0022-247X(74)90279-0.
- R. P. Boas Jr. and M. B. Marcus, Inequalities involving a function and its inverse, SIAM J. Math. Anal. 4 (1973), 585-591; available online at https://doi.org/10.1137/0504051.
- [4] R. Cooper, Notes on certain inequalities: (1); Generalization of an inequality of W. H. Young, J. London Math. Soc. 2 (1927), no. 1, 17-21; available online at https://doi.org/10.1112/jlms/s1-2.1.17.
- [5] R. Cooper, Notes on certain inequalities: II, J. London Math. Soc. 2 (1927), no. 3, 159-163; available online at https: //doi.org/10.1112/jlms/s1-2.3.159.
- [6] F. Cunningham, Jr. and N. Grossman, On Young's inequality, Amer. Math. Monthly 78 (1971), no. 7, 781-783; available online at https://doi.org/10.2307/2318018.
- J. B. Diaz and F. T. Metcalf, An analytic proof of Young's inequality, Amer. Math. Monthly 77 (1970), no. 6, 603-609; available online at https://doi.org/10.2307/2316736.
- [8] A. Hoorfar and F. Qi, A new refinement of Young's inequality, Math. Inequal. Appl. 11 (2008), no. 4, 689-692; available online at https://doi.org/10.7153/mia-11-58.
- [9] I. C. Hsu, On a converse of Young's inequality, Proc. Amer. Math. Soc. 33 (1972), 107-108; available online at https: //doi.org/10.2307/2038179.
- [10] J. Jakšetić and J. Pečarić, An estimation of Young inequality, Asian-Eur. J. Math. 2 (2009), no. 4, 593-604; available online at https://doi.org/10.1142/S1793557109000509.
- [11] J. Jakšetić and J. Pečarić, A note on Young inequality, Math. Inequal. Appl. 13 (2010), no. 1, 43-48; available online at https://doi.org/10.7153/mia-13-03.
- [12] I. A. Lacković, A note on a converse of Young's inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 461àÅŞ497 (1974), 73-76.
- [13] D. S. Mitrinović, Analytic Inequalities, In cooperation with P. M. Vasić, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970.
- [14] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993; available online at http://dx.doi.org/10.1007/978-94-017-1043-5.
- [15] F.-C. Mitroi and C. P. Niculescu, An extension of Young's inequality, Abstr. Appl. Anal. 2011, Art. ID 162049, 18 pages; available online at https://doi.org/10.1155/2011/162049.
- [16] A. Oppenheim, Note on Mr. Cooper's generalization of Young's inequality, J. London Math. Soc. 2 (1927), no. 1, 21-23; available online at https://doi.org/10.1112/jlms/s1-2.1.21.
- [17] Z. Páles, A general version of Young's inequality, Arch. Math. (Basel) 58 (1992), no. 4, 360-365; available online at https://doi.org/10.1007/BF01189925.
- [18] Z. Páles, A generalization of Young's inequality, in General Inequalities, 5 (Oberwolfach, 1986), 471–472, Internat. Schriftenreihe Numer. Math., 80, Birkhäuser, Basel, 1987.
- [19] Z. Páles, On Young-type inequalities, Acta Sci. Math. (Szeged) 54 (1990), no. 3-4, 327-338.
- [20] F. D. Parker, Integrals of inverse functions, Amer. Math. Monthly 62 (1955), no. 6, 439-440; available online at https: //doi.org/10.2307/2307006.
- [21] F. Qi, W.-H. Li, G.-S. Wu, and B.-N. Guo, Refinements of Young's integral inequality via fundamental inequalities and mean value theorems for derivatives, Chapter 8 in: Hemen Dutta (ed.), Topics in Contemporary Mathematical Analysis and Applications, pp. 193-227, CRC Press, 2021; available online at https://doi.org/10.1201/9781003081197-8.
- [22] D. Ruthing, On Young's inequality, Internat. J. Math. Ed. Sci. Techn. 25 (1994), no. 2, 161-164; available online at https://doi.org/10.1080/0020739940250201.
- [23] T. Takahashi, Remarks on some inequalities, Tôhoku Math. J. 36 (1932), 99-106.
- [24] J.-Q. Wang, B.-N. Guo, and F. Qi, Generalizations and applications of Young's integral inequality by higher order derivatives, J. Inequal. Appl. 2019, Paper No. 243, 18 pages; available online at https://doi.org/10.1186/s13660-019-2196-2.
- [25] A. Witkowski, On Young inequality, J. Inequal. Pure Appl. Math. 7 (2006), no. 5, Art. 164; available online at http: //www.emis.de/journals/JIPAM/article782.html.
- [26] F.-H. Wong, C.-C. Yeh, S.-L. Yu, and C.-H. Hong, Young's inequality and related results on time scales, Appl. Math. Lett. 18 (2005), no. 9, 983-988; available online at https://doi.org/10.1016/j.aml.2004.06.028.
- [27] W. H. Young, On classes of summable functions and their Fourier series, Proc. Roy. Soc. London Ser. A 87 (1912), 225-229; available online at https://doi.org/10.1098/rspa.1912.0076.
- [28] L. Zhu, On Young's inequality, Internat. J. Math. Ed. Sci. Tech. 35 (2004), no. 4, 601-603; available online at https: //doi.org/10.1080/00207390410001686698.