N —"

L o R ———

)
‘@ ® ——
1<JI
International Journal of Informatics
and Applied Mathematics

International Journal of Informatics and Applied Mathematics
e-ISSN:2667-6990 Vol. 4, No. 1, 1-14

A Deep Neural Network Model for Android
Malware Detection

Fatima Bourebaa! and Mohamed Benmohamed?

L Abd El Hamid Mehri University, constantine, Algeria
fatima.bourebaa@univ-constantine2.dz
2 Abd El Hamid Mehri University, constantine, Algeria
mohamed . benmohammedQuniv-constantine2.dz

Abstract. Parallel to the adoption of mobile technology in our daily
lives, there is a growing and increasing proliferation of cyber frauds and
malicious content. Mobile malware can exploit the vulnerabilities of the
device, modify, disclose or erase confidential data, such as credit card
numbers, passwords, medical data, contacts, or even block the device
asking for a ransom. In this paper, we leverage the possibilities of deep
fully-connected neural networks, using permissions and Application Pro-
gramming Interfaces APIs as features, to automatically and efficiently
detect Android malware. We achieved a score of 88.9% using a feed-
forward of 128x128x1, 2-hidden layers configuration.

Keywords: Neural Networks - Android Malware Detection - Smart-
phone Security.

2 F. Bourebaa, M. Benmohamed

1 Introduction

The market of smartphones, tablets, personal digital assistants, and similar
handheld devices is prospering since the turn of the century. One main rea-
son behind this success is the ability to download and execute rich functionality
applications from app stores, such as access to medical information, weather
forecasts, bus schedules, and bank accounts. Indeed, the insertion of these de-
vices into our daily lives is increasing, but unfortunately, the number of frauds
and mobile malware is also steadily increasing at boring speeds. In 2019, security
experts counted more than 4.18 million malicious applications, with an average
of 11,500 new malicious android applications [1].

By definition, mobile malware is a program inserted into a mobile device with
the intent of compromising the confidentiality, integrity, or availability of the
user’s data, applications, operating system, or annoying or disrupting the user.
Recent malware, distributed via fraudulent advertising, request ad traffic from
their C&C servers and then simulate clicks to generate ad revenue fraudulently.
No icon or shortcut is displayed, which makes it difficult to find and remove
them. They use fake warnings to get the user to activate the accessibility ser-
vices and then abuse of this activation to automate graphical interface actions
in the background. Besides, the malware operator can instruct it to download
additional malicious programs as well as to open the phone up to the remote
control to allow for more attacks.

In the early stage of the mobile malware life since its first appearance in
2004, the number of malware threats was relatively small, and handcrafted rules
were often enough to detect most of them. But recently, the phenomenal growth
of malware makes it impractical for the anti-malware industry to rely on the
manual specification of detection rules. To address this problem, results from
machine learning based-approaches, such as Support Vector Machine [4], [11]
Random Forest [7], K-Nearest Neighbors [10]), show that they are robust and
scalable malware detection systems. Additionally, Recent published works reveal
that deep learning approaches outperform conventional machine learning models
and work much better [16], [12].

In this paper, the primary question we are trying to answer is what topol-
ogy of fully connected neural networks is well suited to address the problem of
android malware detection and produce the best score. More precisely, we make
the following contributions:

e Apply Natural language processing techniques to extract and vectorize per-
missions and call to APIs as features.

e Implement and evaluate different deep fully connected neural networks to
efficiently detect android malware.

The paper begins by examining the related works in Section 2. A review of
the required background is presented in Section 3 including Android Security
Model (Section 3.1), Multilayer Neural Network (Section 3.2). Next, we detail
the workflow of our approach, in section 4. Quantitative results of all our model’s
topologies are provided in Section 5 and the paper is concluded in Section 6.

A Deep Neural Network Model for Android Malware Detection 3

2 Related Work

Machine learning and deep learning based approaches to malware detection may
be characterized according to two discriminative attributes: i) the types of fea-
tures extracted or learned from an Android Package (APK), which is the file
format used by the Android system to distribute and install apps. These fea-
tures include: APIs/System calls, application components and Intent, opcodes,
logs, APK resource file and strings, (ii) the machine learning algorithms they
use. Droid APIMiner [15] relies on the semantic information within the bytecode
of the applications ranging from critical API calls to package level information.
DroidAPIMiner may be considered as a a state-of-the-art system and a reference
in term of performance (99% Accuracy), but this result is obtained by training
a kNN algorithm on a small dataset (3987 malware). MAMADroid [9] builds
a behavioral model, in the form of a Markov chain, from the sequence of ab-
stracted API calls performed by an application, then uses it to extract features
and perform classification. MAMADroid achieves a Fl-score of 73%-99% on a
set of 8.5K of malicious applications and 35.5K of benign applications. This
show that there is no guarantee that classification models built on the basis of
machine learning will give the same results under different parameters or with
different datasets.

DroidMat[13] extracts the requested permissions and Intent messages passing
from the manifest file, and regards android components (Activity, Service, Re-
ceiver) as entry points drilling down for tracing API Calls related to permissions.
Next, it applies K-means algorithm to enhance the malware modeling capability.
StormDroid[5] demonstrated its accuracy and efficiency in classifying malicious
applications on a set of 7,970 Android app samples, including 3,620 malicious
samples. Evaluation of the results showed that StormDroid is able to achieve 94%
accuracy. Martinelli [6] tests CNN on 7100 real-world mobile applications, and
obtains an accuracy ranging between 0.85 and 0.95. Yakura et al. [14] proposed
a method to reduce the overhead in the investigation of samples by extracting
the essential byte sequences in malware samples. Along with CNN, they have ap-
plied an attention mechanism to an image. Attention mechanism is a technique
to dynamically select important features which improves the performance. The
approach is based on region distinction which extracts the characteristic byte
sequences mainly related to a malware family. The treated information proves
to be very useful in case the malware samples were packed. The authors have
used 147803 samples belonging to 542 families from VX Heaven as the dataset.
The 2D- CNN achieves an accuracy of 50.97%.

3 Background

3.1 Android Security Model

Before we elaborate on our approach, we briefly describe the architecture of
Android applications and its security mechanisms. Android applications, mostly
written in the Java programming language, are composed of code, resources and

4 F. Bourebaa, M. Benmohamed

data. The Android system compiles the code with any data and resource files,
then puts the results into an archive file with an .apk suffix. By default, the
system assigns each application a unique user identifier or ID. This identity re-
mains constant for the duration of the APK’s life on that device. The system sets
permissions for all the files in an application so that only the user ID assigned
to that application can access them. The notion of an application component
is central in the android programming paradigm, it corresponds to a building
block of an Android application. The communication scheme is by message pass-
ing. There are four different types of application components: activities, services,
broadcast receivers and content provides. Each component exists as its own en-
tity and plays a specific role. Activities are single screens for user interaction.
Services are a components running in the background to process long-time op-
erations. Broadcast receivers deliver events to the application outside. Lastly,
content providers are some kinds of lightweight databases that can be stored on
local files. There is no one single entry point, each component may be a different
point through which the system can enter the application.

l. Allow Allg Chorta to
make and manage
phone calls?

DENY ALLOW

Fig. 1: Example of a dangerous permission (phone calls).

Android is built on a variant of Linux system, and thus inherits its privilege
separation security mechanisms. The idea is to ensure that no application can
read or write code or data of other applications, the device user, or the operating
system itself. Additionally, Android requires that all applications be digitally
signed with a certificate before they can be installed. The certificate is used to
identify the author of an application, and thus to establish the trust relationship
among developers and users. It is often self-signed and does not need to be issued

A Deep Neural Network Model for Android Malware Detection 5

by a certificate authority. If communicating to another application is dictated
by the application’s semantics, this later has to explicitly request permission
to do so. Android permission is a string expressing the authorization to access
sensitive user data such as contacts and SMS, or certain system features such
as camera and GPS. An application must declare the permissions it requires by
including < uses — permission > tags in the app manifest. For example, an app
that needs to send SMS messages would have the following line:

<uses-permission android:name="android.permission.SEND_SMS"/>

Before Android version 6 (Application Programming Interface API 23), i.e.
version 5.1.1 or lower, the user is asked to grant access to all required dan-
gerous permissions at install-time. Recent versions include a dynamic checking
mechanism where the user is prompted with a dialog each time any dangerous
access is required. Fig. 1 shows how the android system interrupts a legitimate
application to ask the user for approving a phone call permission.

Some weaknesses of the android security model are due to the market business
model which allows upload of third party apps with little check on their issuers,
or even from unknown non-market sources. Malware authors, therefore, often
repackage these legitimate applications, easily reverse-engineered compared to
native applications, with a malicious payload. Besides, the implementation of
the permission mechanism facilitates the delegation of dangerous permissions to
the calling process, which could result in privilege escalation.

3.2 Neural networks

We start our presentation of neural networks with the perceptron, which is the
basic model of neural network architectures. A perceptron is a mathematical
model mimicking a biological neuron, usually represented graphically by a circle
having multiple inputs and a single output. The mathematical function is de-
picted inside the circle. A biological neuron is an electrically excitable cell, which
consists of a body cell or a soma, dendrites, and an axon. The soma receives in-
formation as electrical and chemical signals through its dendrites, processes them
and then, retransmits them through its axon to other neurons. Electrical signals
are modulated in various amounts at special connection points, between axons
and dendrites, called synapses.

A neuron fires an output signal only when the total strength of the input
signals exceeds a certain threshold. This behavior is mimicked as follows: the
dendrites correspond to the inputs, the axon corresponds to the output, and
the soma to some mathematical function. Signal modulation is mimicked by
calculating the weighted sum of the inputs to denote the total strength of the
input signals. To determine the output, an activation function is applied to the
obtained sum. A Neural network consists of neurons or basic computing units,
organized in interconnected layers. The first layer receives the input and the last
one produces the desired result. The layers between the input and the output
layers are called hidden layers. Each connection holds a weight. Fig. 2 shows one

6 F. Bourebaa, M. Benmohamed

Hidden,

Inputs;
Fig.2: A Neural Network

hidden layer neural network, with 512 neurons in the input layer, 8 neurons in
the hidden layer, and 3 output nodes.

The output of neuron j at layer [is given by equation 1. For simplicity, biases
are not considered:

) (1)

k

where ¢ is an activation function, and wé & is the weight connecting neuron j from
layer [— 1 to neuron k from layer [. The aim of training the neural networks
is to calculate the weights that optimize a certain loss function C. This later
measures how the model’s output is good with respect to a given label. The loss
function that is commonly used is the mean squared error (MSE). Nevertheless,
the use of a binary cross entropy (BCE) is preferred within binary classifiers.
For N samples, the cost function is calculated using the formula of equation 2 :

N
1 . N
C=-% > (@ilogyi + (1 — i) log(1 — yi) (2)
=1

where g; is the binary class label for sample ¢, y; is the predicted output
and log is the log function. Approaches to machine learning focusing on learning
only one or two layers of the data representations are sometimes called shallow
learning. Those with more than two layered and hierarchical representations
learning are called deep learning, they often involves many hidden successive
layers of representations.

A Deep Neural Network Model for Android Malware Detection 7

4 Method

We conduct our experiences on a set of 10000 malware and 10000 benign ap-
plications taken from Koodous [2]. Koodous is an online collaborative platform
that provides analysis tools together with social interactions between researchers
on Malware Analysis. It provides a similar service to that of Total virus with
the difference of being totally dedicated to android malware. Koodous academic
dataset is about 0.5T 0 size, more recent than the DREBIN [4] one, and provides
more samples. The dataset is not specific to a class of malware but includes
different categories such as ransomware, trojans, adware, and spyware.

The different steps of our method are articulated in the rest of this section.
First, we extract the set of permissions and calls to APIs for each Android ap-
plication, which constitute our set of features. After that, we proceed to the
cleaning and padding of these features. As neural network classifiers accept ten-
sors as input, the padded words are vectorized before training the neural network
model. More details are presented bellow.

4.1 Features extraction and vectorization

To properly capture Android Application semantics, we consider, as previously
mentioned, both permissions and calls to API methods. As for the API calls, we
consider the Android API name from the hole API signature, which also includes
the class to which the API call belongs, the set of parameters types, and the
returned value type. For example, from the piece of bytecode listed below, we
only consider the name sendMultipart TextMessage of the API call.

invoke-virtual/range vO ... v5, Landroid/telephony/SmsManager;->
sendMultipartTextMessage(Ljava/lang/String;
Ljava/lang/String;

Ljava/util/Arraylist; Ljava/util/Arraylist;
Ljava/util/ArrayList;)V

In order to clean the corpus and eliminate the useless lexical units such
as points, dashes, and capital letters. First, we split the sequence of permissions
into tokens. Then, we remove the remaining tokens that are not alphabetic. After
that, we filter out stop words in the set stop_words =set (7,”,”[7,”]”,” <”7,” >").
Finally, we filter out short tokens. We do the same cleaning to the set of APIs.
For each sample, we extract the list of concatenated APIs and Permissions and
calculate its length. When looping over all samples, we update the max length
and set it to the maximum one encountered. Sequences that are shorter than
max length are padded with value 0 until they are max length long.

The result of this padding stage is mapped to a vector space. We repre-
sent each Permission or API call using a small and dense vector of 100 di-
mensions. This choice reduces the vector dimension and highlights the similar-
ities between API calls having close semantics. Let’s consider an example of
an application that uses three permissions: android.permission. CAMERA, an-
droid.permission.READ_SMS, and android.permission. CALL_PHONE, and an

8 F. Bourebaa, M. Benmohamed

API call getapplicationinfo. These permissions and APIs will be mapped as il-
lustrated in equation 3.

CAMERA —0.00658598.. —0.0273192
READ_SMS 0.02044574 —0.0433061
CALL_PHONE | — 0.00844907...... 0.04540039 (3)
getapplicationin fo 0.00933907...... 0.01240039

4.2 Building initial models

We choose densely connected layers as a predictive model. This type of neural
networks are stacks of dense layers, where the neurons of each layer are connected
to every other neuron in the next layer. Training a densely connected network is
a highly iterative process. This includes decisions about the number and size of
layers, the choice of activation function within layers, the loss function, and the
number of epochs. The aim is to find these parameters and hyper parameters
that optimize the loss function on both the training and test samples. To achieve
this goal, we design a first multilayer network and then empirically evaluate its
performance using the set of (10000 Malware, 10000 Goodware) .

We start our experiments by the architecture : (164,)x(12, Relu)x(8, Relu)x
(1, sigmoid). The first hidden layer is composed of 12 neurons with the Relu
function as activation function, the second layer has 256 neurons and uses the
same activation function. The last layer is the output layer and uses the sigmoid
function as activation function. The algorithm chosen for optimization is Adam,
the reasons behind this choice are its simplicity and efficiency in terms of cal-
culations. The weights are initialized to numbers generated randomly between 0
and 0.05.

4.3 Implementation, Metrics & Tests

In this section, we present the implementation and the evaluation metrics used
to mesure the performances of the proposed architectures. We also present the
testing method.

Implementation. We implement the extraction of features, the vectorization, and
the deep models using Python language. We map each application (malware or
goodware) to a list of permissions and APIs that we clean, pad and vectorized as
described in section 4.1 and 4.2. Strings and Regular expressions are employed

A Deep Neural Network Model for Android Malware Detection 9

to extract API calls. Code in listing 1.1 corresponds to the function clean_corpus
and shows how the extracted features are cleaned.

We list bellow The Python’s packages used in the implementation, so that
readers can easily reproduce our results.
Numpy and Pandas. Numpy provides a support for large, multi-dimensional
arrays and matrices, along with a large library of high-level mathematical func-
tions to operate on these arrays. Pandas is built on top of numpy and offers data
structures and operations for manipulating numerical tables and time series.
Matplotlib is the python package used for visualizing the results. Keras is the
python API for building neural networks. Although other packages may be used,
such as tensorflow, theano or torch, we have chosen keras for its user-friendliness,
modularity, and easy extensibility.

Metrics . We evaluate our model using the following performance metrics:

e Confusion Matrix: For a binary classification problem, it’s a 2X?2 matrix
containing the following values: TP, TN, FP, FN. TP represents the number
of malwares correctly detected. TN are properly classified benign application.
FN: number of malware not detected, considered as benign applications. FP:
number of benign application predicted as malware.

e Precision (or exactness): also called the Positive Predictive Value (PPV),
it is the number of True Positives divided by the number of True Positives
and False Positives.

e Recall: also called sensitivity, it is the number of True Positives divided by
the number of True Positives and the number of False Negatives.

e Accuracy: given by the following formula:

Acc=(TP+TN)/(TP+TN + FP+ FN).
e Fl-score : this score is given by the formula:

F1 — score = 2 x ((precision * recall) / (precision + recall))

Testing . Testing is the validation method of machine learning and deep models.
In fact, the main challenge for the trained model is to perform well on new,
previously unseen data, and not just applications on which it was trained. This
ability to perform well on previously unseen samples is called generalization.
To test the fully connected architectures regarding generalization, we split the
dataset into 80% for training and use 20% for testing. The obtained results are
presented in the next section.

from pickle import dump

from string import punctuation
- to clean the dataset -#
def clean_corpus (corpus):

split into tokens

tokens = corpus.split ()

remove punctuation

10 F. Bourebaa, M. Benmohamed

table = str.maketrans(’’, ’’, punctuation)

tokens = [w.translate(table) for w in tokens]

remove non alphabetic tokens

tokens = [w for w in tokens if w.isalpha()]

filter stop words

stop_words = set({",", "[", "I", ’<’ ’>’})

tokens = [w for w in tokens if not w in stop_words]
filter short tokens

tokens = [w for w in tokens if len(w) > 1]

tokens = ’ ’.join(tokens)

return tokens

Listing 1.1: Python code of the cleaning function

5 Results

The output of a model for a given input is an approximation or a probability that
this input is a malware. The evaluation of the (164,)X(12, Relu)X(8, Relu)X(1,
sigmoid) architecture according to the generated confusion matrix is 0.92% for
the training data and 83% for the test data.

After evaluating this initial architecture, we turn to the hyperparameters
tuning. Hyperparameters are those parameters that are arbitrarily set by the user
before the training phase. We may tune hyperparameters in different manners.
First, we choose, empirically, some model hyperparameters based on our previous
experience. Then, train the model, evaluate its accuracy, and restart the process
again. We repeat this process until reaching a satisfactory accuracy.

We choose to adjust three hyperparameters: the number of layers and the
nodes within each layer, the activation function, and the number of epochs.
Further information on these parameters with their corresponding possible values
are summarized in table 1.

Table 1: Hyperparameters and their corresponding values .
Abreviations|Definition Possible values
#Layers |Number of layers |2, 3, 4
A Activation Function|Relu, Segmoid, Softmax
#EPOCH S|Number of Epochs |Min: 30, Max : 120, step : 20

The result of training several topologies using manual tuning is recapitulated
in table 2. The topology that outputs the best score is 164x128x128x1. Fig. 3
represents the associated normalized confusion matrix. Results of architecture
NN_8 show that the use of Softmax as the activation function in hidden lay-
ers decreases the performance significantly. To compare scores, we plotted Roc
curves for architectures NN_1 and NN_3 (see Fig. 4). ROC curve is a perfor-
mance measurement for classification problems at various thresholds settings.

A Deep Neural Network Model for Android Malware Detection 11

Normalized confusion matrix

Mormal

True label

Malware

_

wad ;.’b&
o

QP&\ &7

Predicted lahel

Fig. 3: Confusion matrix for neural network model

it represents the degree or measure of separability, i.e., it shows how much the
model is capable of distinguishing between malware and goodware.

Recelver Operating Characteristic (ROC) Curve

10 A

0.8 A

0.6

0.4 4

True Positive Rate

0.2 A

7 MN_1:0.925 ROC
00 4 - —— NN_3-10.88 ROC

00 02 D4 06 08 10
False Positive Rate

Fig.4: Roc Curve for Models NN_1 et NN_3

5.1 Comparison with similar work

In this section, we compare our work with recently published papers on android
malware detection using koodous as their or part of their dataset. We note that

12 F. Bourebaa, M. Benmohamed

Table 2: Evaluation metrics for fully connected neural networks architecures

Model Evaluation Metrics

topologies Acc[Prec[Rec[F1-sc

NN_1: (,164)x(128,Relu)x(128,Relu)x(1,Sigmoid) 0.86| 0.88 |0.83| 0.85
NN_2(,164)x(12, Relu)x(8,Relu)x(1, Sigmoid) 0.83]0.90 |0.74| 0.81
NN_3: (,164)x(128,Relu)x(128,Relu)x(1,Sigmoid) 0.88]0.90 |0.85| 0.87
NN_4: (,164)x(128,Relu)x(64,Relu)x(64,Relu)x(1,Sigmoid)|0.86| 0.88 |0.84| 0.86
NN_5: (,164)x(128,Relu)x(1, Sigmoid) 0.86| 0.87(0.83] 0.85

NN_6: (,164)x(1024, Relu)x(1, Sigmoid) 0.86| 0.87(0.84| 0.86

NN_7: (,164)x(128,Sigmoid)x(128,Sigmoid)(1, Sigmoid) |0.85|0.87 |0.82| 0.85
NN_8: (,164)x(128,Softmax)x(128,Softmax)(1, Sigmoid) |0.81|0.93 |0.67| 0.78

most researchers focused on MalGenome, or Drebin, collected between 2010-
2012, as a reference source of data, and unfortunately, a very small number of
them are leveraging recent samples from the Koodous dataset.

In this context, the most similar work to ours is [3], where the authors con-
struct and compare the graphs for malware and normal samples by extracting the
permission pairs from the manifest files. It is worth mentioning that they study
their method on a set of 7533 malware applications, taken from three different
sources (Genome, Drebin, Koudous) with 2944 samples for training, and 3264
samples for testing the accuracy. The authors reported an overall score of 89.28%
on Koodous samples. To our knowledge, IPDroid [8] is also based on Koodous, it
calculates a set of 20 intents and 17 permissions as features, and applies different
machine learning models (SVM, Random Forest & Naive Bayes) on this 37 fea-
tures. The Random Forest classifier gives the best accuracy of 94.73%. However
the authors achieves this score using only 1714 malware apps and 1414 benign
apps. We achieved a score of 88% but on more big dataset of 10000 Malware and
10000 goodware. We believe that when the dataset is bigger enough, it would be
more representative and consequently the resulting automatic classifier is more
effective in detecting malicious content.

6 Conclusion and Future Work

In this paper, we presented a detailed application of feed-forward fully connected
deep neural networks to provide automatic Android malware detection. The
empirical results show that we can enhance the score by 5% by just dropping
or adding one layer. We achieved an accuracy of 88.9% using the configuration
(,164)x(128,Relu)x(128,Relu)x(1,Sigmoid) and the Relu function as activation
function in hidden layers.

As future work, we plan to investigate the possibilities of genetic algorithm
to find optimized values for hyperparameters and extensively evaluate fine-tuned
obtained models on different datasets. It would also be interesting to design the

A Deep Neural Network Model for Android Malware Detection 13

whole system using the multi-agent paradigm. Additionally, we would like to
investigate the model interpretability and explain why a given one is achieving
good results by looking at its internal layers.

Acknowledgment

The authors would like to thank the Koodous administrators for their effort in
collecting and sharing the academic malware dataset.

References

1.

10.

11.

12.

G data mobile malware report 2019: New high for malicious android
apps. https://www.gdatasoftware.com/news/2019/07/35228-mobile-malware—
report-no-let-up-with-android-malware. (last accessed August 2020).
Koodous dataset. Available at https://koodous.com (last accessed July 2020).
Arora, A., Peddoju, S.K., Conti, M.: Permpair: Android malware detection using
permission pairs. IEEE Transactions on Information Forensics and Security 15,
1968-1982 (2020)

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: Effec-
tive and explainable detection of android malware in your pocket. In: NDSS. The
Internet Society (2014)

Chen, S., Xue, M., Tang, Z., Xu, L., Zhu, H.: Stormdroid: A streaminglized machine
learning-based system for detecting android malware. In: Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security. pp. 377 —
388. ASIA CCS ’16, Association for Computing Machinery, New York, NY, USA
(2016), https://doi.org/10.1145/2897845.2897860

Fabio, M., Fiammetta, M., Francesco, M.: Evaluating convolutional neural network
for effective mobile malware detection. In: KES. vol. 112, pp. 2372 — 2381 (2017)
Joshi, S., Upadhyay, H., Lagos, L., Akkipeddi, N.S., Guerra, V.: Machine learn-
ing approach for malware detection using random forest classifier on process list
data structure. In: Proceedings of the 2nd International Conference on Informa-
tion System and Data Mining. pp. 98—102. ICISDM ’18, Association for Computing
Machinery, New York, NY, USA (2018)

Khariwal, K., Singh, J., Arora, A.: Ipdroid: Android malware detection using in-
tents and permissions. In: 2020 Fourth World Conference on Smart Trends in
Systems, Security and Sustainability (WorldS4). pp. 197-202 (2020)

Mariconti, E., Onwuzurike, L., Andriotis, P., Cristofaro, E.D., Ross, G., Stringhini,
G.: Mamadroid: Detecting android malware by building markov chains of behav-
ioral models (2017)

Papernot, N., McDaniel, P.D.: Deep k-nearest neighbors: Towards confident, in-
terpretable and robust deep learning. CoRR abs/1803.04765 (2018), http:
//arxiv.org/abs/1803.04765

Sun, J., Yan, K., Liu, X., Yang, C., Fu, Y.: Malware detection on android smart-
phones using keywords vector and svm. In: 2017 IEEE/ACIS 16th International
Conference on Computer and Information Science (ICIS). pp. 833-838 (2017)
Vasan, D., Alazab, M., Wassan, S., Nacem, H., Safaei, B., Zheng, Q.: Imcfn: Image-
based malware classification using fine-tuned convolutional neural network archi-
tecture. Comput. Netw. 171(C) (Apr 2020)

https://www.gdatasoftware.com/news/2019/07/35228-mobile-malware-report-no-let-up-with-android-malware.
https://www.gdatasoftware.com/news/2019/07/35228-mobile-malware-report-no-let-up-with-android-malware.
https://koodous.com
https://doi.org/10.1145/2897845.2897860
http://arxiv.org/abs/1803.04765
http://arxiv.org/abs/1803.04765

14

13.

14.

15.

16.

F. Bourebaa, M. Benmohamed

Wu, D.J., Mao, C.H., Wei, T.E., Lee, H.M., Wu, K.P.: Droidmat: Android mal-
ware detection through manifest and api calls tracing. In: Proceedings of the 2012
Seventh Asia Joint Conference on Information Security. pp. 62—-69. ASIAJCIS 12,
IEEE Computer Society, USA (2012)

Yakura, H., Shinozaki, S., Nishimura, R., Oyama, Y., Sakuma, J.: Malware analysis
of imaged binary samples by convolutional neural network with attention mech-
anism. In: Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy. pp. 127-134. CODASPY ’18, ACM, New York, NY, USA
(2018), https://doi.org/10.1145/3176258.3176335

Yousra, A., Wenliang, D., Yin, H.: Droidapiminer: Mining api-level features for
robust malware detection in android. In: SecureComm. vol. 127, pp. 86-103 (2013)
Yuan, Z., Lu, Y., Wang, Z., Xue, Y.: Droid-sec: Deep learning in android mal-
ware detection. In: Proceedings of the 2014 ACM Conference on SIGCOMM.
SIGCOMM 14, ACM, New York, NY, USA (2014), https://doi.org/10.1145/
2619239.2631434

https://doi.org/10.1145/3176258.3176335
https://doi.org/10.1145/2619239.2631434
https://doi.org/10.1145/2619239.2631434

	A Deep Neural Network Model for Android Malware Detection

