
DUJE (Dicle University Journal of Engineering) 12:3 (2021) Page 471-477

1

Hybrid Recommendation System Approach for appropriate developer selection in Bug

Repositories

Mohanad Al-imari 1,*, Sefer Kurnaz 2, Jalal S. H. Al-bayati
1 Altınbaş University, 0000-0001-6112-7206
2 Altınbaş University.
3 University of Baghdad. 0000-0001-7921-0489

Research Article

ARTICLE INFO

Article history:

Received 29 October 2020

Received in revised form 7 March 2021

Accepted 18 Mart 2021

Available online 22 June 2021

Keywords:

Open source Bug Repositories;

Hybrid machine learning approach;

decision trees; Naive Bayes;

Random Forest; Neural Networks;

feature selection

ABSTRACT

The essential destination of this research is to develop a hybrid recommendation system methodology to

enhance the overall performance accuracy of such existed systems, this recommendation approach
normally utilized to assign or propose a few counted numbers of programmers or developers that capable

of resolving system's bug reports generated automatically from an open source bug repository, meaning

the system decides which programmers or developers should be taken into account to be in charge of
finding a solution the bugs mentioned in the bug's report. The definition of the bug selection problems in

bug repositories are the activities that developers achieve within program maintenance to fix some specific

bugs. Because of lot of bugs are created daily, many developers required are quite large, therefore it is
difficult to specify the accurate programmers or developers to find a solution for the issues for specific

bug inside the code. The article also aims to improve the accuracy results obtained than existed traditional

approaches for this purpose. Besides, we have considered the case of prioritization of system developers,
the case can be utilized to find an appropriate grade of developers' achievements as prior knowledge to

assist the system in assigning of bug report issue. The results have found that the importance of developers

could support the bug triage worker more and help software tasks to solve the bugs fast and within required

time during development and support cycles of the software.

Doi: 10.24012/dumf.818164

* Corresponding author

Mohanad, Al-imari

 mohanad.alimari@ogr.altinbas.edu.tr

Please cite this article in press as M. Al-imari, S. Kurnaz, J. S. H. Al-bayati “Hybrid Recommendation System Approach for appropriate developer selection in Bug

Repositories”, DUJE, vol. 12, no. 3, pp. 471-477, June 2021.

of Debian is sending approximately more than

twenty reports were sent to bug system in the

release time. Also, project of Debian is

sending approximately 140 reports in a daily

manner [1]. These types of systems should

help developers to control and manage bug

reports and resolve them faster and easily. On

the other hand, the assignment of the best

programmer to a specific bug is still in the

focus of scholarly attention in software

development researches. Open source

software usually supports bug repository, this

bug box contains reports that automatically

sent to developers that should fix and solve

bugs.

Introduction

In development of any software project

including open source projects, there are

several cycles, one of these cycles is the

maintenance and support. With maintenance

cycles, various maintenance bug reports are

registered in the system which represents

more than 70% of overall bugs. Programmers

might loss more than half of their time for

recognizing and resolve bugs. In addition to

that, number of software bugs has become

extremely high. For Instance, in eclipse

project, more than twenty reports were sent to

bug system in the release time. Also, project

DUJE (Dicle University Journal of Engineering) 12:3 (2021) Page 471-477

472

The bug file has to send to the developer or
category of specific developers, and they will be
responsible for resolving and fixing the bug.
Using the recommendation system, whenever a
new bug appears in the system, the
recommendation system's engine (classifier)
indicates the category of convenient developers to
resolve the bug. As a result, this potential
advantage will help bug triage workers to decide
who should fix a bug report [2]. These bug
warehouses are indexed and referenced to a
section of problems proceeding, which creates a
big database of any issues reported by software
designers or programmers in a project. The open
bug repositories are called open source, in which
anyone can access these reports. These
repositories have an essential role in those
projects due to full access permission of
programmer communities to view, find, share,
edit, and fix during the project's development
progress. We have used a dataset from the same
open-source project (eclipse project) to build a
hybrid classifier recommendation system using
Naive Bayes, decision trees, random forest, and
neural networks. Some Scholars also used the
Support Vector Machines method and tried some
unsupervised learning algorithms. Besides that,
they used datasets from the firefox open source
project and GCC project.

Literature Review

We briefly mention some approaches for
recommendation systems for bug resolves
proposed by some scholars for the background.
Many models and simulations have been created
and presented for finding the best developers for
bug fixing in bug systems. Xuan et al. proposed a
model that depends on social knowledge in the
bug reports of Eclipse and Mozilla bug
repositories utilizing the social network model
[3]. Shokripour et al. utilized an automatic bug
assignment using a time parameter. The approach
considered time metadata for the weighted
expression. The repetition of the word in reports
is fixed by utilizing a technique called tf-idf [4].
Xia et al. have proposed an improved model of
Linear Discriminant for bug assignment. They
offered an incremental change approach as a
learning approach called TopicMiner; this
TopicMiner approach detects the appropriate bug
reports for the proper developer concerning the
bug's distribution and likeness. The likeness is

created as a relationship between bug fix
programmer and distribution [5].

These bug warehouses are indexed and
referenced to the section of problems proceeding,
which creates a big database of any issues
reported by software designers or programmers in
a project. The open bug repositories are called
open source, in which anyone can access these
reports. These repositories have an essential role
in those projects due to full access permission of
programmer communities to view, find, share,
edit, and fix during the project's development
progress. Yang G. et al. [15] proposed a semi-
automatic bug triage based on the Topic model
from 30,000 bug reports from several open-
source projects, and they achieved practical
analysis with approximated 52% accuracy.

Data Description and Features

The dataset had been extracted from the eclipse

bug repository until the year 2009. The inputs of

the system are the features of the dataset that

comes from the eclipse platform bug measures

dataset, which has (7700×50) numbers. The first

column of the data contains the bug id number.

The last column contains the class labels from 1

to 7. Each class of the dataset represents a group

of developers according to their companies

assigned before to resolve bugs in some

components of the software project, which means

we have 48 features. For these features, we have

utilized many machine learning algorithms by

using Matlab and weka software. For classifying

these features according to their class labels, we

have validated them by using cross-validation.

The dataset is multivariate. Tab. 1 below presents

developer emails in each category and instances

in each category. Each type of dataset represents

a class or group of developers according to their

companies and the number of bugs they have

fixed/resolved.

Table 1. Developers and Instances in each class

Class

Number of developers and instances

Number of developers Number of Instances

1 10 1206

DUJE (Dicle University Journal of Engineering) 12:3 (2021) Page 471-477

473

Class

Number of developers and instances

Number of developers Number of Instances

2 10 1173

3 19 735

4 60 845

5 11 1611

6 20 1281

7 8 919

Total 138
7700

The classes of the dataset represent a group of

developers based on their companies.

The Features of the Eclipse dataset are:

bugID; component;; assigneeEmail;os;

platform; milestone; nrKeywords;

nrDependentBugs;

peopleCC;openedhoursOpenedBeforeNextRelea

se;lastModified;priority;severity;resolution;first

Fix;lastFix;hoursLastFixBeforeNextRelease;hou

rsLastFixAfterPreviousRelease;status;firstActivi

ty;nrActivities;lastResolution;nrComments;hour

sToLastFix;hoursToLastResolution;monthOpen

ed;yearOpened;monthYearOpened;monthYearL

astFixed.

These features represent the details and contents

of each bug report. Below is an example of a bug

report:

Figure 1. Bug report

Feature Selection

The datasets in which they are utilized for
developers' assignments might give us inaccurate
scores, and with time, it might overrun more
project resources. So, we have to select a specific
type of information which is called features in the
machine learning community; this information
should present the features in which they are
redundant and inconsistent and affect the
classification. In order to improve the accuracy of
results, these redundant features should be
removed [2]. Using feature selection approaches
to check the datasets first, such as acquiring the
information gain of these features, can be
removed manually by eliminating the features
with less information gain. In our case, we have
eliminated the last 20 features (had lowest
information gain) that had a negative effect on my
classification results. Figure 2 shows the
information gain results of the features.

=== Attribute selection 10 fold cross-validation (stratified), seed: 1 ===

average merit average rank attribute
 0.65 +- 0.003 1 +- 0 1 component3Days
 0.474 +- 0.004 2.3 +- 0.46 3 PredictedProbability_2
 0.474 +- 0.004 2.7 +- 0.46 2 PredictedProbability_1
 0.362 +- 0.002 4 +- 0 4 bugID
 0.241 +- 0.003 5.3 +- 0.46 5 os3Days
 0.239 +- 0.003 5.7 +- 0.46 6 PredictedProbability_1_1
 0.223 +- 0.003 7 +- 0 7 PredictedProbability_2_1
 0.119 +- 0.002 8 +- 0 8 status30Days
 0.076 +- 0.002 9.1 +- 0.3 9 nrActivities30Days
 0.072 +- 0.002 10.5 +- 0.81 10 nrActivities
 0.072 +- 0.001 10.6 +- 0.66 11 hoursLastFixAfterPreviousRelease
 0.07 +- 0.001 11.8 +- 0.4 12 nrActivities14Days
 0.066 +- 0.001 13 +- 0 13 nrActivities7Days
 0.059 +- 0.002 14.7 +- 0.9 14 status3Days
 0.057 +- 0.001 15 +- 0.77 16 nrActivities3Days
 0.058 +- 0.001 15.3 +- 0.64 15 hoursLastFixBeforeNextRelease
 0.045 +- 0.001 17 +- 0 17 nrActivities1Days
 0.032 +- 0.001 18 +- 0 18 hoursToLastFix
 0.027 +- 0.001 19 +- 0 19 monthOpened
 0.025 +- 0.001 20.1 +- 0.3 20 hoursToLastResolution
 0.022 +- 0.001 22 +- 1.1 22 peopleCC
 0.023 +- 0.001 22 +- 1.1 21 priority30Days
 0.022 +- 0.001 22.8 +- 1.6 23 filter_$
 0.021 +- 0.001 24.1 +- 1.3 24 nrPeopleCC30Days
 0.021 +- 0.001 24.9 +- 1.22 25 nrPeopleCC14Days
 0.02 +- 0.001 26.5 +- 1.8 26 hTLFix2Bins7Days
 0.019 +- 0.001 27.4 +- 1.62 27 hTLFix2Bins3Days
 0.019 +- 0.001 27.6 +- 1.43 28 nrPeopleCC7Days
 0.018 +- 0.001 29 +- 1.67 29 nrComments30Days
 0.018 +- 0.001 29.6 +- 1.36 30 nrPeopleCC3Days
 0.017 +- 0.001 30.9 +- 1.45 31 nrPeopleCC1Days
 0.016 +- 0.001 32 +- 1.1 33 hTLFix2Bins14Days
 0.016 +- 0.001 32.1 +- 1.04 32 platform3Days
 0.014 +- 0.001 34 +- 0 34 hTLFix2Bins1Days
 0.012 +- 0.001 35 +- 0 35 hTLFix2Bins30Days
 0.01 +- 0.001 36.6 +- 0.92 36 nrComments
 0.009 +- 0.001 37.1 +- 1.3 37 hTLFix2Bins0Days
 0.009 +- 0.001 37.9 +- 0.83 39 initPeopleCC
 0.009 +- 0.001 38.7 +- 0.46 38 nrPeopleCC0Days
 0.008 +- 0.001 39.8 +- 0.75 40 nrComments14Days
 0.007 +- 0.001 41.2 +- 0.6 41 severity3Days
 0.006 +- 0 41.7 +- 0.46 42 nrComments7Days
 0 +- 0 43.1 +- 0.3 47 nrDependentBugs
 0 +- 0 43.9 +- 0.3 45 nrComments1Days
 0 +- 0 45 +- 0 46 nrActivities0Days
 0 +- 0 46 +- 0 48 nrKeywords
 0 +- 0 47 +- 0 44 nrComments0Days
 0 +- 0 48 +- 0 43 nrComments3Days
 0 +- 0 49 +- 0 49 resolution3Days

DUJE (Dicle University Journal of Engineering) 12:3 (2021) Page 471-477

474

Figure 2. Features' Information gain

Methodology

Many machine learning algorithms will be
utilized for implementing the recommendation
system, such as Naive Bayes, Decision Trees, and
Support Vector Machines. They might try some
unsupervised machine learning algorithms like
Expectation Maximization [2]. First, we have
been attempting a hybrid of two machine learning
algorithms as recommendation system engines
such as Naive Bayes, Decision Trees. The Feature
selection algorithms will be used on the training
data set to get the best-related features. We have
tried the forward selection algorithm to choose
the best features and applied the Naive Bayes
algorithm [6]. I used the Naive Bayes algorithm
to classify the data set using MATLAB code [7]
and WEKA software [8]. We also have applied
the decision tree algorithm to the filtered dataset
using the WEKA software with 0.25 confidence
factor is utilized for pruning that lower values
occur more pruning and two minNumObj is
minimum instances per leaf and three numFolds
that determines the amount of data utilized for
minimizing the error in pruning. Only one fold is
being used for pruning, and the others are utilized
for growing the tree.

• Classification Tree Rules:

For node m, Nm examples in m domain, Ni
m for

Classi: [2]

()
m

i

mi

mi
N

N
pmCP =,|ˆ x

 (1)

If pi
m is equal to zero or one, then Node m is called

pure, and we mathematically calculate the
Impurity in which it is entropy: [2]

=

−=
K

i

i

m

i

mm pp
1

2logI
 (2)

Create a leaf and stop if node m is pure, otherwise
continue split recursively. Calculate the Impurity
after split: Nmj from Nm taking branch j. Ni

mj was
taken from Ci. Finding the variables and
separating that minimum Impurity (among all
variables and splitting positions for numeric
variables) [6].

• Random Forest

This is an ensemble approach that receives a
subset of dataset observations and a subset of
variables as branches of its tree to create many
decision trees (An ensemble depends on a set of
one-by-one trained models (neural networks,
support vector machines, decision trees as an
example). In general, it gives us high
classification accuracy than other models such as
Naïve Bayes and support vector machines [9]. It
creates multiple decision trees and merges them
to improve accuracy results and stable prediction
trying to avoid underfitting and overfitting issues.
The outcome is taken from the maximum voting
of independent judges list, and the final prediction
should be better than the best individual judge.

If m classifiers are to be created, they are created
in sequence so that one model is made in one
iteration. For creating a classifier Ci model, for
example, weights of training instances are
updated depending on the accuracy results of
classifier Ci1. The model classifiers created by
boosting usually are dependent [10].

To classify a new sample, it is run towards the
trees that created the forest. Each tree has some
classification score for the new sample in which
it will be registered as a vote. The votes from all
trees are merged, and the class in which the
maximum votes are considered, which is called
majority voting, is stated as the classification
result of this new sample. As proposed by
Breiman [8], these random forest approaches
utilize majority voting as the voting model for
classification. All experiments are executed
concerning the voting technique. We have been
used the random forest model, and it should give
us good classification accuracy results with
respect to some articles [9]. The random forest
model contains many tree classifier models like
h1(x), h2(x), . . ., hK (x), K for tree number. Each
classifier model is created utilizing a bootstrap
replication of the training dataset and votes for
one class. A test sample is classified by the top
votes class's class label as it is called the majority
voting [11].

The parameters that we will utilize of the Random
Forest are:

• The tree's maximum depth, for unlimited,
zero is put max depth = 0.

DUJE (Dicle University Journal of Engineering) 12:3 (2021) Page 471-477

475

• numFeatures = 0; The number of features
to be utilized randomly; If numFeatures<
1, logM+1 is used, M is the input's
number. We have tried different numbers
of features like 10 or 20, but that did not
cause a real effect on accuracy results.

Numbers = 135; the number of trees to be created.

We have created a model of a Random forest,
which consists of 135 trees. Each tree is
constructed by taking into consideration five
random features with an OOB error (out of the
bag) is 0.3347. The Out of Bag is explained as
follows: after implementing the classifiers model,
which is five trees, for each 𝑥𝑖, 𝑦𝑖 dimensions in
the training set𝑇𝑠, Choosing all 𝑇𝐾 without
including 𝑥𝑖, 𝑦𝑖. This small subset is a set of
bootstrap sets that do not have a specific register
from 𝑇𝑠 Dataset, this set is called out of bag
samples.

These sets are called N subsets, one for each data
register in the training dataset 𝑇𝑠 . Out of bag
model classifier is the merge of votes only over
𝑇𝐾 sets such that it does not include 𝑥𝑖, 𝑦𝑖. For the
generalization error, Out of bag estimations error
is the error ratio of the out-of-bag model classifier
on the training set 𝑇𝑠 as compare with known
class labels 𝑦𝑖 [13].

The study of error speculates for bagged model
classifiers [13] gives empirical proof that the
OOB presume it has good accuracy while
utilizing a testing dataset with the same size as the
training dataset. Thus, utilizing OOB error
speculation eliminate the requirement of using a
dataset apart from the test dataset.

• Neural Networks

This network-based approach was developed by
the biological networks that model the attitude of
the human brain system. This approach typically
learns to achieve different tasks by considering
samples of data called the training data without
specific task regulations. For instance, in image
analysis and detection, it knows to detect images
that contain cars by training some sample images
and labeled manually as "car" or "not car", and by
utilizing the approach, it will output to detect cars
from other unrelated images. It can be done
without any prior knowledge. It automatically

creates and identifies characteristics from the
samples entered into the approach.

The neural networks contain connected nodes
called neurons, which represent neurons in the
human brain. Each node is synapses in a
biological brain which transmits a signal to other
neurons (nodes). In created artificial neuron
(node), the same attitude is utilized by receiving
a signal, processing it, and send a signal to nodes
connected to each one of them.

For experimental setup, a signal in bio-neural
networks is represented by artificial neural
networks' real value. The output of nodes is
calculated by utilizing nonlinear functions of the
sum of its inputs. The lines between nodes are
connections that are called node edges. Nodes
and edges have a weight that is evaluated and
adjusted through the learning stage. The weight
changes the connection's strength; nodes have a
activated threshold while they achieved that
threshold. Usually, Nodes are divided into many
layers. Each layer contains many different nodes,
and it performs various transformations on its
inputs. The signal transmits from the first input
layer, which is known as the input layer, to the
final output layer, which is known as the output
layer after visiting the in-between layers, which
are called hidden layers multiple times depending
on the threshold and the accuracy of achieving the
best results for the training model. We have
investigated the model of neural networks as a
training model with the hybrid approach of
decision tree and naïve Bayes to analyze the best
performance for bug reports of open-source
systems to the suitable developer.

• Priority of Developers

Several methods have been tested to calculate the
hours needed for each developer in the training
dataset and testing dataset and check the priority
of each developer in the group using the
following steps:

• Calculate the hours needed for each
developer in the same class in the training
dataset and testing dataset.

• Take the differences between the hours in
the training dataset and the testing dataset.

• The accuracy results are sorted as the
required average hours for the developer
as the highest priority in this group; the

DUJE (Dicle University Journal of Engineering) 12:3 (2021) Page 471-477

476

most significant hours needed is the
lowest priority in the same group.

Results

We have achieved precision rates of greater than
50%, and they believed that the precision rates
they reported are sufficient to help the bug triager
decide which developers are good enough to be
assigned to a specific bug report [7]. We used 10-
fold cross-validation, applied the information
gain feature selection algorithm, discretized the
data,, and used the Naive Bayes algorithm using
MATLAB code and the WEKA software on the
eclipse platform bug measures dataset. We have
got the same results in MATLAB and WEKA
software with 50.001% of correctly classified
instances, so it was nearly the same rates that the
paper achieved. Using the decision trees, we have
got 62.7413% of correctly classified samples, and
with using random forest, 66.0746%
classification rate has been performed.

We have noticed that some features are not good
or made the classification even worse, and others
gave a higher rate to the classification accuracy.
We have got the results using the 30 features that
had high information gain. The 30 features of the
dataset made 50.001% classification accuracy in
Naive Bayes, and these features made 62.7413%
classification accuracy using the decision tree
algorithm. Using Random Forest with several
trees equal to 135 (the best result we have got
while using 135 trees), We have found that the
classification accuracy increased by 3.33% than
the decision tree achieving 66.0746%.

Table 2 shows the results of different machine
learning algorithms we used like Naïve Bayes,
Decision Trees, Random Forest, NBTree, Simple
Logistic, and Neural Network (Learning rate: 0.3,
batchsize:100).

Table 2. Classification Accuracy Results

Algorithm Classification accuracy

(%)

Naïve Bayes 50.001

Decision Trees 62.7413

Random Forest (25 Tress) 64.9807

Random Forest (50 Tress) 65.2767

Random Forest (75 Tress) 65.7529

Random Forest (100 Tress) 65.9588

Random Forest (135 Tress) 66.0746

Random Forest (200 Tress) 65.9846

Random Forest (500 Tress) 65.9846

NBTree 60.1802

SimpleLogistic 60.514

Neural Network 66.514

Concerning the trees count in random forest
approach, the accuracy results acquired have
shown occasionally that whenever several trees
increase in a forest only increase its
computational time and cost and have no
considerable changes in performance gain and
this is what occurred in our datasets when we
have used more than 135 trees. We have tried 200
trees and 500 trees, and no performance gain is
acquired [13]. So, we have tried several methods
to improve the classification accuracy and the
performance of the algorithms, and we have
found that we should make some changes to the
class labels like normalization and clustering, as
is seen in the next section (clustering results). For
each developer's priority in the same group, we
calculated the hours needed for each developer
using the last hours' feature. Table 3 shows the
effects of hybrid utilizing of Naïve Bayes
algorithm and DT together in the training dataset
(50%-50%) and the usage of RF with Neural
Networks (50%-50%) in the training dataset, we
could declare as it is seen from results that it has
better accuracy results than the usage of each one
separately.

Table 3. Hybrid Accuracy Results

Methodology Classification

accuracy (%)

Naïve Bayes with decision Trees 57.3811

Random Forest with Neural

Networks

67.7473

Conclusion

The semi-automatic assignment approach is an
excellent method to assist the bug triage worker
in deciding depending on the specific category of
bugs concerning the developer's knowledge and
experience. By utilizing an open-source software
project (bugs repository) to classify the bug
reports dataset. We have been used hybrid
machine learning models: random forest, neural
networks, and naive Bayes. For the feature
selection, we have used the information gain
values to detect which features are useful for
classification, and we have eliminated 20 features
because they had low information gain. We have
done the classification based on the best 30
features and one feature for each class label.

The classification results have shown why we
have selected algorithms such as random forest

DUJE (Dicle University Journal of Engineering) 12:3 (2021) Page 471-477

477

and neural networks to classify the bug reports.
To support my conclusion, many research papers
are approved that suggestion [9] and the results
that we have obtained are improved. In general, it
will give more accuracy than traditional decision
trees and support vector machines. Two
advantages that let us select random forest for our
dataset. The first advantage is that they do not
anticipate linear features or linearly interacted
features. The branch of the tree is just a decision
point of entire trees combined; this can deal with
the dataset correctly. The other advantage is that,
because of how they are constructed, this
approach deals correctly with more than two-
dimensional spaces and large datasets of training
samples [14].

For random forest parameters, we have found that
the right numbers of random trees to use are 135
trees; the classification accuracy of a random
forest relies on the durability of the individual tree
model classifiers and dependency between trees
[8]. The trees are genuinely classified by the
category label of the overcome category (majority
voting) [11]. Sometimes, increasing the trees in
the random forest technique increases its
computational time and cost and has no
significant performance gain results [13]. The
hybrid approach of utilizing random forest and
neural networks, decision trees, and naïve Bayes
has created high bug assignment classification
accuracy.

Many future enhancements and practical system
possibilities can be considered, considering that it
is always required that the system should behave
automatically for analyzing, recognizing, and
appropriate feature selection, for instance, code
checking and time while executing different tasks
for adaption and resolving incoming new various
tasks automatically.

References

1. Wu, W.; Zhang, W.; Yang, Y.; Wang, Q. Time series
analysis for bug number prediction. In Proceedings of the
2nd International Conference on Software Engineering and
Data Mining, Chengdu, China, 23–25 June 2010, 589–596.

2. B.Azhagusundari; Thanamani A.S. Feature Selection
based on Information Gain. IJITEE, 2013, 2, 19-21.

3. Xuan, J.; Jiang, H.; Ren, Z.; Zou, W. Developer
prioritization in bug repositories. In Proceedings of the
2012 34th International Conference on Software
Engineering (ICSE), Zurich, Switzerland, 2–9 June 2012,
25–35.

4. Shokripour, R.; Anvik, J.; Kasirun, Z.M.; Zammani, S. A
time-based approach to automatic bug report assignment. J.
Syst. Softw. 2015, 102, 109–122.

5. Xia, X.; Lo, D.; Ding, Y.; Al-Kofahi, J.; Nguyen, T.
Improving automated bug triaging with the specialized
topic model. IEEE Trans. Softw. Eng. 2016, 43, 272–297.

6. Ethem Alpaydin, Introduction to Machine Learning, 2nd
edition,MIT press, 2010, London, England.

7. Anvik J.; Hiewand L.; Murphy G. Who Should Fix this
Bug, ICSE, 2006, Shanghai, China, 20-28.

8. Breiman L. Random Forests, Springer Machine
Learning, 2001, 45, 5-32.

9. Liuac M.; Wangb M.; Wanga J.; Lic D. ,Comparison of
random forest, support vector machine and back
propagation neural network for electronic tongue data
classification: Application to the recognition of orange
beverage and Chinese vinegar., Elsevier ,Sensors and
Actuators, 2013, 177, 970–980.

10. Kulkarni V. Y.; Sinha P.K. Random Forest Classifiers
:A Survey and Future Research Directions, International
Journal of Advanced Computing, 2013, 36, 1144-1153.

11.Yan M.; Guo L.; Cukic B. A statistical framework for
the prediction of fault-proneness." Advances in Machine
Learning Applications in Software Engineering. IGI
Global, 2007, 237-263.

12. Breiman L. OUT-OF-BAG ESTIMATION, Statistics
Department, 1996, University of California, USA.

13. Oshiro T. M.; Perez P. S.; Baranauskas J.A. How Many
Trees in a Random Forest, Department of Computer
Science and Mathematics, University of Sao Paulo, Lecture
Notes in Computer Science, 2012, 7376.

14. Amatriain X., Pompeu Fabra University. Associate
Professor in Computer Science, 2019, VP of Engineering at
Quora.

15. G. Yang, T. Zhang and B. Lee, "Towards Semi-
automatic Bug Triage and Severity Prediction Based on
Topic Model and Multi-feature of Bug Reports," 2014
IEEE 38th Annual Computer Software and Applications
Conference, Vasteras, Sweden, 2014, pp. 97-106.

