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ABSTRACT 

 
 

The essential destination of this research is to develop a hybrid recommendation system methodology to 

enhance the overall performance accuracy of such existed systems, this recommendation approach 
normally utilized to assign or propose a few counted numbers of programmers or developers that capable 

of resolving system's bug reports generated automatically from an open source bug repository, meaning 

the system decides which  programmers or developers should be taken into account to be in charge of 
finding a solution the bugs mentioned in the bug's report. The definition of the bug selection problems in 

bug repositories are the activities that developers achieve within program maintenance to fix some specific 

bugs. Because of lot of bugs are created daily, many developers required are quite large, therefore it is 
difficult to specify the accurate programmers or developers to find a solution for the issues for specific 

bug inside the code. The article also aims to improve the accuracy results obtained than existed traditional 

approaches for this purpose. Besides, we have considered the case of prioritization of system developers, 
the case can be utilized to find an appropriate grade of developers' achievements as prior knowledge to 

assist the system in assigning of bug report issue. The results have found that the importance of developers 

could support the bug triage worker more and help software tasks to solve the bugs fast and within required 

time during development and support cycles of the software.  

Doi: 10.24012/dumf.818164 

* Corresponding author 

Mohanad, Al-imari 

 mohanad.alimari@ogr.altinbas.edu.tr 

 

Please cite this article in press as M. Al-imari, S. Kurnaz, J. S. H. Al-bayati “Hybrid Recommendation System Approach for appropriate developer selection in Bug 

Repositories”, DUJE, vol. 12, no. 3, pp. 471-477, June 2021. 

 

of Debian is sending approximately more than 

twenty reports were sent to bug system in the 

release time. Also, project of Debian is 

sending approximately 140 reports in a daily 

manner [1]. These types of systems should 

help developers to control and manage bug 

reports and resolve them faster and easily. On 

the other hand, the assignment of the best 

programmer to a specific bug is still in the 

focus of scholarly attention in software 

development researches. Open source 

software usually supports bug repository, this 

bug box contains reports that automatically 

sent to developers that should fix and solve 

bugs. 

 

Introduction 

In development of any software project 

including open source projects, there are 

several cycles, one of these cycles is the 

maintenance and support.  With maintenance 

cycles, various maintenance bug reports are 

registered in the system which represents 

more than 70% of overall bugs. Programmers 

might loss more than half of their time for 

recognizing and resolve bugs. In addition to 

that, number of software bugs has become 

extremely high. For Instance, in eclipse 

project, more than twenty reports were sent to 

bug system in the release time. Also, project  
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The bug file has to send to the developer or 
category of specific developers, and they will be 
responsible for resolving and fixing the bug. 
Using the recommendation system, whenever a 
new bug appears in the system, the 
recommendation system's engine (classifier) 
indicates the category of convenient developers to 
resolve the bug.  As a result, this potential 
advantage will help bug triage workers to decide 
who should fix a bug report [2]. These bug 
warehouses are indexed and referenced to a 
section of problems proceeding, which creates a 
big database of any issues reported by software 
designers or programmers in a project. The open 
bug repositories are called open source, in which 
anyone can access these reports. These 
repositories have an essential role in those 
projects due to full access permission of 
programmer communities to view, find, share, 
edit, and fix during the project's development 
progress. We have used a dataset from the same 
open-source project (eclipse project) to build a 
hybrid classifier recommendation system using 
Naive Bayes, decision trees, random forest, and 
neural networks. Some Scholars also used the 
Support Vector Machines method and tried some 
unsupervised learning algorithms. Besides that, 
they used datasets from the firefox open source 
project and GCC project. 

 

Literature Review 

We briefly mention some approaches for 
recommendation systems for bug resolves 
proposed by some scholars for the background. 
Many models and simulations have been created 
and presented for finding the best developers for 
bug fixing in bug systems. Xuan et al. proposed a 
model that depends on social knowledge in the 
bug reports of Eclipse and Mozilla bug 
repositories utilizing the social network model 
[3]. Shokripour et al. utilized an automatic bug 
assignment using a time parameter. The approach 
considered time metadata for the weighted 
expression. The repetition of the word in reports 
is fixed by utilizing a technique called tf-idf [4]. 
Xia et al. have proposed an improved model of 
Linear Discriminant for bug assignment. They 
offered an incremental change approach as a 
learning approach called TopicMiner; this 
TopicMiner approach detects the appropriate bug 
reports for the proper developer concerning the 
bug's distribution and likeness. The likeness is 

created as a relationship between bug fix 
programmer and distribution [5].  

These bug warehouses are indexed and 
referenced to the section of problems proceeding, 
which creates a big database of any issues 
reported by software designers or programmers in 
a project. The open bug repositories are called 
open source, in which anyone can access these 
reports. These repositories have an essential role 
in those projects due to full access permission of 
programmer communities to view, find, share, 
edit, and fix during the project's development 
progress.  Yang G. et al. [15] proposed a semi-
automatic bug triage based on the Topic model 
from 30,000 bug reports from several open-
source projects, and they achieved practical 
analysis with approximated 52% accuracy.   

 

Data Description and Features 

The dataset had been extracted from the eclipse 

bug repository until the year 2009. The inputs of 

the system are the features of the dataset that 

comes from the eclipse platform bug measures 

dataset, which has (7700×50) numbers. The first 

column of the data contains the bug id number. 

The last column contains the class labels from 1 

to 7. Each class of the dataset represents a group 

of developers according to their companies 

assigned before to resolve bugs in some 

components of the software project, which means 

we have 48 features. For these features, we have 

utilized many machine learning algorithms by 

using Matlab and weka software. For classifying 

these features according to their class labels, we 

have validated them by using cross-validation. 

The dataset is multivariate. Tab. 1 below presents 

developer emails in each category and instances 

in each category. Each type of dataset represents 

a class or group of developers according to their 

companies and the number of bugs they have 

fixed/resolved. 

Table 1. Developers and Instances in each class 

Class 

Number of developers and instances 

Number of developers Number of Instances 

 

1 10 1206 
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Class 

Number of developers and instances 

Number of developers Number of Instances 

 

2 10 1173 

3 19 735 

4 60 845 

5 11 1611 

6 20 1281 

7 8 919 

Total 138 
7700 

The classes of the dataset represent a group of 

developers based on their companies. 

The Features of the Eclipse dataset are:  

bugID; component;; assigneeEmail;os; 

platform; milestone; nrKeywords; 

nrDependentBugs; 

peopleCC;openedhoursOpenedBeforeNextRelea

se;lastModified;priority;severity;resolution;first

Fix;lastFix;hoursLastFixBeforeNextRelease;hou

rsLastFixAfterPreviousRelease;status;firstActivi

ty;nrActivities;lastResolution;nrComments;hour

sToLastFix;hoursToLastResolution;monthOpen

ed;yearOpened;monthYearOpened;monthYearL

astFixed. 

These features represent the details and contents 

of each bug report. Below is an example of a bug 

report: 

 

Figure 1. Bug report 

 

Feature Selection 

The datasets in which they are utilized for 
developers' assignments might give us inaccurate 
scores, and with time, it might overrun more 
project resources. So, we have to select a specific 
type of information which is called features in the 
machine learning community; this information 
should present the features in which they are 
redundant and inconsistent and affect the 
classification. In order to improve the accuracy of 
results, these redundant features should be 
removed [2]. Using feature selection approaches 
to check the datasets first, such as acquiring the 
information gain of these features, can be 
removed manually by eliminating the features 
with less information gain. In our case, we have 
eliminated the last 20 features (had lowest 
information gain) that had a negative effect on my 
classification results. Figure 2 shows the 
information gain results of the features. 

 
 
=== Attribute selection 10 fold cross-validation (stratified), seed: 1 === 
 
average merit      average rank  attribute 
 0.65  +- 0.003      1   +- 0        1 component3Days 
 0.474 +- 0.004      2.3 +- 0.46     3 PredictedProbability_2 
 0.474 +- 0.004      2.7 +- 0.46     2 PredictedProbability_1 
 0.362 +- 0.002      4   +- 0        4 bugID 
 0.241 +- 0.003      5.3 +- 0.46     5 os3Days 
 0.239 +- 0.003      5.7 +- 0.46     6 PredictedProbability_1_1 
 0.223 +- 0.003      7   +- 0        7 PredictedProbability_2_1 
 0.119 +- 0.002      8   +- 0        8 status30Days 
 0.076 +- 0.002      9.1 +- 0.3      9 nrActivities30Days 
 0.072 +- 0.002     10.5 +- 0.81    10 nrActivities 
 0.072 +- 0.001     10.6 +- 0.66    11 hoursLastFixAfterPreviousRelease 
 0.07  +- 0.001     11.8 +- 0.4     12 nrActivities14Days 
 0.066 +- 0.001     13   +- 0       13 nrActivities7Days 
 0.059 +- 0.002     14.7 +- 0.9     14 status3Days 
 0.057 +- 0.001     15   +- 0.77    16 nrActivities3Days 
 0.058 +- 0.001     15.3 +- 0.64    15 hoursLastFixBeforeNextRelease 
 0.045 +- 0.001     17   +- 0       17 nrActivities1Days 
 0.032 +- 0.001     18   +- 0       18 hoursToLastFix 
 0.027 +- 0.001     19   +- 0       19 monthOpened 
 0.025 +- 0.001     20.1 +- 0.3     20 hoursToLastResolution 
 0.022 +- 0.001     22   +- 1.1     22 peopleCC 
 0.023 +- 0.001     22   +- 1.1     21 priority30Days 
 0.022 +- 0.001     22.8 +- 1.6     23 filter_$ 
 0.021 +- 0.001     24.1 +- 1.3     24 nrPeopleCC30Days 
 0.021 +- 0.001     24.9 +- 1.22    25 nrPeopleCC14Days 
 0.02  +- 0.001     26.5 +- 1.8     26 hTLFix2Bins7Days 
 0.019 +- 0.001     27.4 +- 1.62    27 hTLFix2Bins3Days 
 0.019 +- 0.001     27.6 +- 1.43    28 nrPeopleCC7Days 
 0.018 +- 0.001     29   +- 1.67    29 nrComments30Days 
 0.018 +- 0.001     29.6 +- 1.36    30 nrPeopleCC3Days 
 0.017 +- 0.001     30.9 +- 1.45    31 nrPeopleCC1Days 
 0.016 +- 0.001     32   +- 1.1     33 hTLFix2Bins14Days 
 0.016 +- 0.001     32.1 +- 1.04    32 platform3Days 
 0.014 +- 0.001     34   +- 0       34 hTLFix2Bins1Days 
 0.012 +- 0.001     35   +- 0       35 hTLFix2Bins30Days 
 0.01  +- 0.001     36.6 +- 0.92    36 nrComments 
 0.009 +- 0.001     37.1 +- 1.3     37 hTLFix2Bins0Days 
 0.009 +- 0.001     37.9 +- 0.83    39 initPeopleCC 
 0.009 +- 0.001     38.7 +- 0.46    38 nrPeopleCC0Days 
 0.008 +- 0.001     39.8 +- 0.75    40 nrComments14Days 
 0.007 +- 0.001     41.2 +- 0.6     41 severity3Days 
 0.006 +- 0         41.7 +- 0.46    42 nrComments7Days 
 0     +- 0         43.1 +- 0.3     47 nrDependentBugs 
 0     +- 0         43.9 +- 0.3     45 nrComments1Days 
 0     +- 0         45   +- 0       46 nrActivities0Days 
 0     +- 0         46   +- 0       48 nrKeywords 
 0     +- 0         47   +- 0       44 nrComments0Days 
 0     +- 0         48   +- 0       43 nrComments3Days 
 0     +- 0         49   +- 0       49 resolution3Days 
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Figure 2. Features' Information gain 

 

 

Methodology 

Many machine learning algorithms will be 
utilized for implementing the recommendation 
system, such as Naive Bayes, Decision Trees, and 
Support Vector Machines. They might try some 
unsupervised machine learning algorithms like 
Expectation Maximization [2]. First, we have 
been attempting a hybrid of two machine learning 
algorithms as recommendation system engines 
such as Naive Bayes, Decision Trees. The Feature 
selection algorithms will be used on the training 
data set to get the best-related features. We have 
tried the forward selection algorithm to choose 
the best features and applied the Naive Bayes 
algorithm [6]. I used the Naive Bayes algorithm 
to classify the data set using MATLAB code [7] 
and WEKA software [8]. We also have applied 
the decision tree algorithm to the filtered dataset 
using the WEKA software with 0.25 confidence 
factor is utilized for pruning that lower values 
occur more pruning and two minNumObj is 
minimum instances per leaf and three numFolds 
that determines the amount of data utilized for 
minimizing the error in pruning.  Only one fold is 
being used for pruning, and the others are utilized 
for growing the tree.  

• Classification Tree Rules:  

For node m, Nm examples in m domain, Ni
m for 

Classi: [2] 

            

( )
m

i

mi

mi
N

N
pmCP =,|ˆ x

         (1) 

If pi
m is equal to zero or one, then Node m is called 

pure, and we mathematically calculate the 
Impurity in which it is entropy: [2] 

              

=

−=
K

i

i

m

i

mm pp
1

2logI
                    (2) 

Create a leaf and stop if node m is pure, otherwise 
continue split recursively. Calculate the Impurity 
after split: Nmj from Nm taking branch j. Ni

mj was 
taken from Ci. Finding the variables and 
separating that minimum Impurity (among all 
variables and splitting positions for numeric 
variables)  [6]. 

• Random Forest  

This is an ensemble approach that receives a 
subset of dataset observations and a subset of 
variables as branches of its tree to create many 
decision trees (An ensemble depends on a set of 
one-by-one trained models (neural networks, 
support vector machines, decision trees as an 
example). In general, it gives us high 
classification accuracy than other models such as 
Naïve Bayes and support vector machines [9]. It 
creates multiple decision trees and merges them 
to improve accuracy results and stable prediction 
trying to avoid underfitting and overfitting issues. 
The outcome is taken from the maximum voting 
of independent judges list, and the final prediction 
should be better than the best individual judge. 

If m classifiers are to be created, they are created 
in sequence so that one model is made in one 
iteration. For creating a classifier Ci model, for 
example, weights of training instances are 
updated depending on the accuracy results of 
classifier Ci1. The model classifiers created by 
boosting usually are dependent [10]. 

To classify a new sample, it is run towards the 
trees that created the forest. Each tree has some 
classification score for the new sample in which 
it will be registered as a vote. The votes from all 
trees are merged, and the class in which the 
maximum votes are considered, which is called 
majority voting, is stated as the classification 
result of this new sample. As proposed by 
Breiman [8], these random forest approaches 
utilize majority voting as the voting model for 
classification. All experiments are executed 
concerning the voting technique. We have been 
used the random forest model, and it should give 
us good classification accuracy results with 
respect to some articles [9]. The random forest 
model contains many tree classifier models like 
h1(x), h2(x), . . ., hK (x), K for tree number. Each 
classifier model is created utilizing a bootstrap 
replication of the training dataset and votes for 
one class. A test sample is classified by the top 
votes class's class label as it is called the majority 
voting [11]. 

The parameters that we will utilize of the Random 
Forest are: 

• The tree's maximum depth, for unlimited, 
zero is put max depth = 0.  
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• numFeatures = 0; The number of features 
to be utilized randomly; If numFeatures< 
1, logM+1 is used, M is the input's 
number. We have tried different numbers 
of features like 10 or 20, but that did not 
cause a real effect on accuracy results. 

 

Numbers = 135; the number of trees to be created. 

We have created a model of a Random forest, 
which consists of 135 trees. Each tree is 
constructed by taking into consideration five 
random features with an OOB error (out of the 
bag) is 0.3347. The Out of Bag is explained as 
follows: after implementing the classifiers model, 
which is five trees, for each 𝑥𝑖, 𝑦𝑖 dimensions in 
the training set𝑇𝑠, Choosing all 𝑇𝐾 without 
including 𝑥𝑖, 𝑦𝑖. This small subset is a set of 
bootstrap sets that do not have a specific register 
from 𝑇𝑠 Dataset, this set is called out of bag 
samples.  

These sets are called N subsets, one for each data 
register in the training dataset 𝑇𝑠 . Out of bag 
model classifier is the merge of votes only over 
𝑇𝐾 sets such that it does not include 𝑥𝑖, 𝑦𝑖. For the 
generalization error, Out of bag estimations error 
is the error ratio of the out-of-bag model classifier 
on the training set 𝑇𝑠 as compare with known 
class labels 𝑦𝑖 [13]. 

The study of error speculates for bagged model 
classifiers [13] gives empirical proof that the 
OOB presume it has good accuracy while 
utilizing a testing dataset with the same size as the 
training dataset. Thus, utilizing  OOB error 
speculation eliminate the requirement of using a 
dataset apart from the test dataset. 

• Neural Networks 

This network-based approach was developed by 
the biological networks that model the attitude of 
the human brain system. This approach typically 
learns to achieve different tasks by considering 
samples of data called the training data without 
specific task regulations. For instance, in image 
analysis and detection, it knows to detect images 
that contain cars by training some sample images 
and labeled manually as "car" or "not car", and by 
utilizing the approach, it will output to detect cars 
from other unrelated images. It can be done 
without any prior knowledge. It automatically 

creates and identifies characteristics from the 
samples entered into the approach. 

The neural networks contain connected nodes 
called neurons, which represent neurons in the 
human brain. Each node is synapses in a 
biological brain which transmits a signal to other 
neurons (nodes). In created artificial neuron 
(node), the same attitude is utilized by receiving 
a signal, processing it, and send a signal to nodes 
connected to each one of them. 

For experimental setup, a signal in bio-neural 
networks is represented by artificial neural 
networks' real value. The output of nodes is 
calculated by utilizing nonlinear functions of the 
sum of its inputs. The lines between nodes are 
connections that are called node edges. Nodes 
and edges have a weight that is evaluated and 
adjusted through the learning stage. The weight 
changes the connection's strength; nodes have a 
activated threshold while they achieved that 
threshold. Usually, Nodes are divided into many 
layers. Each layer contains many different nodes, 
and it performs various transformations on its 
inputs. The signal transmits from the first input 
layer, which is known as the input layer, to the 
final output layer, which is known as the output 
layer after visiting the in-between layers, which 
are called hidden layers multiple times depending 
on the threshold and the accuracy of achieving the 
best results for the training model. We have 
investigated the model of neural networks as a 
training model with the hybrid approach of 
decision tree and naïve Bayes to analyze the best 
performance for bug reports of open-source 
systems to the suitable developer. 

• Priority of Developers 

Several methods have been tested to calculate the 
hours needed for each developer in the training 
dataset and testing dataset and check the priority 
of each developer in the group using the 
following steps:  

• Calculate the hours needed for each 
developer in the same class in the training 
dataset and testing dataset. 

• Take the differences between the hours in 
the training dataset and the testing dataset. 

• The accuracy results are sorted as the 
required average hours for the developer 
as the highest priority in this group; the 
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most significant hours needed is the 
lowest priority in the same group. 

Results 

We have achieved precision rates of greater than 
50%, and they believed that the precision rates 
they reported are sufficient to help the bug triager 
decide which developers are good enough to be 
assigned to a specific bug report [7]. We used 10-
fold cross-validation, applied the information 
gain feature selection algorithm, discretized the 
data,, and used the Naive Bayes algorithm using 
MATLAB code and the WEKA software on the 
eclipse platform bug measures dataset. We have 
got the same results in MATLAB and WEKA 
software with 50.001% of correctly classified 
instances, so it was nearly the same rates that the 
paper achieved. Using the decision trees, we have 
got 62.7413% of correctly classified samples, and 
with using random forest, 66.0746% 
classification rate has been performed. 

We have noticed that some features are not good 
or made the classification even worse, and others 
gave a higher rate to the classification accuracy. 
We have got the results using the 30 features that 
had high information gain. The 30 features of the 
dataset made 50.001% classification accuracy in 
Naive Bayes, and these features made 62.7413% 
classification accuracy using the decision tree 
algorithm. Using Random Forest with several 
trees equal to 135 (the best result we have got 
while using 135 trees), We have found that the 
classification accuracy increased by 3.33% than 
the decision tree achieving 66.0746%. 

Table 2 shows the results of different machine 
learning algorithms we used like Naïve Bayes, 
Decision Trees, Random Forest, NBTree, Simple 
Logistic, and Neural Network (Learning rate: 0.3, 
batchsize:100). 

Table 2. Classification Accuracy Results 

Algorithm Classification accuracy 

(%) 

Naïve Bayes  50.001 

Decision Trees 62.7413 

Random Forest (25 Tress) 64.9807 

Random Forest (50 Tress) 65.2767 

Random Forest (75 Tress) 65.7529 

Random Forest (100 Tress) 65.9588 

Random Forest (135 Tress) 66.0746 

Random Forest (200 Tress) 65.9846 

Random Forest (500 Tress) 65.9846 

NBTree  60.1802 

SimpleLogistic 60.514 

Neural Network 66.514 

 

Concerning the trees count in random forest 
approach, the accuracy results acquired have 
shown occasionally that whenever several trees 
increase in a forest only increase its 
computational time and cost and have no 
considerable changes in performance gain and 
this is what occurred in our datasets when we 
have used more than 135 trees. We have tried 200 
trees and 500 trees, and no performance gain is 
acquired [13]. So, we have tried several methods 
to improve the classification accuracy and the 
performance of the algorithms, and we have 
found that we should make some changes to the 
class labels like normalization and clustering, as 
is seen in the next section (clustering results). For 
each developer's priority in the same group, we 
calculated the hours needed for each developer 
using the last hours' feature. Table 3 shows the 
effects of hybrid utilizing of Naïve Bayes 
algorithm and DT together in the training dataset 
(50%-50%) and the usage of RF with Neural 
Networks (50%-50%) in the training dataset, we 
could declare as it is seen from results that it has 
better accuracy results than the usage of each one 
separately. 

Table 3. Hybrid Accuracy Results 

Methodology Classification 

accuracy (%) 

Naïve Bayes with decision Trees 57.3811 

Random Forest with Neural 

Networks 

67.7473 

 

Conclusion  

The semi-automatic assignment approach is an 
excellent method to assist the bug triage worker 
in deciding depending on the specific category of 
bugs concerning the developer's knowledge and 
experience. By utilizing an open-source software 
project (bugs repository) to classify the bug 
reports dataset. We have been used hybrid 
machine learning models: random forest, neural 
networks, and naive Bayes. For the feature 
selection, we have used the information gain 
values to detect which features are useful for 
classification, and we have eliminated 20 features 
because they had low information gain. We have 
done the classification based on the best 30 
features and one feature for each class label. 

The classification results have shown why we 
have selected algorithms such as random forest 
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and neural networks to classify the bug reports. 
To support my conclusion, many research papers 
are approved that suggestion [9] and the results 
that we have obtained are improved. In general, it 
will give more accuracy than traditional decision 
trees and support vector machines. Two 
advantages that let us select random forest for our 
dataset. The first advantage is that they do not 
anticipate linear features or linearly interacted 
features. The branch of the tree is just a decision 
point of entire trees combined; this can deal with 
the dataset correctly. The other advantage is that, 
because of how they are constructed, this 
approach deals correctly with more than two-
dimensional spaces and large datasets of training 
samples [14]. 

For random forest parameters, we have found that 
the right numbers of random trees to use are 135 
trees; the classification accuracy of a random 
forest relies on the durability of the individual tree 
model classifiers and dependency between trees 
[8]. The trees are genuinely classified by the 
category label of the overcome category (majority 
voting) [11]. Sometimes, increasing the trees in 
the random forest technique increases its 
computational time and cost and has no 
significant performance gain results [13]. The 
hybrid approach of utilizing random forest and 
neural networks, decision trees, and naïve Bayes 
has created high bug assignment classification 
accuracy. 

Many future enhancements and practical system 
possibilities can be considered, considering that it 
is always required that the system should behave 
automatically for analyzing, recognizing, and 
appropriate feature selection, for instance, code 
checking and time while executing different tasks 
for adaption and resolving incoming new various 
tasks automatically. 
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