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ABSTRACT 
 

The colored digital images can be represented in different color spaces. The most used color space is Red-Green-Blue 

space. However, this space can be transformed to Luminance-Blue Difference-Red Difference space for extraction of 

light intensity information and Hue-Saturation-Value space. The defined features of color pixels give strong information 

about whether they belong to a human skin or not. In this paper, a novel color-based feature extraction method is 

proposed, which use both red, green, blue, luminance, hue and saturation information. The proposed method is applied 

on an image database consists of various people with diverse age, racial and gender characteristics. The obtained features 

are used to segment the human skin by using Support-Vector- Machine algorithm and finally the promising performance 

results are presented comparatively with the most-common methods in the literature. 
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1. INTRODUCTION 
 

The issue of skin segmentation is an important step especially in the recognition of hand and hand signs 

from pictures, face recognition and person tracking in videos as discussed in the work of Zarit, Super 

and Quek [1]. Although this work by Zarit, Super and Quek is a relatively old study of 1999, current 

studies on this issue show that the skin segmentation issue has not been outdated and is a suitable subject 

to be improved [2-9]. In addition, methods used in skin segmentation are improved and are frequently 

used in medical issues such as skin lesion detection [10-16]. 
 

Color histogram was used in the pioneer study for skin segmentation, where skin segmentation was used 

to separate hand figure from environment [17]. In another work, skin tone based on luminance component 

was used for skin segmentation, where skin segmentation was used for face detection [18]. In a more recent 

work, smoothed 2d color histogram and gaussian distribution for color histogram were combined for skin 

segmentation [9]. Chakraborty, Buyan and Kumar proposed Dynamic Region Growing (DRG) method 

based on combination of local and global skin distribution models [6]. Chakraborty and Buyan also 

proposed a novel Adaptive Discriminative Analysis (ADA) for unsupervised skin classification in their 

more recent study [2]. Edge detection, Otsu segmentation and initial seed generation methods were 

combined by Mahmoodi and Sayedi to obtain more successful method for skin segmentation [19]. Shaik 

et al. compared skin segmentation accuracies of two primitive works, where one of them just only used 

Hue-Saturation-Value (HSV) representation and other used Luminance-Blue Difference-Red Difference 

(YCbCr) representation [7]. Al-Mohair, Mohamad-Saleh and Suandi applied combination of neural 

network and k-means clustering methods on YIQ representation of color images for skin segmentation [8]. 

 

In this study, a comprehensive image data set has been used, which was explained in Section 2.1 detailly. 

Red-Green-Blue-Luminance-Hue-Saturation (RGB-YHS) features have been used as predictor for making 

decision if the corresponding pixel is skin pixel or non-skin pixel.  The detailed information for the 

proposed features was given in Section 2.2. The chosen features have been generated from the chosen data 
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set and the obtained features have been applied on Support-Vector-Machine with fine gaussian kernel, 

which was explained in Section 2.3. The comparative skin segmentation performances were presented in 

Section 3. Finally, the presented article was concluded by Section 4 with analysis of obtained results. 

 

2. MATERIALS AND METHODS 

 

2.1. Schmugge Skin Image Data Set 

 

In this study, for train and test of the chosen Support-Vector-Machine classifier with fine gaussian 

kernel, “Schmugge skin image data set with ground truth” is used [20]. Schmugge, Jayaram, Shin and 

Tsap presented a comparative research for available studies in the literature for skin detection by listing 

the performances on the data set they created [21]. Schmugge skin image data set includes 846 various 

images with their ground truth for skin segmentation. In the original ground truth images, ‘0’ was used 

to point the locations of exact skin pixels and ‘255’ was used to point exact nonskin pixels. In the original 

ground truth images, there are also exist some intermediate values between 0 and 255 for the pixels that 

cannot be sure whether or not they belong to the skin. In this study, these intermediate values were 

mapped to whichever of the values between 0 and 255 and binarized ground truth images were obtained. 

The skin pixels labeled as 0 is assumed as positive class and nonskin pixels labeled as 255 is assumed 

as negative class. 

 

300 of 846 images in Schmugge data set are landscape images, which do not contain any skin pixels. 

Therefore, their ground truth images consist entirely of values of ‘255’. 

 

21 of 846 images are community images, which contain multiple people with diverse age, racial and gender 

characteristics and resolutions of these community images are generally higher than other images. 

 

171 of 354 images belong to female individuals with diverse age and racial characteristics. 167 of these 

171 images contain only faces and other 4 contain additionally arm, hand, leg etc. 

 

354 of 846 images belong to male individuals with diverse age and racial characteristics. 342 of these 

354 male images contain only faces and other 12 contain additionally arm, hand, leg etc. 

 

The detailed information about these images are listed in Table 1. 

 
Table 1. Detailed content explanation of Schmugge skin image data set 

 

Category 
Number of 

images 
Total no. of pixels 

Total no. of skin 

pixels in 

binarized ground 

truth images 

Total no. of 

nonskin pixels in 

binarized ground 

truth images 

Landscape 300 3,862,410 0 3,862,410 

Community 21 9,177,544 1,816,387 7,361,157 

Female 171 7,792,182 2,001,988 5,790,194 

Male 354 12,861,765 4,463,134 8,398,631 

Total 846 33,693,901 8,281,509 25,412,392 

 

 

2.2. Color Representations 

 

Colors are defined in different color spaces and converted into multi-dimensional digital or analog 

signals suitable for the purpose. The most common color spaces can be listed as Red-Green-Blue (RGB), 

Cyan-Magenta-Yellow-Black (CMYK), Luminance-Blue Projection-Red Projection (YUV), 

Luminance-Orange Blue Range- Purple Green Range (YIQ), Luminance-Blue Difference- Red 

Difference (YCbCr), Hue-Saturation-Value (HSV) and Hue-Saturation-Lightness (HSL). In this study, 
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RGB, HSV and YCbCr representations are introduced and the proposed RGB-YHS features obtained 

from these representations are explained. 

 

2.2.1. RGB representation 

 

RGB is the abbreviation of "Red-Green-Blue". RGB refers to creating various colors by mixing three 

light tones. Unlike the subtractive model "Cyan-Magenta-Yellow-Black (CMYK)", RGB is an additive 

model. This representation was firstly proposed in 1855[22] and used for color photography in 1861[23] 

by James Clerk Maxwell. RGB representation has evolved according to the technology used in 

photography, television, and the latest personal computers. The RGB notation used in this study is an 8-

bit digital RGB notation, which uses 8 bits for each color band, so each color band has 28 different 

possible shades. Since there are 3 different bands, 224 different colors can be defined. 

 

2.2.2. HSV representation 

 

Since the mid-70s, specialists and researchers in computer graphics have focused on different color 

representations which would be more suitable for human perception than RGB representation. One of these 

studied representations is “Hue-Saturation-Value (HSV)” or in other words “Hue-Saturation-Brightness 

(HSB)” whose detailed explanation was given in the Hunt’s 1977 article [24]. In Hunt’s 1977 article, 

"Hue" was expressed as a perceptual chromatic term, while "Saturation" and "Value (Brightness)" were 

expressed as perceptual achromatic terms. In this study, HSV representation has been obtained by rgb2hsv 

function of Matlab, which uses mapping algorithm based on Hexcone model, defined in Smith’s 1978 

conference paper [25]. According to Smith’s 1978 conference paper, the changing “Hue” corresponds to 

the transition along the color circle, a decrease in “Saturation” causes an increase in the whiteness of the 

color and a decrease in “Value” causes an increase in the darkness of the color. 

 

2.2.3. YCbCr representation 

 

The “Y” of YCbCr stands for luminance, “Cb” and “Cr” stand for blue difference and red difference 

respectively. YCbCr representation was derived from YUV representation by scaling and adjusting. The 

YUV model was developed for orientation of color broadcasting to black-and-white infrastructure [26]. 

YCbCr is a practical representation, which reveals the perceptual meaning of RGB representation. By 

the YCbCr representation, luminance can be defined in high resolution, which increases the accuracy in 

compressing and sub-sampling of the color images. In this study, YCbCr representation has been 

obtained by rgb2ycbcr function of Matlab, which was designed according to the definitions in 

Recommendation ITU-R BT.601-5 [27]. 

 

2.2.4. Proposed RGB-YHS representation 

 

The RGB representation is open to improve for skin segmentation, because it is affected by shadow and 

light changes, causing skin pixels to be confused with nonskin pixels. In this study, all the features of 

RGB representation are inherited, and Saturation and Value features of HSV and Luminance feature of 

YCbCr are included. The reason for choosing the luminance(Y) component of YCbCr instead of the 

Value (Brightness) component of the HSV representation is that luminance is an objective measurement 

and the brightness is the opposite subjective measurement, which is dependent to human perception. In 

fact, luminance and brightness are strongly correlated concepts, but luminance is predicted to be a 

healthier measurement than brightness. Because of this objective feature of Luminance, it is also 

preferred instead of Lightness in HSL representation, because lightness is also a subjective measurement 

unit based on human perception like brightness. The reason why the blue difference (Cb) and red 

difference (Cr) features are not preferred is that the information carried by these features can be 

calculated from the linear combination of R, G and B. Therefore, it is predicted that the classifier will 

also extract the information that it can obtain from Cb and Cr from Red-Green-Blue directly. 
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2.3. Support-Vector-Machine 

 

Support-Vector-Machine (SVM) is a classification method, which was originally proposed for two class 

problems [28]. SVM aims to find the best hyperplanes that distinguish data samples of one class from 

the data samples of the other class. In the original SVM, this separating hyperplane is assumed as linear. 

The best separating hyperplane for SVM obtains the largest margin between the two classes. Support 

vectors are samples of the classes closest to the separating hyperplane and these samples are on the 

border of the respective classes. The distance between the planes passing through the support vectors 

and parallel to the separating hyperplane determines the length of the margin. 

 

2.3.1. SVM with fine gaussian kernel 

 

The original maximum Support-Vector-Machine algorithm proposed by Vapnik in 1963 was designed as 

a linear classifier, as mentioned earlier. However, it was observed that it was not sufficient to classify real 

life data. In real life data, the hyperplane between two classes could be indented or curved, which can be 

defined only by a nonlinear function. In order to solve this problem, Aiserman, Braverman, Emmanuel 

and Rozonoer first proposed kernel trick in 1964 [29]. Bernhard Boser, Isabelle Guyon and Vladimir 

Vapnik improved this proposed kernel trick and applied it to SVM in 1992 [30]. The resulting nonlinear 

classifier was replaced by a nonlinear kernel function of each data sample. Thus, a maximum-margin 

hyperplane fit into a transformed feature space is achieved. Although the classifier has a linear hyper plane 

in the transformed feature space, it shows nonlinear property in the original sample space. The mostly used 

nonlinear kernel types can be listed as quadratic, cubic and gaussian. The other name of the gaussian kernel 

is radial basis function (RBF). The general equation of the gaussian kernel is given in (1). 

 

                                                                               k(x⃗ i, x⃗ j) = e
−

‖x⃗⃗ i−x⃗⃗ j‖
2

2σ2                                                           (1) 

 

In the fine tuning of the Gaussian kernel, Matlab offers 3 different options: coarse, medium and fine. 

The fine gaussian kernel used in this study allows for a detailed separation of classes from each other 

by defining kernel scale as √𝑃/4, where P is the number of predictors. 

 

3. COMPARATIVE RESULTS 

 

As shown in Table 1, Schmugge skin image data set contains 33,693,901 number of pixels, where 

8,281,509 of them are skin pixels and 25,412,392 of them are nonskin pixels. Due to these numbers, it 

can be said that 24.58% of pixels belong to skin and 75.42% of pixels belong to nonskin regions, which 

means that the skin class (positive class) is minority class and nonskin class (negative class) is majority 

class. These ratios cause unbalanced classification problem. 

 

In this study, the unbalanced classification problem is solved by training the fine gaussian SVM with 

equal number of randomly selected skin and nonskin pixels. 16564 random pixels whose 8282 of them 

belong to skin and 8282 of them nonskin pixels are chosen to train the SVM. When the pixels are 

randomly selected, it is guaranteed that it is absolutely unknown which images they belong to, and the 

chosen pixels are also shuffled among themselves so that the classifier does not memorize. 

 

The size of train set is 0.05% of the size of entire set, which means shallow learning is applied to the 

SVM with fine gaussian kernel. On the other hand, the trained classifier is tested by whole set of 

landscape images, whole set of community images, whole set of female images, whole set of male 

images and finally entire Schmugge data set, respectively. 

 

An example for a skin segmentation on a landscape image is illustrated in Figure 1. 
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Figure 1. Fine Gaussian SVM predictions for a landscape image (a) Original image (b) Ground truth  

   (c) Prediction by RGB features (d) Prediction by HSV features (e) Prediction by YCbCr features  

   (f) Prediction by RGB-YHS features 

 

All classifiers based on RGB, HSV, YCbCr and RGB-YHS features mistakenly detected some skin 

pixels due to their similarity to the skin pixels in the training set. Especially, YCbCr based Fine Gaussian 

SVM confused for dark beach pixels in the given example. Overall performances of the fine gaussian 

SVM for 300 landscape images are given in Table 2. 
 

Table 2. Performances of SVM with fine gaussian kernel for landscape images 

 

Features 
Average 

Accuracy 

Average 

Sensitivity 

Average 

Specificity 

Average  

F1 score 

RGB 0.8986 1 0.8986 0.0535 

HSV 0.8920 1 0.8920 0.0535 

YCbCr 0.8973 1 0.8973 0.0502 

RGB-YHS 0.8946 1 0.8946 0.0500 

 

RGB-YHS features give a performance between HSV and RGB for landscape images via accuracy and 

specificity. The average sensitivities of all classifiers are 1 for landscape images, because there is no 

positive class sample to sense in landscape images. The existence of false positives causes F1 scores to 

converge 0. An example for a skin segmentation on a community image is illustrated in Figure 2. 

 
 

Figure 2. Fine Gaussian SVM predictions for a community image (a) Original image (b) Ground truth  

   (c) Prediction by RGB features (d) Prediction by HSV features (e) Prediction by YCbCr features  

   (f) Prediction by RGB-YHS features 



Fidan and Kaya / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. Vol. 21 – 2020 

 

50 

For the given sample for community image, RGB-YHS features are seen to optimize the balance 

between sensitivity and specificity by increasing both true positives and false negatives.  The detailed 

performances for 21 community images are given in Table 3. 

 
Table 3. Performances of SVM with fine gaussian kernel for community images 

 

Features 
Average 

Accuracy 

Average 

Sensitivity 

Average 

Specificity 

Average  

F1 score 

RGB 0.8575 0.7473 0.8965 0.6708 

HSV 0.8597 0.7622 0.8947 0.6791 

YCbCr 0.8488 0.7291 0.8892 0.6466 

RGB-YHS 0.8551 0.7450 0.8922 0.6655 

 

According to Table 3, proposed RGB-YHS features show a performance between HSV and YCbCr for 

community images. An example for a skin segmentation on a female image is illustrated in Figure 3. 

 

 
Figure 3. Fine Gaussian SVM predictions for a female individual image (a) Original image (b) Ground truth  

   (c) Prediction by RGB features (d) Prediction by HSV features (e) Prediction by YCbCr features  

   (f) Prediction by RGB-YHS features 

 

The first thing to notice when looking at Figure 3 is that the fine gaussian SVM classifier, trained with 

YCbCr features, perceives hair as skin. The proposed RGB-YHS features decrease the false positives 

on lips and eyes. On the other hand, RGB-YHS cause false positives on nostrils, which can only be 

avoided by RGB features. The detailed performances for 171 female images are given in Table 4. 
 

Table 4. Performances of SVM with fine gaussian kernel for female images 

 

Features 
Average 

Accuracy 

Average 

Sensitivity 

Average 

Specificity 

Average  

F1 score 

RGB 0.8707 0.8906 0.8587 0.8036 

HSV 0.8728 0.8855 0.8651 0.8054 

YCbCr 0.8440 0.9224 0.8005 0.7943 

RGB-YHS 0.8727 0.8928 0.8586 0.8072 

 

According to Table 4, it can be said that best F1 score is obtained by proposed RGB-YHS features, 

which means that RGB-YHS features optimize the balance between sensitivity and specificity. On the 

other hand, YCbCr gives maximum sensitivity and minimum specificity in female images. An example 

for a skin segmentation on a male image is illustrated in Figure 4. 
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Figure 4. Fine Gaussian SVM predictions for a male individual image (a) Original image (b) Ground truth  

   (c) Prediction by RGB features (d) Prediction by HSV features (e) Prediction by YCbCr features  

   (f) Prediction by RGB-YHS features 

 

The fine gaussian SVM classifier, trained with YCbCr features, also perceives hair as skin for male 

image as in the female image. The proposed RGB-YHS features decrease the false positives on lips and 

eyes as in the female image. The shadow under the chin and above the neck was mistakenly perceived 

as a nonskin region for all other features except YCbCr. The detailed performances for 354 male images 

are given in Table 5. 

 
Table 5. Performances of SVM with fine gaussian kernel for male images 

 

Features 
Average 

Accuracy 

Average 

Sensitivity 

Average 

Specificity 

Average  

F1 score 

RGB 0.8676 0.8962 0.8355 0.8392 

HSV 0.8702 0.8950 0.8427 0.8411 

YCbCr 0.8476 0.9249 0.7748 0.8297 

RGB-YHS 0.8681 0.9036 0.8296 0.8414 

 

Best F1 score is obtained also by proposed RGB-YHS features for male images, which means that RGB-

YHS features optimize the balance between sensitivity and specificity as in female images. On the other 

hand, YCbCr gives also maximum sensitivity and minimum specificity in male images. The detailed 

performances for all 846 images in Schmugge skin image data set are given in Table 6. 

 
Table 6. Performances of SVM with fine gaussian kernel for entire Schmugge skin image data set 

 

Features 
Average 

Accuracy 

Average 

Sensitivity 

Average 

Specificity 

Average  

F1 score 

RGB 0.8790 0.9270 0.8641 0.5498 

HSV 0.8782 0.9258 0.8660 0.5512 

YCbCr 0.8645 0.9450 0.8263 0.5421 

RGB-YHS 0.8781 0.9305 0.8601 0.5501 

 

According to Table 6, the proposed RGB-YHS features show similar performance with HSV in terms 

of accuracy. The proposed RGB-YHS show better sensitivity than RGB and HSV. The sensitivity of 

RGB-YHS is less than YCbCr, but the specificity of RGB-YHS is much better than YCbCr. The F1 

score of RGB-YHS is better than RGB and YCbCr. 
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4. CONCLUSIONS 
 

The advantage of the proposed RGB-YHS features is especially evident in male and female pictures 

containing only facial pixels. The success of the proposed RGB-YHS in community images was only 

able to surpass YCbCr, but this problem can be solved by training the fine gaussian SVM classifier with 

more samples of community images in future studies. In addition, the applied shallow learning should 

be deepened in order to prevent the wrong skin pixel detection in the landscape pictures in future studies. 

It is not prevented that intense shadows on the skin cause false nonskin pixel recognition in all color 

representations. In this case, it is thought that color information is not sufficient. This situation is thought 

to be solved by a region-based study, not pixel-based study. Although region-based studies are available 

in the literature, the success of this proposed research can also be increased in future studies by including 

region-based approaches. It is thought that high performance will be achieved with deep learning 

methods, but due to the nature of the deep learning, it will increase the computational complexity of the 

training stage to very high values. By conclusion, the study conducted with the proposed method 

showing promising performances on the selected dataset is considered to be open to development by 

expanding the proposed features, improving the classifier, and using a more comprehensive training set. 
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