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ABSTRACT 

 
In this research, we discuss the construction of analytic solution of non-homogenous initial boundary 
value problem including PDEs of fractional order. Since non-homogenous initial boundary value 

problem involves local fractional derivative, it has classical initial and boundary conditions. By means 
of separation of variables method and the inner product defined on 𝐿2[0, 𝑙], the solution is constructed 
in the form of a Fourier series with respect to the eigenfunctions of a corresponding Sturm-Liouville 

eigenvalue problem including local fractional derivative used in this study. Illustrative example 
presents the applicability and influence of separation of variables method on fractional mathematical 
problems. 
 

Keywords: Local fractional derivative, Time-fractional diffusion equation, Initial-boundary-value 
problems, Spectral method, Non-homogenous Dirichlet boundary conditions 
 

1. INTRODUCTION 

Since mathematical models including fractional derivatives play a vital role fractional derivatives 
draw a growing attention of many researchers in various branches of sciences. Therefore there are 
many different fractional derivatives such as Caputo, Riemann-Liouville, Atangana-Baleanu. 
However these fractional derivatives don’t satisfy most important properties of ordinary derivative 
which leads to many diffuculties to analyze or obtain the solution of fractional mathematical models. 

As a result many scientists focus on defining new fractional derivatives to cover the setbacks of the 
defined ones. Moreover the success of mathematical modelling of systems or processes depends on 
the fractional derivative, it involves, since the correct choice of the fractional derivative allows us to 
model the real data of systems or processes accurately.  

 

In order to the define new fractional derivatives, various methods exists and these ones are classfied 
based on their features and formation such as nonlocal fractional derivatives and local fractional 
derivatives. From a physical aspect, the intrinsic nature of the physical system can be reflected to the 
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mathematical model of the system by using fractional derivatives. Therefore the solution of the 

fractional mathematical model is in excellent agreement with the predictions and experimental 
measurement of it. The systems whose behaviour is non-local can be modelled better by fractional 
mathematical models and the degree of its non-locality can be arranged by the order of fractional 
derivative. In order to analyze the diffusion in a non-homogenous medium that has memory effects it 
is better to analyze the solution of the fractional mathematical model for this diffusion. As a result in 
order to model a process, the correct choices of fractional derivative and its order must be determined.  

 
Rheology is known as the scientific study of material diffusion. In rheology, mathematical models of 
diffusion process are employed to analyze the behaviour of materials which allow us to classify and 
compare them. In this study, we focus on fractional diffusion problem including time fractional 
derivative. The novelty of this research is that the materials can be classified as liquid, gas and 

temperature based on the order of time fractional derivative. For instance, fractional diffusion model 
of materials which behaves slower, the order of time fractional derivative is between zero and one and 
the order of time fractional derivative for materials which behaves faster is greater than one. Moreover 
based on the complexity of the material, suitable fractional derivative need to be chosen to facilitate 
the correct analysis of the material. In this study, we classify non-complex materials therefore local 
fractional derivative is used. Mathematical model of diffusion problems including local fractional 

derivatives gives better results than ones including integer order derivatives [1]. There are many 
published work on the diffusion of various matters in science especially in fluid mechanics and gas 
dynamics [2-7].  
 

2. MAIN RESULTS 

 

The proportional derivative is a newly defined fractional derivative which is generally defined as 
 

𝐷𝛼
𝑃 𝑓(𝑡) = K1(α,t) f(t) + K0(α,t)f ′(t),             (1)  

 
where the functions 𝐾0 and 𝐾1 satisfy certain properties in terms of limit [8] and 𝑓 is a differentiable 

function. Notice that this derivative can be regarded as an extension of conformable derivative and is 
used in control theory. 
 
In this study we focus on obtaining the solution of following fractional diffusion equation including 

various proportional derivative operator by making use of the separation of variables method: 
 

𝐷𝑡
𝛼𝑃 𝑢(𝑥, 𝑡) = γ2𝑢𝑥𝑥(𝑥, 𝑡),              (2)  

𝑢(0, 𝑡) = 𝑢0 ,𝑢(𝑙, 𝑡) = 𝑢1,               (3)  

𝑢(𝑥, 0) = 𝑓(𝑥)                (4)  
 

where 0 < α < 1, γ ∈ ℝ,0 ≤  𝑥 ≤  𝑙,  0 ≤  𝑡 ≤  𝑇,  𝑢0 and 𝑢1 are constants. Here we use the following 
forms of the proportional derivatives: 
 

𝐷𝛼
𝑃 𝑓(𝑡) = 𝐾1(𝛼) 𝑓(𝑡) + 𝐾0(𝛼)𝑓′(𝑡).             (5)  

 
Especially we consider the following ones: 
 

𝐷1
𝑃

α𝑓(𝑡) = (1 − α) 𝑓(𝑡) + α𝑓′(𝑡)               (6)  
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and 

 
𝐷2

𝑃
α𝑓(𝑡) = (1 − α2) 𝑓(𝑡) + α2𝑓′(𝑡).              (7) 

 
Let us consider the following problem including the proportional derivative in (6)  
 

𝐷𝑡
𝛼𝑃 𝑢(𝑥, 𝑡) = γ2𝑢𝑥𝑥(𝑥, 𝑡),         (8) 

𝑢(0, 𝑡) = 𝑢0 ,𝑢(𝑙, 𝑡) = 𝑢1,               (9)  

𝑢(𝑥, 0) = 𝑓(𝑥),                           (10)  
 

where 0 < 𝛼 < 1, 𝛾 ∈ ℝ, 0 ≤  𝑥 ≤  𝑙 ,  0 ≤  𝑡 ≤  𝑇,  𝑢0 and 𝑢1 are constants. 
 
Before investigating the solution of the problem (8)-(10), let us define the function 𝑣(𝑥, 𝑡) which 

homogenizes boundary conditions (9) as follows: 
 

𝑣(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) +
𝑥

𝑙
(𝑢0 − 𝑢1) − 𝑢0 .                        (11)  

 
Via (11), the problem (8)-(10) turns into the following problem (12)-(14). 
 

 𝐷𝑡
𝛼𝑃 𝑣(𝑥, 𝑡) = γ2𝑣𝑥𝑥(𝑥,𝑡),                    (12) 

  𝑣(0, 𝑡) = 0, 𝑣(𝑙, 𝑡) = 0                     (13) 

  𝑣(𝑥, 0) = 𝑓(𝑥) +
𝑥

𝑙
(𝑢0 − 𝑢1) − 𝑢0,                   (14) 

where 0 < 𝛼 < 1, 𝛾 ∈ ℝ, 0 ≤  𝑥 ≤  𝑙 ,  0 ≤  𝑡 ≤  𝑇,  𝑢0 and 𝑢1 are constants. 
 
By means of separation of variables method, The generalized solution of above problem is constructed 
in analytical form. Thus a solution of problem (12)-(14) have the following form: 

 
𝑣(𝑥, 𝑡; α) = 𝑋(𝑥)𝑇(𝑡;α)                     (15) 
where 0 ≤  𝑥 ≤  𝑙 ,  0 ≤  𝑡 ≤  𝑇. 

 
Plugging (15)into (12) and arranging it, we have 
 

𝐷𝑃
𝑡
α(𝑇(𝑡;α))

𝑇(𝑡;α)
= γ2 𝑋′′ (𝑥)

𝑋(𝑥)
= −λ2.                    (16) 

 
Equation (16) produce a fractional differential equation with respect to time and an ordinary 
differential equation with respect to space. The  first ordinary differential equation is obtained by 
taking the equation on the right hand side of Eq. (16). Hence with boundary conditions (13), we have 
the following problem:  

 
𝑋′′(𝑥) + 𝜆2𝑋(𝑥) = 0,                      (17) 
𝑋(0) = 𝑋(𝑙) = 0.                     (18) 

 
The solution of eigenvalue problem (17)-(18) is accomplished by making use of the exponential 
function of the following form: 
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𝑋(𝑥) = 𝑒𝑟𝑥.                      (19) 

 
Hence the characteristic equation is computed in the following form: 
 
𝑟2 + 𝜆2 = 0.                       (20) 

 
Case 1: If 𝜆 = 0, then the characteristic equation have coincident solutions 𝑟1,2 = 0, leading to the 

general solution of the eigenvalue problem (17)-(18) have the following form: 
 
𝑋(𝑥) = 𝑘1𝑥 + 𝑘2.   

         
The first boundary condition yields 
 
𝑋(0) = 𝑘2 = 0 ⇒ 𝑘2 = 0.                     (21) 

 
which leads to the following solution 
 
𝑋(𝑥) = 𝑘1𝑥.                      (22) 

  
Similarly second boundary condition leads to 
 
𝑋(𝑙) = 𝑘1𝑙 = 0 ⇒ 𝑘1 = 0.                    (23) 

 
which implies that 
 

𝑋(𝑥) = 0.                      (24) 
 
As a result, the characteristic equation (20) can not have the solution 𝜆 = 0. 

 
Case 2. If 𝜆 > 0, the Eq. (20) have two distinct real roots 𝑟1, 𝑟2  yielding the general solution of the 
problem (17)-(18) in the following form: 

 
𝑋(𝑥) = 𝑐1𝑒𝑟1𝑥 + 𝑐2𝑒𝑟2𝑥.                     (25) 
 

By making use of the first boundary condition, we have 
 
𝑋(0) = 𝑐1 + 𝑐2 = 0.  𝑐1 = −𝑐2.                   (26) 
 

From second boundary condition 
 

𝑋(𝑙) = (−𝑐2)𝑒𝑟1𝑙 + 𝑐2𝑒𝑟2𝑙 = 𝑐2(−𝑒𝑟1𝑙 + 𝑒𝑟2𝑙) = 0  
  
Which indicates that 𝑐2 = 0. Hence 𝑐1 = 0 which implies that 𝑋(𝑥) = 0 which implies that there is 

not any solution for 𝜆 > 0. 
 
Case 3: If 𝜆 < 0, then the characteristic equation have the solutions 
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𝑟1,2 = ∓𝑖𝜆                      (27) 

 
which leads to the general solution of the eigenvalue problem (17)-(18) have the following form: 

 
𝑋(𝑥) = 𝑐1 cos(𝜆𝑥) + 𝑐2 sin(𝜆𝑥).                     (28) 
 
By making use of the first boundary condition we have 

 
𝑋(0) = 𝑐1 = 0 ⇒ 𝑐1 = 0.                     (29) 
 
Hence the solution becomes 

 
𝑋(𝑥) = 𝑐2 sin(𝜆𝑥).                      (30) 
 

Similarly last boundary condition leads to 
 
𝑋(𝑙) = 𝑐2 sin(𝜆𝑙) = 0                      (31) 
 

which implies that 
 
sin(𝜆𝑙) = 0.                      (32) 
 

Let 𝑤𝑛 = λn l. The solutions of (32) can be denoted by means of 𝑤𝑛 = 𝑛𝜋, 𝑛 = 0,1,2,3, … which are 
eigenvalues of the problem (17)-(18), as follows: 
 

𝜆𝑛 =
𝑤𝑛

2

𝑙2 , 0 < 𝑤1 < 𝑤2 < 𝑤3 < ⋯ , 𝑛 = 0,1,2,3, …                  (33) 

 
As a result the solution is obtained as follows: 

𝑋𝑛(𝑥) = 𝑐𝑛 sin (𝑤𝑛 (
𝑥

𝑙
)) = sin (𝑤𝑛 (

𝑥

𝑙
)), 𝑛 = 0,1,2,3, …                   (34) 

 
The second equation in (16) for eigenvalue 𝜆𝑛 yields the ordinary differential equation below: 

 
𝐷𝑃

𝑡
α(𝑇(𝑡;𝛼))

𝑇(𝑡;𝛼)
= −𝛾2𝜆2,                      (35) 

 
𝐾1(α) 𝑇𝑛(𝑡;𝛼)+𝐾0(α)𝑇𝑛′(𝑡;𝛼)

𝑇𝑛(𝑡;𝛼)
= −𝛾2𝜆𝑛

2, 

𝐾0(α)𝑇𝑛′(𝑡; 𝛼) + (𝛾2𝜆𝑛
2 + 𝐾1(α))𝑇𝑛(𝑡; 𝛼) = 0  

 
which yields the following solution  
 

𝑇𝑛(𝑡;𝛼) = 𝑒𝑥𝑝 (−
𝛾2𝜆𝑛

2+𝐾1(α)

𝐾0(α)
𝑡), 𝑛 = 0,1,2,3, …                  (36) 

 
The solution for every eigenvalue 𝜆𝑛 is constructed as 
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𝑣𝑛(𝑥, 𝑡; 𝛼) = 𝑋𝑛(𝑥)𝑇𝑛(𝑡;𝛼) = 𝑒𝑥𝑝 (−
𝛾2𝜆𝑛

2+𝐾1(α)

𝐾0(α)
𝑡) sin (𝑤𝑛 (

𝑥

𝑙
)), 𝑛 = 1,2,3, …                 (37) 

 
which leads to the following general solution 
 

𝑣(𝑥, 𝑡; 𝛼) = ∑ 𝑑𝑛 sin (𝑤𝑛 (
𝑥

𝑙
))∞

𝑛=1 𝑒𝑥𝑝 (−
𝛾2𝜆𝑛

2 +𝐾1(α)

𝐾0(α)
𝑡).                      (38) 

 
Note that it satisfies boundary condition and fractional differential equation.  
 
The coefficients of general solution are established by taking the following initial condition into 
account: 
 

𝑣(𝑥, 0) = 𝑓(𝑥) +
𝑥

𝑙
(𝑢0 − 𝑢1) − 𝑢0 = ∑ 𝑑𝑛 sin (𝑤𝑛 (

𝑥

𝑙
))∞

𝑛=1 .                  (39) 

 
The coefficients 𝑑𝑛 for 𝑛 = 0,1,2,3, … determined by the help of inner product defined on 𝐿2[0, 𝑙]: 
 

𝑑𝑛 =
2

𝑙
[∫ sin(

𝑛𝜋𝑥

𝑙
)𝑓(𝑥)𝑑𝑥

𝑙

0
+ (𝑢0 − 𝑢1) ∫ sin (

𝑛𝜋𝑥

𝑙
)

𝑥

𝑙
𝑑𝑥

𝑙

0
− 𝑢0 ∫ sin (

𝑛𝜋𝑥

𝑙
) 𝑑𝑥

𝑙

0
].                (40) 

 
Substituting (40) in (38) leads to the solution of the problem (12)-(14). By making use of (11) and this 
solution we obtain the general solution of the problem (8)-(10). 
 

𝑢(𝑥, 𝑡) = 𝑢0 +
𝑥

𝑙
(𝑢1 − 𝑢0) + ∑ 𝑑𝑛 sin(𝑤𝑛 (

𝑥

𝑙
))∞

𝑛=1 𝑒𝑥𝑝 (−
𝛾2𝜆𝑛

2 +𝐾1(α)

𝐾0(α)
𝑡).                (41) 

 
If 𝛾2 is replaced by the fractional diffusion coefficient 𝑐2𝜏𝛼

1−𝛼 where 𝑐2 is ordinary diffusion 

coefficient and τ𝛼 is a time constant the solution takes the following form: 

𝑢(𝑥, 𝑡; 𝛼) = 𝑢0 +
𝑥

𝑙
(𝑢1 − 𝑢0) + ∑ 𝑑𝑛 sin (𝑤𝑛 (

𝑥

𝑙
))∞

𝑛=1 𝑒𝑥𝑝 (−
𝑐2𝜏𝛼

1−𝛼𝜆𝑛
2 +𝐾1(α)

𝐾0(α)
𝑡).               (42) 

 
3. ILLUSTRATIVE EXAMPLE 

 

In this section, we first consider the following non-homogenous initial boundary value problem: 
 
𝑢𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡),      

𝑢(0, 𝑡) = 1 , 𝑢(2, 𝑡) = 1,  

𝑢(𝑥, 0) = − sin(𝜋𝑥) + 1                     (43) 
 
which has the solution in the following form: 
 

𝑢(𝑥, 𝑡) = −sin(𝜋𝑥) 𝑒−𝜋2𝑡 + 1                    (44) 
 
where 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑡 ≤ 𝑇.  

 
Example 1. Now let the following problem called fractional heat-like problem be taken into 
consideration: 
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𝐷1
𝑃

𝑡
α𝑢(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡), 𝑃𝑡α(𝑥,𝑡)=𝑢𝑥𝑥(𝑥,𝑡),                                                                                                                                  (45)   

𝑢(0, 𝑡) = 1, 𝑢(2, 𝑡) = 1,                     (46) 

𝑢(𝑥, 0) = − sin(𝜋𝑥) + 1                       (47) 
 
where 0 < 𝛼 < 1,  0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑡 ≤ 𝑇.  

  
To make the boundary condition (46) homogenous, we apply the transformation 
 
𝑣(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 1                     (48) 

 
to the above problem which leads to the following fractional heat-like problem 
 

𝐷1
𝑃

𝑡
α𝑣(𝑥, 𝑡) = 𝑣𝑥𝑥(𝑥, 𝑡),   𝑃𝑡α(𝑥,𝑡)=𝑣𝑥𝑥(𝑥,𝑡),                                                                                              (49)   

𝑣(0, 𝑡) = 0 , 𝑣(2, 𝑡) = 0,                           (50) 
𝑣(𝑥, 0) = − sin(𝜋𝑥)                       (51) 

 
where 0 < 𝛼 < 1, 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑡 ≤ 𝑇. It is clear from Eq. (38) that the solution of above problem 

can be obtained in the following form: 
 

𝑣(𝑥, 𝑡; 𝛼) = ∑ 𝑑𝑛 sin (
𝑛π𝑥

2
)∞

𝑛=1 𝑒𝑥𝑝 (−
𝑛2π2+4−4𝛼

4α
𝑡).                       (52) 

 

Plugging 𝑡 =  0 in to the general solution (52) and making equal to the initial condition (51) we have 
 

− sin(π𝑥) = ∑ 𝑑𝑛 sin (
𝑛π𝑥

2
)∞

𝑛=1 .                         (53) 

The coefficients 𝑑𝑛 for 𝑛 = 0,1,2,3, … are determined by the help of the inner product as follows: 

 

𝑑𝑛 = ∫ − sin (
𝑛𝜋𝑥

2
) sin(𝜋𝑥) 𝑑𝑥

2

0
. 

 
𝑑𝑛 = 0 for 𝑛 ≠ 2. For 𝑛 = 2, 𝑑2 is obtained as follows: 

 

⟹ 𝑑2 = − ∫ sin2(𝜋𝑥) 𝑑𝑥
2

0
= −

1

2
(𝑥 +

sin(2𝜋𝑥)

4𝜋
)|

𝑥=0

𝑥=2

= −1.                 (54) 

Substituting (54) in (52) leads to the solution of the problem (49)-(51). 
 

𝑣(𝑥, 𝑡; 𝛼) = − sin(𝜋𝑥) 𝑒𝑥𝑝 (−
π2+1−𝛼

α
𝑡).                        (55) 

 
By making use of (48) and the solution (55), we obtain the general solution of the problem (45)-(47) 
as follows: 
 

u(𝑥, 𝑡; α) = − sin(π𝑥) exp (−
π2+1−α

α
𝑡) + 1.                  (56) 

 
It is important to note that plugging 𝛼 = 1 in to the solution (56) gives the solution (44) which 

confirm the accuracy of the method we apply. 
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Example 2. Now let the following problem called fractional heat-like problem be taken into 

consideration: 
 

𝐷2
𝑃

𝑡
α𝑢(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡), 𝑃𝑡α(𝑥,𝑡)=𝑢𝑥𝑥(𝑥,𝑡),                                                                                                          (57)   

𝑢(0, 𝑡) = 1, 𝑢(2, 𝑡) = 1,                     (58) 

𝑢(𝑥, 0) = − sin(𝜋𝑥) + 1                       (59) 

 
where 0 < 𝛼 < 1, 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑡 ≤ 𝑇. To make the boundary condition (58) homogenous, we 
apply the transformation 
 

𝑣(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 1                     (60) 
 
to the above problem which leads to the following fractional heat-like problem 
 

𝐷2
𝑃

𝑡
α𝑣(𝑥, 𝑡) = 𝑣𝑥𝑥(𝑥, 𝑡),   2𝑃𝑡α(𝑥,𝑡)=𝑣𝑥𝑥(𝑥,𝑡),                                                                                                         (61)   

𝑣(0, 𝑡) = 0 , 𝑣(2, 𝑡) = 0,                           (62) 

𝑣(𝑥, 0) = − sin(𝜋𝑥)                       (63) 
 
where 0 < 𝛼 < 1, 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑡 ≤ 𝑇. It is clear from Eq. (38) that the solution of above problem 

can be obtained in the following form: 
 

𝑣(𝑥, 𝑡; 𝛼) = ∑ 𝑑𝑛 sin (
𝑛π𝑥

2
)∞

𝑛=1 𝑒𝑥𝑝 (−
𝑛2π2+4−4α2

4α2 𝑡).                      (64) 

 
As in Example 1, after similar computations the solution can be constructed as follows: 

u(𝑥, 𝑡; α) = − sin(π𝑥) exp (−
π2+1−α2

α2 𝑡) + 1.                  (65) 

 
It is important to note that plugging 𝛼 = 1 in to the solution (65) gives the solution (44) which 
confirm the accuracy of the method we apply. The graphics of solutions, obtained by MATLAB 

2016b, for Ex.1, Ex. 2 and Problem (43) in 2D and 3D are given in Fig.1 and Fig.2 respectively.  
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Figure 1. The graphics of solutions for Ex. 1 and Ex. 2. in 2D at x=0.1 for α = 0.8. 
 

 

Figure 2. The graphics of solutions for Ex. 1 and Ex. 2  in 3D for α = 0.8. 

 
4. CONCLUSION 

 
In this study, the analytic solution of time fractional diffusion problem including local fractional 

derivatives in one dimension is constructed analytically in Fourier series form. Taking the separation 
of variables into account, the solution is formed in the form of a Fourier series with respect to the 
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eigenfunctions of a corresponding Sturm-Liouville eigenvalue problem including fractional derivative 

in a proportional sense. 
 
Based on the analytic solution, we reach the conclusion that diffusion processes decays exponential 
with time until initial condition is reached. As α tends to 0, the rate of decaying increases. This 

implies that in the mathematical model for diffusion of the matter which has small diffusion rate the 
value of α must be close to 0. This model can account for various diffusion processes of various 
methods.   
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