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Abstract 

In this paper, we give some basic properties in order to use statistical epi-convergence more efficiently 

in future studies. Such situations are studied: Uniform statistical convergence of sequence of functions, 

statistical epi-limit of compound of sequence of functions, statistical epi-limit of the sum of sequence of 

functions, the property of epi-limit function if the sequence of functions are lower semi-continuous and 

the convexity of epi-limit function if each function in the sequence is convex. 

 

İstatistiksel Epi-Yakınsaklık ile İlgili Temel Özellikler 

Anahtar kelimeler 

Epi-Yakınsaklık; 

İstatistiksel Yakınsaklık; 

Epigraf; Fonksiyon 

Dizileri 

Öz 

Bu çalışmada, istatistiksel epi-yakınsaklığın sonraki çalışmalarda daha verimli kullanılabilmesi için bazı 

temel özelliklere yer verildi. Bir fonksiyon dizisinin düzgün istatistiksel yakınsaklık durumu, fonksiyon 

dizilerinin bileşkesinin istatistiksel epi-limiti, fonksiyon dizilerinin toplamının istatistiksel epi-limiti, 

fonksiyon dizisinin alttan yarı sürekli olması halinde epi-limit fonksiyonunun özelliği ve fonksiyon 

dizisindeki her bir fonksiyonun konveks olması halinde epi-limit fonksiyonunun konveksliği gibi durumlar 

çalışıldı. 
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1. Introduction 

Wijsman (1964, 1966) studied epi-convergence in 

1964 for the first time. Epi-convergence was called 

infimal convergence at that time. After Wijsman, 

Mosco (1969) used epi-convergence on variational 

inequalities, Joly (1973) on topological structures, 

Salinetti and Wets (1977) on equisemicontinuous 

convex functions, Attouch (1977) on convex 

functions, McLinden and Bergstrom (1981) on 

conservation of epi-convergence on convex 

functions. Moreover, epi-convergence was called 

 Γ-convergence by Maso (1993). Wets (1980) called 

it  epi-convergence in 1980, firstly. Epi-convergence 

offers solutions for stochastic optimization 

problems, variational problems and partial 

differential equations. 

Zygmund (1979) studied statistical convergence in 

1935 for the first time. Then it is investigated by 

other mathematicians including Fast (1951), 

Steinhaus (1951) and Schoenberg (1959). The 

definitions of pointwise and uniform statistical 

convergence of real-valued functions were given by 

Gökhan and Güngör (2002, 2005) and by Duman 

and Orhan (2004) independently. Statistical limit 

inferior and superior were studied by Fridy and 

Orhan (1997). Statistical limit points and cluster 

points were defined by Fridy (1993). Furthermore 

statistical lower and upper limits of closed sets 

were defined and characterized by Talo et al. 

(2016). 

2. Preliminaries 

In this part, fundamental definitions and theorems 

will be given. First of all, let (𝑋, 𝑑) be a metric 

space and 𝑓, (𝑓𝑛) are functions defined on 𝑋 with 

𝑛 ∈ ℕ. If it is not mentioned explicitly the symbol 𝑑 

stands for the metric on 𝑋. 

 Let 𝐾 ⊆ ℕ and if the limit 

 𝛿(𝐾) = 𝑙𝑖𝑚𝑛→∞
1

𝑛
|{𝑘 ≤ 𝑛: 𝑘 ∈ 𝐾}|  
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exists then it is called asymptotic density of 𝐾. 

|{𝑘 ≤ 𝑛: 𝑘 ∈ 𝐾}| tells the number of elements of 𝐾 

less than or equal to n (Anastassiou and Duman 

2011). 

 If 𝛿(𝐾1) = 𝛿(𝐾2) = 1  then, 

 𝛿(𝐾1 ∩ 𝐾2) = 𝛿(𝐾1 ∪ 𝐾2) = 1. 

 If 𝛿(𝐾1) = 𝛿(𝐾2) = 0, then, 

 𝛿(𝐾1 ∩ 𝐾2) = 𝛿(𝐾1 ∪ 𝐾2) = 0. 

 Let (𝑥𝑛) be a sequence of real numbers. If ∀𝜀 > 0,  

∃𝑥0 such that 

𝑙𝑖𝑚
𝑘

1

𝑘
|{𝑛 ≤ 𝑘: |𝑥𝑛 − 𝑥0| ≥ 𝜀}| = 0, 

then (𝑥𝑛) is statistically convergent to 𝑥0. 

 Let 𝑛 be a positive integer and 𝑥 = (𝑥𝑛) be a 

sequence of real numbers. Define the sets 𝐵𝑥  and 

𝐴𝑥  as  

 𝐵𝑥 ≔ {𝑏 ∈ ℝ: 𝛿({𝑛: 𝑥𝑛 > 𝑏}) ≠ 0},    

 𝐴𝑥: = {𝑎 ∈ ℝ: 𝛿({𝑛: 𝑥𝑛 < 𝑎}) ≠ 0}. 

Then statistical limit inferior and superior of 𝑥 =

(𝑥𝑛) is given by 

𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓 𝑥: = {
𝑖𝑛𝑓𝐴𝑥 𝑖𝑓 𝐴𝑥 ≠ ∅,

+∞ 𝑖𝑓 𝐴𝑥 = ∅  

𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝 𝑥: = {
𝑠𝑢𝑝𝐵𝑥 𝑖𝑓 𝐵𝑥 ≠ ∅,

−∞ 𝑖𝑓 𝐵𝑥 = ∅. 

For every 𝜀 > 0, a sequence of functions (𝑓𝑛) is 

uniformly statistically convergent to 𝑓 on a set 𝑆 if,  

𝑙𝑖𝑚
𝑘

1

𝑘
|{𝑛 ≤ 𝑘: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥 ∈ 𝑆}|

= 0. 

For a sequence of functions 𝑓𝑛: 𝑋 → ℝ, if it is 

statistically alpha convergent to a function 𝑓, then 

it is uniformly statistically convergent to 𝑓 (Caserta 

and Ko�̆�inac 2012). 

Let 𝜎 ∈ 𝑋 and (𝑥𝑛)  is a sequence. If there exists a 

set 𝐾 = {𝑛1 < 𝑛2 < 𝑛3 <. . . } with 𝛿(𝐾) ≠ 0 

satisfying 𝑥𝑛𝑘
→ 𝜎 while 𝑘 → ∞, then 𝜎  is a 

statistical limit point of (𝑥𝑛). Let Λ𝑥  denote the set 

of all statistical limit points of (𝑥𝑛).  

Let 𝜇 ∈ 𝑋 and (𝑥𝑛)  is a sequence of real numbers. 

If for any 𝜀 > 0,  𝜇 is a statistical cluster point of 

(𝑥𝑛) , then the following statement holds 

𝛿({𝑛 ∈ ℕ: 𝑑(𝑥𝑛, 𝜇) < 𝜀}) ≠ 0. 

Γ𝑥 will denote the set of all statistical cluster points 

of (𝑥𝑛). 

Let 𝛾 ∈ 𝑋 and (𝑥𝑛)  is a sequence of real numbers. 

If there exists a set 𝐾 = {𝑛1 < 𝑛2 < 𝑛3 <. . . } 

satisfying 𝑥𝑛𝑘
→ 𝛾 while 𝑘 → ∞, then 𝛾 is a limit 

point of (𝑥𝑛). The set of all limit points of (𝑥𝑛) will 

be denoted by 𝐿𝑥 . 

Obviously we have Λ𝑥 ⊆ Γ𝑥 ⊆ 𝐿𝑥 . 

Following definitions are statistical inner and outer 

limits on the concept of set convergence which is 

fundamental to define statistical epi-limit using 

sets. In this paper, we deal with Painlev𝑒′-

Kuratowski (1958) convergence and actually its 

statistical version will be studied here which is 

defined by Talo et al. (2016). Now we start with the 

following collections of subsets of ℕ. 

𝒮#: = {𝑁 ⊂ ℕ: 𝛿(𝑁) ≠ 0}, 

𝒮: = {𝑁 ⊂ ℕ: 𝛿(𝑁) = 1}. 

Let (𝑋, 𝑑) be a metric space. Statistical outer and 

inner limit of (𝐴𝑛) are defined in the following 

equalities: 

𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝐴𝑛: = {𝑥|∀𝑉 ∈ 𝒩(𝑥), ∃𝑁 ∈ 𝒮, ∀𝑛

∈ 𝑁: 𝐴𝑛 ∩ 𝑉 ≠ ∅} 

= {𝑥|∃𝑁 ∈ 𝒮, ∀𝑛 ∈ 𝑁, ∃𝑦𝑛 ∈ 𝐴𝑛: 𝑙𝑖𝑚
𝑛

𝑦𝑛 = 𝑥}.   

𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝐴𝑛: = {𝑥|∀𝑉 ∈ 𝒩(𝑥), ∃𝑁 ∈ 𝒮#, ∀𝑛

∈ 𝑁: 𝐴𝑛 ∩ 𝑉 ≠ ∅} 

= {𝑥|∃𝑁 ∈ 𝒮#, ∀𝑛 ∈ 𝑁, ∃𝑦𝑛 ∈ 𝐴𝑛: 𝑥 ∈ 𝛤𝑦}.        
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Let 𝑓 be a function defined on 𝑋, the epigraph of 𝑓 

is the set 𝑒𝑝𝑖𝑓: = {(𝑥, 𝛼) ∈ 𝑋 × ℝ|𝛼 ≥ 𝑓(𝑥)} and 

its level set is defined by 

 𝑙𝑒𝑣≤𝛼𝑓: = {𝑥 ∈ 𝑋|𝑓(𝑥) ≤ 𝛼}. 

Let 𝑓𝑛: 𝑋 → ℝ be a sequence consisting of lower 

semicontinuous functions and (𝑋, 𝑑) a metric 

space. The lower statistical epi-limit, 𝑒𝑠𝑡 −

liminf𝑛𝑓𝑛 is defined by the help of the sequence of 

sets:  

𝑒𝑝𝑖(𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓 
𝑛

𝑓𝑛) = 𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

 (𝑒𝑝𝑖𝑓𝑛).  

Similarly, the upper statistical epi-limit 𝑒𝑠𝑡 −

limsup𝑛𝑓𝑛 is defined by:  

𝑒𝑝𝑖(𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

 𝑓𝑛) = 𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

(𝑒𝑝𝑖𝑓𝑛).   

If we have the following equality, it is called 

statistical epi-convergence:  

𝑓 = 𝑠𝑡 − 𝑙𝑖𝑚 
𝑛

𝑓𝑛 = 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝 
𝑛

𝑓𝑛        

= 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓 
𝑛

𝑓𝑛 . 

Following definition is a sequential characterication 

of epi-convergence. 

For each 𝑥 ∈ 𝑋 the sequence 𝑓𝑛: 𝑋 → ℝ is epi-

convergent to 𝑓, if and only if the following 

conditions 

(i) for all 𝑥𝑛 ∈ 𝑋 whenever (𝑥𝑛) is convergent to 𝑥, 

we have 𝑓(𝑥) ≤ liminf𝑛 𝑓𝑛(𝑥𝑛), 

(ii) there exists a sequence (𝑥𝑛) convergent to 𝑥 

such that 𝑓(𝑥) = lim𝑛 𝑓𝑛(𝑥𝑛) 

both hold. 

Let 𝒢(𝑓) be the set of all lower semicontinuous 

functions denoted by ℎ on 𝑋 satisfying ℎ(𝑦) ≤

𝑓(𝑦) for every 𝑦 ∈ 𝑋. For every function 𝑓: 𝑋 → ℝ, 

the lower semicontinuous envelope 𝑠𝑐−𝑓 of 𝑓 is 

defined by  

(𝑠𝑐−𝑓)(𝑥) = sup
𝑔∈𝒢(𝑓)

𝑔(𝑥) 

for every 𝑥 ∈ 𝑋.  

Let 𝑓: 𝑋 → ℝ be a function. Then  

(𝑠𝑐−𝑓)(𝑥) = sup
𝑉∈𝒩(𝑥)

inf
𝑦∈𝑉

𝑓(𝑦) 

for every 𝑥 ∈ 𝑋 where 𝒩(𝑥) is the neighbourhood 

of 𝑥. 

More information about epi-convergence and 

statistical convergence we advise to look at papers 

in the reference part (Di Maio and Ko�̆�inac 2008, 

Rockafellar and Wets 2009, �̆�al𝑎′t 1980). 

3. Main Result 

Theorem 3.1  Let 𝑓𝑛: 𝑋 → ℝ  be a sequence of 

functions. If (𝑓𝑛) is uniformly statistically 

convergent to 𝑓, then (𝑓𝑛) is statistically epi-

convergent to 𝑠𝑐−𝑓.  

Proof:  Assume that (𝑓𝑛) is uniformly statistically 

convergent to 𝑓. Then, for every 𝜀 > 0, there exists 

𝐾 ∈ 𝒮 such that for all 𝑛 ∈ 𝐾 and for all 𝑦 ∈ 𝑋 we 

have |𝑓𝑛(𝑦) − 𝑓(𝑦)| < 𝜀. Hence,  

𝑓(𝑦) − 𝜀 < 𝑓𝑛(𝑦) < 𝑓(𝑦) + 𝜀. 

Since uniform statistical convergence is 

independent of 𝑦, the following equality is valid for 

an open set 𝑈 ∈ 𝑋 and all 𝑛 ∈ 𝐾.  

𝑖𝑛𝑓
𝑦∈𝑈

𝑓(𝑦) − 𝜀 < 𝑖𝑛𝑓
𝑦∈𝑈

𝑓𝑛(𝑦) < 𝑖𝑛𝑓
𝑦∈𝑈

𝑓(𝑦) + 𝜀. 

 Then we have  

𝑠𝑡 − 𝑙𝑖𝑚
𝑛

𝑖𝑛𝑓
𝑦∈𝑈

𝑓𝑛(𝑦) = 𝑖𝑛𝑓
𝑦∈𝑈

𝑓(𝑦), 

 hence for every 𝑥 ∈ 𝑋  

𝑠𝑢𝑝
𝑈∈𝒩(𝑥)

𝑠𝑡 − 𝑙𝑖𝑚
𝑛

𝑖𝑛𝑓
𝑦∈𝑈

𝑓𝑛(𝑦) = 𝑠𝑢𝑝
𝑈∈𝒩(𝑥)

𝑖𝑛𝑓
𝑦∈𝑈

𝑓(𝑦), 

which implies that (𝑓𝑛) is statistically epi-

convergent to 𝑠𝑐−𝑓.             

In statistical pointwise convergence, 𝜀 is dependent 

on every point 𝑥 ∈ 𝑋 hence it gives us an idea 

about why statistical pointwise convergence and 

statistical epi-convergence do not coincide in 

general. 
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Remark 3.2 Let  each function 𝑓𝑛: 𝑋 → ℝ be lower 

semicontinuous.  If (𝑓𝑛) statistically uniformly 

converges to f, then 𝑓 is lower semicontinuous and 

(𝑓𝑛) statistically epi-converges to 𝑓.  

Theorem 3.3  Let 𝑓𝑛: 𝑋 → ℝ be a sequence of 

functions and 𝑔: ℝ → ℝ be a continuous and 

increasing function. Then  

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

(𝑔  𝑜  𝑓𝑛) = 𝑔  𝑜  (𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓 
𝑛

𝑓𝑛), 

(1) 

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

(𝑔  𝑜  𝑓𝑛) = 𝑔  𝑜  (𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

 𝑓𝑛). 

(2) 

Proof: As we know, 𝑔 is a continuous and 

increasing function, then we have  

𝑔(𝑖𝑛𝑓 𝑆) = 𝑖𝑛𝑓𝑔(𝑆)     and    𝑔(𝑠𝑢𝑝𝑆 = 𝑠𝑢𝑝𝑔(𝑆) 

for each subset 𝑆 of ℝ. Since  

(𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑓𝑛)(𝑥) = 𝑠𝑢𝑝
𝑈∈𝒩(𝑥)

𝑠𝑢𝑝 
𝑁∈𝒮

𝑖𝑛𝑓 
𝑛∈𝑁

𝑖𝑛𝑓
𝑦∈𝑈

 𝑓𝑛(𝑦). 

Hence the equation can be rewritten as 

𝑠𝑢𝑝
𝑈∈𝒩(𝑥)

𝑠𝑢𝑝
𝑁∈𝒮

𝑖𝑛𝑓
𝑛∈𝑁

𝑖𝑛𝑓
𝑦∈𝑈

𝑔(𝑓𝑛(𝑦))

= 𝑔( 𝑠𝑢𝑝
𝑈∈𝒩(𝑥)

𝑠𝑢𝑝  
𝑁∈𝒮

𝑖𝑛𝑓
𝑛∈𝑁

𝑖𝑛𝑓 
𝑦∈𝑈

𝑓𝑛(𝑦)). 

It gives the proof of (1). The proof of (2) is 

analogous to the previous one.             

Theorem 3.4  If 𝑓𝑛: 𝑋 → ℝ and 𝑔𝑛: 𝑋 → ℝ be 

sequences of functions and their sum is well 

defined, then the following inequalities are valid.  

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

(𝑓𝑛 + 𝑔𝑛) ≥ 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑓𝑛 + 𝑒𝑠𝑡 −

𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑔𝑛,                                                     (3) 

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

(𝑓𝑛 + 𝑔𝑛) ≥ 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑓𝑛 + 𝑒𝑠𝑡 −

𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑔𝑛.                                                     (4) 

Proof: First, we apply some additional restrictions 

for (𝑓𝑛) and (𝑔𝑛). ∃𝛼 ∈ ℝ such that 𝑓𝑛 ≤ 𝛼 and 

𝑔𝑛 ≤ 𝛼 on 𝑋 for every 𝑛 ∈ ℕ. In our operations, all 

sums have become well defined. Let 𝑈 ∈ 𝑋 be an 

open set.  For every 𝑈, 

𝑖𝑛𝑓
𝑦∈𝑈

(𝑓𝑛 + 𝑔𝑛)(𝑦) ≥ 𝑖𝑛𝑓
𝑦∈𝑈

𝑓𝑛(𝑦) + 𝑖𝑛𝑓
𝑦∈𝑈

𝑔𝑛(𝑦). 

Hence, by using properties of statistical upper and 

lower limits, we get        

𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑖𝑛𝑓
𝑦∈𝑈

(𝑓𝑛 + 𝑔𝑛)(𝑦) ≥ 

𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑖𝑛𝑓
𝑦∈𝑈

𝑓𝑛(𝑦) + 𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑖𝑛𝑓
𝑦∈𝑈

𝑔𝑛(𝑦). (5) 

Now fix 𝑥 ∈ 𝑋. If  

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑓𝑛(𝑥) + 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑔𝑛(𝑥) = −∞ 

then we are done. Otherwise, for each 𝜀 > 0 there 

exists 𝑉, 𝑊 ∈ 𝒩(𝑥) such that  

(𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑓𝑛)(𝑥) − 𝜀 < 𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑖𝑛𝑓
𝑦∈𝑈

𝑓𝑛(𝑦), 

(6) 

(𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑔𝑛)(𝑥) − 𝜀 < 𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑖𝑛𝑓
𝑦∈𝑈

𝑔𝑛(𝑦). 

(7) 

Let 𝑈 = 𝑉 ∩ 𝑊. Since 𝑈 ∈ 𝒩(𝑥) and  

𝑖𝑛𝑓
𝑦∈𝑉

𝑓𝑛(𝑦) ≤ 𝑖𝑛𝑓
𝑦∈𝑈

𝑓𝑛(𝑦)  , 𝑖𝑛𝑓
𝑦∈𝑊

𝑔𝑛(𝑦) ≤ 𝑖𝑛𝑓
𝑦∈𝑈

𝑔𝑛(𝑦). 

By using definition of statistical upper epi-limit, (5), 

(6) and (7) we obtain  

(𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

(𝑓𝑛 + 𝑔𝑛)) (𝑥)

≥ 𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑖𝑛𝑓
𝑦∈𝑈

(𝑓𝑛 + 𝑔𝑛)(𝑦) 

   ≥ (𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑓𝑛)(𝑥) +

(𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑔𝑛) (𝑥) − 2𝜀. 

 𝜀 was arbitrary, hence the proof is completed. 

Now we deal with the general case. Assume that 

the sequences (𝑓𝑛) and (𝑔𝑛) are not restricted 

from above. Let us define a function ℎ𝑎: ℝ → ℝ as 
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ℎ𝑎(𝑡) = min{𝑡, 𝑎} for every 𝑎 ∈ ℝ. For every 𝑛 ∈

ℕ we know 

ℎ𝑎 ∘ 𝑓𝑛 ≤ 𝑎 and  ℎ𝑎 ∘ 𝑔𝑛 ≤ 𝑎  

on 𝑋 from previous part of the proof we get 

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

((ℎ𝑎 ∘ 𝑓𝑛) + (ℎ𝑎 ∘ 𝑔𝑛)) 

≥ 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

(ℎ𝑎 ∘ 𝑓𝑛) + 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

(ℎ𝑎 ∘ 𝑔𝑛). 

Theorem 3.3 implies that 

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

(𝑓𝑛 + 𝑔𝑛) 

≥ 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

((ℎ𝑎 ∘ 𝑓𝑛) + (ℎ𝑎 ∘ 𝑔𝑛)) 

≥ ℎ𝑎 ∘ (𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑓𝑛) + ℎ𝑎 ∘ (𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑔𝑛). 

When taking 𝑎 → ∞, the proof for the case of 

unboundedness is completed.             

Even if (𝑓𝑛) and (𝑔𝑛) are statistically epi-

convergent, the inequalities (3) and (4) can be 

strict. This situation can be seen in the following 

example.  

Example 3.5 Let (𝑓𝑛) and (𝑔𝑛) be real valued 

functions defined on ℝ as,  

𝑓𝑛(𝑥) = {
    −2 if n is even square,
    𝑠𝑖𝑛(𝑛𝑥) if otherwise.  

𝑔𝑛(𝑥) = {
    −2 if n is odd square,
    −𝑠𝑖𝑛(𝑛𝑥) if otherwise.  

Then (𝑓𝑛) and (𝑔𝑛) are statistically epi-convergent 

to ℎ(𝑥) = −1 while (𝑓𝑛 + 𝑔𝑛) is statistically epi-

convergent to ℎ(𝑥) = 0. 

A sequence 𝑓𝑛: 𝑋 → ℝ   is statistically 𝛼-convergent 

to 𝑓 if for every 𝑥 ∈ 𝑋 and every sequence (𝑥𝑛) in 

𝑋 converging to 𝑥, the sequence 𝑓𝑛(𝑥𝑛) statistically 

converges to 𝑓(𝑥). By Theorem 3.5 by (Caserta and 

Ko�̆�inac 2012), we know statistical 𝛼-convergence 

implies statistical uniform convergence. Also, we 

prooved in Theorem 3.1 that statistical epi-

convergence is implied by statistical uniform 

convergence. Hence we will use it in the following 

Corollary. 

Corollary 3.6  Assume that 𝑓𝑛: 𝑋 → ℝ  and 𝑔𝑛: 𝑋 →

ℝ  are sequences of functions. If (𝑔𝑛) is statistically 

𝛼-convergent to a function 𝑔 provided that (𝑔𝑛) 

and 𝑔 are finite, then the following equalities hold.  

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

(𝑓𝑛 + 𝑔𝑛) = 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑓𝑛 + 𝑔, 

(8) 

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

(𝑓𝑛 + 𝑔𝑛) = 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑓𝑛 + 𝑔. 

(9) 

Proof: We shall proove only (9), the other one 

being analogous. First of all, we know that if 

𝑔𝑛 →
𝑠𝑡−𝛼

𝑔 then 𝑔 is continuous and 𝑔𝑛 →
𝑠𝑡−𝑢

𝑔. 

Hence by Theorem 3.1 we have  

𝑔𝑛 →
𝑒𝑠𝑡

𝑔.                                                                   (10) 

From now on, we continue by using Theorem 3.4 

and we get  

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

(𝑓𝑛 + 𝑔𝑛) ≥ 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑓𝑛 + 𝑔.  (11) 

 On the other hand, (−𝑔𝑛) is statistically epi-

convergent to −𝑔 in 𝑋 and by Theorem 3.4 we 

have  

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑓𝑛 = 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

(𝑓𝑛 + 𝑔𝑛 − 𝑔𝑛)

≥ 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

(𝑓𝑛 + 𝑔𝑛) − 𝑔. 

Hence,  

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑓𝑛 + 𝑔 ≥ 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

(𝑓𝑛 + 𝑔𝑛).  

(12) 

Equality (9) follows from (11) and (12).           

Corollary 3.7  Let 𝑓𝑛: 𝑋 → ℝ be a sequence of 

functions. Suppose that 𝑔: 𝑋 → ℝ is a continuous 

function. Then the following equalities hold.  

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

(𝑓𝑛 + 𝑔) = 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑓𝑛 + 𝑔, 
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(13) 

𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

(𝑓𝑛 + 𝑔) = 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

𝑓𝑛 + 𝑔. 

(14) 

Proof: The sequence (𝑔𝑛) is statistically alpha 

convergent to 𝑔,  since 𝑔 is a continuous function. 

Then the result follows by using Corollary 3.6.             

Continuity of 𝑔 is essential in Corollary 3.7, as the 

following example shows. 

Example 3.8 Let (𝑓𝑛) and 𝑔 be real valued functions 

defined on ℝ as,  

𝑓𝑛(𝑥) = {
2𝑛𝑥𝑒−2𝑛2𝑥2

if n is square,

  𝑛𝑥𝑒−2𝑛2𝑥2
if otherwise  

𝑔(𝑥) = {
1 if 𝑥 ≠ 0,
0 if 𝑥 = 0. 

The function 𝑔 is lower semicontinuous and each 

of 𝑓𝑛 is continuous. (𝑓𝑛) statistically epi-converges 

to −
1

2
𝑒−12 while (𝑓𝑛 + 𝑔) statistically epi-

converges to 1 −
1

2
𝑒−12 at the point 0 where 𝑔 is 

not continuous.  

Corollary 3.9 Let (𝑓𝑛) and (𝑔𝑛) be functions from 𝑋 

to ℝ. Suppose that (𝑓𝑛) is statistically epi-

convergent and statistically pointwise convergent 

to 𝑓 and (𝑔𝑛) is statistically epi-convergent and 

statistically pointwise convergent to 𝑔. Then (𝑓𝑛 +

𝑔𝑛) is statistically epi-convergent and statistically 

pointwise convergent to (𝑓 + 𝑔), provided that the 

functions (𝑓𝑛 + 𝑔𝑛) and (𝑓 + 𝑔) are well defined 

on 𝑋.  

Proof: By Theorem 3.4 we have  

𝑓 + 𝑔 = 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑓𝑛 + 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

𝑔𝑛

≤ 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓
𝑛

(𝑓𝑛 + 𝑔𝑛) 

 ≤ 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

(𝑓𝑛 + 𝑔𝑛) 

≤ 𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

(𝑓𝑛 + 𝑔𝑛) = 𝑓 + 𝑔.        

Theorem 3.10 For any sequence (𝑓𝑛) of convex 

functions on 𝑋, the function 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑠𝑢𝑝𝑛𝑓𝑛 is 

convex.  

Proof: Since each 𝑓𝑛 is convex function on 𝑋, each 

of 𝑒𝑝𝑖𝑓𝑛  is convex set. Let 𝑥, 𝑦 ∈ 𝑠𝑡 −

liminf𝑛(𝑒𝑝𝑖𝑓𝑛), then ∃ 𝑥𝑛 ∈ 𝑒𝑝𝑖𝑓𝑛  such that 

𝑥𝑛 →
𝑠𝑡

𝑥,  ∀𝑛 ∈ 𝑁 with 𝑁 ∈ 𝒮. Similarly there exists 

a sequence 𝑦𝑛 ∈ 𝑒𝑝𝑖𝑓𝑛 such that for all 𝑛 ∈ 𝐾 with 

𝐾 ∈ 𝒮, 𝑦𝑛 →
𝑠𝑡

𝑦. Let 𝑊 = 𝑁 ∩ 𝐾 that is 𝛿(𝑊) = 1. 

For arbitrary 𝜆 ∈ [0,1], define 𝑧𝑛
𝜆: = (1 − 𝜆)𝑥𝑛 +

𝜆𝑦𝑛 and 𝑧𝜆: = (1 − 𝜆)𝑥 + 𝜆𝑦, then we have 𝑧𝑛
𝜆 ∈

𝑒𝑝𝑖𝑓𝑛  and 𝑧𝑛 →
𝑠𝑡

𝑧 for all 𝑛 ∈ 𝑊, hence 𝑧𝜆 ∈ 𝑠𝑡 −

liminf𝑛(𝑒𝑝𝑖𝑓𝑛) and proves the convexity of this 

set. Consequently, 𝑒𝑠𝑡 − limsup𝑛𝑓𝑛 is convex.             

Following example shows that 𝑒𝑠𝑡 − liminf𝑛𝑓𝑛 

function need not be convex. 

Example 3.11 Let 𝑓𝑛: ℝ → ℝ be defined as 𝑓𝑛 =

(𝑥 + (−1)𝑛)2. Indeed, 𝑓 = 𝑒𝑠𝑡 − 𝑙𝑖𝑚𝑖𝑛𝑓𝑛𝑓𝑛 

function is 

𝑓(𝑥) = {
(𝑥 + 1)2 𝑖𝑓 𝑥 ≤ 0,

(𝑥 − 1)2 𝑖𝑓 𝑥 > 0  

which is not convex. 
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