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ABSTRACT

In this paper, we establish some new compactness criteria for complete Riemannian manifolds

with Bakry-Emery Ricci curvature bounded below. These results improve or generalize previous
ones obtained by H. Tadano [6], J. Wan [7], I.A. Kaboye and M. Bazanfaré [3]. We also prove a
volume comparison theorem for such manifolds.
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1. Introduction

Let (M, g) be a complete Riemannian manifold and V' a smooth vector field on M. For m > n a m-Bakry-
Emery Ricci curvature corresponding to V' is defined by

1 1
Ricy,m = Ricg+ -Lyg— ——V V",
’ 2 m-—n

where Ric, , Ly and V* denote respectively the Ricci curvature of (17, g), the Lie derivative and themetric-
dual of V. The co— Bakry-Emery Ricci curvature or simply the Bakry-Emery curvature is defined by

1
Ricy = Ricy + §£vg.

If V' is a gradient of a function f ie V' = V f, we note Ricy,,, = Ricy,, and f is called a potential function.
When V is zero then the Bakry-Emery Ricci tensor becomes the Ricci tensor so it is natural to investigate

which geometric and topological results for the Ricci tensor extend to the Bakry-Emery Ricci tensor. In
Riemannian Geometry, the Myers theorem and his extensions are some of the most important results in
invetigating the relation between topology and geometry of Riemannian manifolds. In [7], ]. Wan gave the

following th eorem

Theorem 1.1. Let M be an n-dimensional complete Riemannian manifold. If there exists p € M, > 2 and ro > 0 such

that
C(nvavr()) (11)

(ro + 1)~

forall r > 0, where d(p, z) = r and C(n, «, o) is a constant depending on n, o, 7o, then M is compact.

Ricpr(x) >

In this paper we establish a compactness theorem similar to the result of J. Wan in the context of Bakry-Emery
Ricci curvature.
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Theorem 1.2. Let M be a n-dimensional complete Riemannian manifold which admits a vector field V satisfying
IVl < afor some a > 0. If there exists a point p € M, ro > 0 and o > 1 such that

C(n,a,a)

Ricy (z) > e

forall r > rq where r = d(p, z) and C(n, o, a,ro) > 0 is a constant depending on n, o, o and a, then M is compact. If
C>(a— 1)("7—’01 +4a)(1+ o)t then

1

. C -
Diam(M) < 2(1+ 1) (C_<a_1)("7,01+4a)(1+7“0)a_1> o

The Myers theorem was generalized in various directions ([4], [5],...) sometimes by considering the integral
condition on Ricci curvature along geodesics (Ambrose ) or by perturbing the positive lower bound on the
Ricci curvature. See [2] for example. In this paper, we prove the following theorem:

Theorem 1.3. Let M be a n-dimensional complete Riemannian manifold which admits a vector field V satisfying
|V][(x) < dd(p, x) + o for some constants 6, o« > 0. If
_ d
Ricy > A+ —¢ (1.2)
ds

and
()| < at +b (1.3)

for some A > 0a > 0,b > 0such that a + & < % then M is compact with diameter

2(b+ a) + /40 + )2 + (n — 1)(A — 2(a + §)) 72

Diam(M) < X—2(at0)

Remark 1.1. If 5§ = 0 and a = 0 the theorem above is reduced to theorem 10 in [6].

Let dpu = e~ Jo V'Vt 4y, be a weighted measure on M. We assume that N is an hypersurface of M. Let v be
the outward pointing unit normal vector to N. Let 11 denote the second fundamental form of N with respect
to v. Then, the mean curvature of N is (n — 1)H = tracell. The weighted mean curvature of N is defined by

(n—1)Hy = (n—1)H + (V,v). (1.4)
In [3] the first and the third authors of this paper proved the following theorem:

Theorem 1.4. Let (M, g,e'dvoly) be a metric espace such that Ricy > —(n — 1)k?. Suppose that M contains a ball
B(xo, ) of center xy and radius r such that the mean curavture of the geodesic sphere S(x,r) with the inward pointing
normal vector m(r). If | f| < cand and m(r) < —(n — 1)k then M is compact and

In(hg — k)/(ho + k)
2k

diam(M) < 2r +

where

hg = sup m(z)

z€S(p,r) n—1
In this paper we prove the following theorem:

Theorem 1.5. Let (M, g, du) be a weighted measure espace. Assume that Ricy > (n — 1)k (k < 0) and N is a compact
hypersurface of M with weighted mean curvature with respect the outward pointing unit normal vector Hy > h.

1. if, for any geodesic v we have (V,5) < (n — 1)a and h > /—k + a then M is compact and
1 ln(h—F\/—k—a)
V=k \h—vV-k—a)
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2. if there exists b > 0 such that , for any geodesic ~y, we have | [ (V, Vs)ds| < (n — 1)band h > v/=k(1 + 2b) then

M is compact and
L <\/—k(1 + 2b) +h>
V—k \h—vV=k(1+2b)/)"

In [8], G. Wei and W. Wylie proved a volume comparison result under the Bakry-Emery Ricci curvature
condition. In this paper, we give stronger volume comparison result in the context of the modified Ricci
curvature.

In the geodesic polar coordinates the volume element can be written as:

Diam(M) < Diam(N) + (1.6)

dvol, = A(t,0)dt A do" "
where d9"~! is the standard volume element on the unit sphere 5™~ !. Let
Ay (t,0) = e~ Jo 9VAI)ds 4 (¢ g)

where 7 is a geodesic such that 4(0) = 6. By the first variation of area we have:

d B A'(t,0) B
i (A 0) = Fr = m(n) (1.7)
v (e.6) = JEEE — (e (18)

Hence, for r > r9 > 0, we have

Av(rb) _ frme o

AV (’I’(), 0)
Let M} be the simply connected space with constant curvature £ and my(r) be the mean curvature of the
geodesic sphere of radius 7 in the model space M;'. Set Voly B(p,r) = [, (o) I the weighted volume (or V-

volume) of the ball of center p and radius r in M and let Vol}(r) be the volume of the ball of radius r in the
model space M. Let sn(r) be the solution of equation

y"(t) +ky(t) =0
with initial conditions y(0) = 0 and 3’(0) = 1. Then we have

smi (r)

sny(r)’

mi(r) = (n—1) (1.9)

Theorem 1.6. Let M be a n-dimensional complete Riemannian manifold and V be a vector field on M. Suppose
Ricy > (n— 1)k
1. If (V,Vr) > —a along all minimal segments from p then for R > r > 0

Voly B(p, R)
Voly B(p,r)

< eaR VOZZ (R)
- Voli(r)

2. If, for all r > 0 we have
| [ (V,Vt)dt] <c
0

then
my(r) < mZ+4C (r)

and for all R > r > O(assume R < ﬁ ifk >0),

VOZV(B(pv R))
Voly (B(p,r))

Vol t(R)
V0l2+4c(7“)

<

where m}t4¢(r) denotes the mean curvature of the geodesic sphere of radius r in the model space M;'"°.
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2. Proofs

2.1. Proof of the theorem 1.2

Assume that M is noncompact. Then there exists a ray ~y issuing from p. Let r(x) = d(p, z) be the distance
function from p to z. Then r is smooth on M\{C,,p}, where C), is the cut locus of the point p. Let u be a
function on M. For all vectors fields X,Y on M, the gradient, Hessian and laplacian of u are defined as:

g(Vu, X) =du(X), (Hess(u))(X,Y)=9(VxVu,Y) Au=tr(Hess(u)).

In geodesic polar coordinates at p, we have Vr = 0r and |Vr| = 1 in M\{C,, p}.
Let A(r) and m(r) be respectively the second fundamental form and the mean curvature of the geodesic
sphere S(r) of radius r in M with respect the outer normal direction. Write A(t) = A(y(t)). Then we have:

A= Hess(r); m(r)=Ar. (2.1)
The Bochner-Weitzenbock formula applied to the function r(z) becomes:
|Hess(r)|* + (VAr, Vr) + Ric(Vr,Vr) = 0. (2.2)

Set my (r) = m(r) — (V, Vr). By the relation Ricy = Ricy + 3Ly g the equation (2.2) gives:

|Hess(r)|* + %(Ar) + Ric(Vr,Vr) = 0. (2.3)

Noticing that
miy, (r) =m/(r) — (V,V,Vr)y =m/(r) — %Evg(ar, or).

From (2.3) we have

|Hess(r)|* = —m4,(r) — Ricy (Vr, Vr). (2.4)
Integrating (2.4) over the interval [ro, r], we get
I 5 T , T ) T C
0< / |A(t)]|~dt = —/ my (t) —/ Ricydt < my(rg) — my(r) —/ mdt. (2.5)

In [9], ].Y. Wu proved the following result:

Lemma 2.1. (Theorem 2.2) Let (M, g) be an n-dimensional complete Riemannian manifold. Assume that (M, g) admits
a smooth vector field V satisfying

Ricy (Or,0r) > (n— 1)k, keR,
along a minimal geodesic segment from a fixed point p and |V'| < a for some real constant a > 0 (when k > 0 assume

r< o). Then, my (r) — my(r) < a along that minimal geodesic segment from p. Equality holds if and only if the radial

sectional curvatures are equal to k and V- = —aVr.

We have
my(r) > —3a

To see it, for any points p, ¢ on the ray 7, let
epq(x) = d(p, ) + d(q, ) — d(p, q)
be the excess function related to p and ¢q. We have e(x) > 0 and e(y(t) = 0 for 0 < ¢ < d(p, q). So
Ae(y(t)) = A(d(p, x) + d(q,x) = d(p, @) )y = A (d(p, ) + d(q,@)) 1) 2 O

Set q= ’Y(Z)v hence Ad(pa I)/x:’y(t) = m(t) > _Ad(rY(Z)v x)/w:'y(t)'
Set 41 = v~ be the reverse path of . For r < i we get:

m(r) +a> m(r) + <‘/7 vr>/'yl(i—r) = Ad(p, x)/z:fy(r) + <‘/7 VT>/fyl(i—r)

> —Ad(v(i), x)/z:v(r) +(V, vr>/'y1(i*?”) 2 _m(‘z/(i —r)
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n—1

1—=T

> —mg(r—i)—a>— —a
where m{, (i —r) = m?(i —r) — (V,Vr) 5, i—r) and m?(i — r) denotes the mean curvature of the geodesic sphere
of center g and radius i — r in M.

Let i — 400, m(r) > —2a and consequently my (r) > —3a.

Since Ricy > C(ﬁ’?)’g) > 0and |V| < a, we have from lemma, 2.1 my (r) < %=1 + a. So, from (2.5) we have:
n—1 " C n—1 C 1 1
0< da = dt = 4 - . 2.6
o /m (L+t)* oo a+a—1<(1+r)a_1 (1+ro)a_1> @)
Taking r — oo, we have:
n—1 oo C n—1 C
"o ! /7'0 (1+8)~ To ¢ (a—1)(1+rg)e-t

Hence, if C' > ("——1 n 4a) (@ — 1)(1 + r9)~! then

—+oo
el e / Y w<o
To vy (L)

which is a contradiction. Thus M is compact. If C' > (%1 + 4a) (a —1)(1 4 79)*~! and v is a minimal geodesic

0<

issuying from p then from (2.6) we have :

1 < 1 a—1 n—1+4
A+t A+r)et € \mn ¢

which means that

C a—1
r<{d+m) <c —(a—D)(=L4a)(1 1 ro)“—1> -

and the conclusion follows.

2.2. Proof of the theorem 1.3

Take two arbitrary points p and ¢ in M. Let v be a minimizing geodesic segment lying p to ¢. Set [ = d(p, q).
Let (¥, e2,...,e,) be a parallel orthonormal frame along ~. Let I(.,.) be the index form of ~. If  is any smooth
function on the interval [0, [] satisfying h(0) = h(l) = 0 then

n

! 1
; I(he;, he;) = /0 [(n— 1)h2 _ h2Ric("'y7"y)]dt = /0 [(n — 1)52 - h2Ri0v(%ﬁ) n %Evg(ﬁ,ﬁ)]dt

l l
= [0 = 2 = K2 Ricy (3,4 + #2g(V3VA)lde = [ [n = 1)I 02 Riev (3.5) + 12 5 (o(V. )l
0 0

l
= [l = 1) = R (5.5) + G (120(V. ) = 2o V. )

Since h(l) = h(0) = 0 and by relation (1.2) and (1.3) we have:

n l l
> I(hE;, hE;) < / [(n —1)h% — Ah? — hQﬁ} dt — 2/ hhg(V,%)dt
0 0

=2

l l l
§/((n—1)hQ—Ah2)dt—/ jt(h%)dt—z/o hh(—¢ + g(V,%))dt

0 0

l l
72 2 7 .
g/o«nl)h Y >dt+2/0 hhl(9] + 19(V.A))
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l

l
< ((n—l)hQ—/\hz)dt—i—Q/ [|hh] (a+ )t + (b+a)] dt.
0

S—

Set h(t) = Sln(th), hence h(t) = % COS(ﬂTt).

It follows that
n l 2 l
ot
N I(hE; hE;) < / <(n - 1)% cosz(”Tt) - Asin2(7)> dt + ?/ [At + B] |sin %ut
=2 0 0

where A =a+J; B = b+ a. By integrating the last term of the right-hand side by parts, we get

3 l ’ t . t
;I(hEi,hEi)S/O ((n—1)7;2¢0$2(7;)_mn2(7;)> T o
S("_l)%j_;*(“”)lﬂ(bw) 2.8)
= % [~ (A =2(a+8) 2 +4(b+ )l + (n— D)r*] . 2.9)

Since v is a minimizing geodesic we have:
—(A=2a+8))P+4b+a)l+(n—1)7*>0

which implies that

2(b+ a) + /40 + a)2 + (n — 1)(A — 2(a + §)) 72
1<
- A —2(a+ )

This proves the theorem 1.3.

2.3. Proof of the theorem 1.5

For z € M setr = d(z, N). There exists a point p € N such that d(z,p) = d(x, N). Let v be the shortest geodesic
between p and . Let (eq, ez, . .., e,—1,7) be a parallel orthonormal frame along . Let ¢ the solution of equation:

y'(t) +ky(t) =0, k<0 (2.10)

satisfying ¢(0) = ap > 0;¢’(0) = a1 < 0. Hence ¢(t) = 7~ sinh v —kt + ag cosh v/ —kt.
Set E;(t) = 2 ¢;(t). We have

o(r)
n—1 n—1
Ar(z) = ZHessr(ei,ei) < ZI(EZ,EZ)
_;n_l T R S_(p(O)Qn .
= (o) ;A [IV4Ei|* = R(E;, %)%, Ei)] d ()2 ;H( ir€i) (2.11)
; ' n — 1\2 _ 2 ic(A - a% n—
< (@(T))g/o [(n = 1)¢'(t)* — o(t)* Ric(3(1))] dt cpz(r)( )H (2.12)
< o [ (= 0607 — o7 Riey (60 + SO VAN O] - -t @1y
Note that . . 1 . 1 )
02(r) /0 P (OVaV ANl = 25 /O 4 (& OWA)dE = s /O () (t)(V, )dt
= (VA)(0) = 5 (ViA)(0) - @QL() /O (Ot (V, )t

Hence from the relation (2.13) and the assumption Ricy > (n — 1)k we have
2

n—1 " 2 2 9 n— :
Ar(o) < sy [0 = kolt)) bt = s ((n = DI+ (V24)(0)
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A0 - s / " (p(t) (V. 3Vt (2.14)

Let prove the part1)
Take a1 < —agv —k; then we have ¢'(t)p(t) < 0 and since (V,5) < (n — 1)a we obtain:

(i n—-1 (", 5 0 a? . ~2(n—1)a ",
Avrle) < Fo | [010F = ket de = s - ity = 220 [ wetar
=1 [T e 21 0 0 n— n—1a (n —1)aad
< e [0 = ket de = s (n = 1)y = (0= o+ L,
Note that . .
/0 (1) = ko)) dt = [/ (Dp(t)]y — / (" () (t) + keplt))dt (2.15)
= ¢'(r)e(r) — aiao.
We deduce v a2
r(z n—1)2" R 1% (4 ~ ) -1 .
Avra) < -0 E0 + P (g - 2 - (o) o
NN R A T WP
<mn-pZ L 0od ( h ao) (n—1a. 217)
Take a1 = (a — h)ap then we have
Ayr(z) < (n-— 1):00((:)) —(n—-1)a. (2.18)

Since

—n—1)a T n— 80/(7”) —n—1)a

we conclude that

©'(r) (n—1) (a — h) cosh v/—kt + v/—k sinh /—kt

Ar<(n-1 =
r<(n-1) o(r) " \/%7((1 — h) sinh /—kt + cosh /—kt
which goes to —oo when
PN 1 ! h++vV—-k—a
To = n .
"ok \h—vV=k—a

Hence we conclude that
Diam(M) < Diam(N) +

1 In (h +v—k— a)
V—k h—v-k—a)’
To prove the part 2) take f(y(t)) = f0t<V, 4(s))ds. From (2.14) and (2.15), we get

Avr(@) < (n=1) (i((:))) - 0 ((n - DHy + Z;) - /0 (@ @A (2.19)

Since (¢%)” > 0and | [, (V,4)dt| < (n — 1)b, we have:

< =2¢/(r)g(r)(n — )b+ (n — 1d[(*) (B)]
= =2¢'(r)p(r)(n — )b+ 2¢(r)(r)(n — 1)b — 2¢'(0)(0) (n — 1)b
= —2(n — 1)bayap.
Therefore, the inequality (2.19) gives:

Ayr(z) < (n—1)

<(n PO it LU WP VS 1)“1b> (2.20)
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(1) uwn%< o m%
<(n-1 - ht = 421
=D T 2 w0 2
If we take
_ h
G =TT oy

then we have:

i @' (r) 1
Since h > +/—k(1 + 2b) then ooy — oo whenr — s In (

V—E(1+2b)+h
h_\/fk(lwb)) - Hence

r <

Lo <¢—7(1 + 2b) +h>
ok \h— k(L +2b)

and consequently

Diam(M) < Diam(N) +

1 ln(‘/k(lJr%Hh)
V=k \h—+v=k(1+2b)/)
2.4. Proof of the theorem 1.6

Prove the part (1) of the theorem 1.6, we need to set a mean comparison theorem.
Using the same arguments as in the prove of theorem 2.2 in [9], we get

sn2(r)ymy (r) < sn2(r)mg(r) f/ (sn2)/(V, Vt)dt.
0
Hence, since (sn2)’ > 0, in the hypothesis (V, Vr) > —a, we deduce that

my (r) < mg(r) + a.

This means that

v (t,0))

d
<= .
g < - In(Ag(t,0) +a

Soif 0 < r < R then
AV(Ra 0)
Av(T, 9)

e“RAk (R, 9)
e Ay (r, )

<

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

where Aj(r,0) is the Riemannian volume element in M;'. The relation (2.26) means that the function » —

Ay (r,0)
e Ay (r,0)
0<r<R

o [F Ay (t,0)dtdo L [Feat Ay (t, 0)dtds [ A(t, 0)dtds
S 0 < S 0 < eaR S 0
fS" fo” Ay (t,0)dtdd — fsn for et Ay (t,0)dtdd — fsn fOT Ay (t,0)dtdo

and we deduce
Voly(B(p, R)) < iR Vol (R)

Voly (B(p,r)) = Vol (r)”

To prove the part (2) we first show that, under those conditions, we have

my (r) < mptae(r).

Let integrate by parts the last term of the right member of the relation (2.23)

is nonincreasing in r. Using the lemma 3 in [1] and integrating along the unit sphere, we get, for

(2.27)

(2.28)

/Or(sni)%V, Vit)dt = (sn2)'(r) /OT<V, Vt)dt/or <(sni)”(t) /Ot<v, Vs)ds) dt.

In the hypothesis conditions, we have (sn?)’ > 0 and (sn})” > 0, hence we deduce

/OT<V, Vt)dt‘ + /0 ((sni)”(t)

_A@%ﬂwwws@dﬂﬂ

/Ot<v, Vs)ds

)i
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< 2¢(sn) (1) = 4esny(r)snh (r).

Hence the relation (2.23) becomes:

snz(rymy (r) < sni(r)mp(r) + desng(r)sn),(r) = sni(r)(n — 1+ 4c

< snz (r)mZHC(r).

We conclude that
my(r) < m2+4k (r).

Hence using the same arguments as in part 1) we show that

Voly (B(p, R)) _ Vol "*(R)

Voly(B(p,r)) ~ Volp™e(r) (2.29)
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