Specroscopic Properties Determination of Flavonol by Quantum Analysis

Ibrahim Isah Nasidi a,*, Mansur Said c and Yau Dattı b

a Department of Physics, Faculty of Science, Firat University, 23169 Elazig Turkey
b Department of Chemistry, Yusuf Maitama Sule University, Kano. Nigeria
c Department of Physics, Yusuf Maitama Sule, Kano. Nigeria

* Corresponding author: E-mail: sinonasidi@yahoo.com

ABSTRACT

Computational quantum theory methods especially Hartree-Fock (HF) and Density functional theory (DFT) plays an important role in physical chemistry and theoretical physics. Flavonoids are a class of polyphenolic secondary metabolites found in plants, and thus commonly consumed in diets, that is why it is important to understand its stability, reactivity and structure analysis. In this study, we optimize the energy band gaps using different basis sets for both DFT and HF methods. LanL2MB at DFT method was selected for the molecule. IR, NMR and UV were also investigated during the research.

Keywords: Flavonols. Band gap energy. DFT. Hartree-Fock Theory.

ARTICLE INFO

Received: 3-November-2020, Accepted: 20-November-2020
ISSN: 2651-3080

1. INTRODUCTION

Flavonoids are widely distributed in plants, fulfilling many functions [11]. Flavonoids are the most important plant pigments for flower coloration, producing yellow or red/blue pigmentation in petals designed to attract pollinator animals. In higher plants, flavonoids are involved in UV filtration, symbiotic nitrogen fixation and floral pigmentation. They may also act as chemical messengers, physiological regulators, and cell cycle inhibitors. Flavonoids secreted by the root of their host plant help Rhizobia in the infection stage of their symbiotic relationship with legumes like peas, beans, clover, and soy. Rhizobia living in soil are able to sense the flavonoids and this triggers the secretion of Nod factors, which in turn are recognized by the host plant and can lead to root hair deformation and several cellular responses such as ion fluxes and the formation of a root nodule. In addition, some flavonoids have inhibitory activity against organisms that cause plant diseases, e.g. Fusarium oxysporum [4].

Many researchers have focused on the development of a sensitive method to measurement flavonoids which is important class of natural product chemistry [12-14]. The resulting of nuclear magnetic resonance (NMR) and DFT was provided information of electrochemical properties of flavonoids and understanding its activity in aqueous solutions. DFT theoretical calculation with the basis set of LanL2MB was analyzed various hydrogen bond of flavonoids. In this study, we will explain and find the energy band gaps by using Gaussian program software. The different basis sets (3-21G, 6-31G, SDD, 6-311G, LanL2DZ, LanL2MB) for two methods (DFT and HF) performed on flavonol geometry. LanL2MB was chosen at the DFT method to show the IR and NMR spectra for the geometry structure.
2. COMPUTATIONAL METHODS

The flavonol structure was drawn by Chem. Bio Draw Ultra 14.0 (Fig. 1). The structure of flavonol was optimized by both density functional theory (DFT) and Hartree-Fock (HF) [9]. Different basis sets have been applied to find the energy band gaps of flavonol. The reason why different basis sets were used is that each basis set involves different functionalities and characteristics. Table 1 shows the energy band gaps for the two methods of different basis sets. The geometry system of flavonol at the B3LYP (DFT), LanL2MB basis set has been chosen [9, 18]. The frequency and NMR were calculated to this basis set [19] The Gaussian 09 program has been used for all the calculations. Also, the origin program was performed for drawing the IR as in figure 2.

![Figure 1. Structure of Flavonol](image)

3. RESULT AND DISCUSSION

3.1. Energy bandgap

The first task of the computational work is to detect the optimized molecular structure using Gaussian 09 program. The energy band gaps associated with basis sets (3-21G, 6-31G, SDD, 6-311G, LanL2DZ, LanL2MB) were listed in Table 1. The energy band gaps for the Hartree-Fock (HF) method have higher values compared with the density functional theory (DFT). The optimized structural parameter of Flavonol with the LanL2MB was selected by the DFT method [9].

Table 1. The energy bandgap for different basis sets for both HF and DFT methods.

<table>
<thead>
<tr>
<th>Basis sets</th>
<th>HF method Energy gaps (eV)</th>
<th>DFT method Energy gaps (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-21G</td>
<td>14.9100038</td>
<td>9.3089228</td>
</tr>
<tr>
<td>6-31G</td>
<td>15.1266606</td>
<td>9.73979604</td>
</tr>
<tr>
<td>SDD</td>
<td>15.474831</td>
<td>10.2230032</td>
</tr>
<tr>
<td>6-311G</td>
<td>15.349283</td>
<td>10.2457806</td>
</tr>
<tr>
<td>LanL2DZ</td>
<td>15.4626278</td>
<td>10.2289687</td>
</tr>
<tr>
<td>LanL2MB</td>
<td>10.6438435</td>
<td>4.43536412</td>
</tr>
</tbody>
</table>

3.2. Molecular Structure:

The molecular structure and numbering of atom in the flavonol molecule was shown in Figure 1. The 72 vibration modes are present in the molecule. The first task of computational work was optimization of the molecule. The Gaussian programs viewed the number of atoms scheme. To calculate the geometric structure DFT was used.

3.3. Vibrational Assignments:

The vibrational frequency was calculated by the DFT method at LanL2MB basis sets, FT-IR Figure 3 was observed with various vibration have been present in Table 2. The fundamental functional group present in the molecule vibrated at different frequencies as discussed below.

3.3.1. C-C /C=C vibrations:

The vibration carbon-carbon stretching in a ring usually occurs in a region 1400-1600 cm⁻¹ [21]. In aromatic benzene ring the vibration carbon-carbon was occurring in the region 1420-1625 cm⁻¹. In the aromatic like benzene has six-member rings, there are two or more vibration are occur in a region due to the vibration of the skeletal, the strong vibration was started at 1500 cm⁻¹. Moreover, where the ring is conjugated by the groups the further vibration observed at 1580 cm⁻¹. In the present work, the carbon-carbon stretching vibration occurred in a region 1768.02-1839.39 cm⁻¹. The strong stretching vibration of C=C in a ring occurred in a region 1579.42-1675.25 cm⁻¹. The vibration carbon-carbon single bond occurred in 1417.40-1488.18 cm⁻¹ it is symmetrical vibration, but the stronger vibration for C-C in benzene ring was observed in region 1488.18 cm⁻¹. In 595.44, 649.6, 723.66 and 731.78 cm⁻¹ C-C and C=C in a plane (in a ring) was rocking but in a region 884.88, 896.45 and 964.37 cm⁻¹ was symmetrical Stretching.

3.3.2. C-H vibrations:

Commonly aromatic compounds in a region 3473-3468 cm⁻¹ were observed multiple weak bonds due to the C-H stretching vibration of the aromatic rings [14]. The C-H bending vibration in a plan was observed in a region 990-1390 cm⁻¹ and the peak was weak intensity [5]. This bond of C-H in a plane was very useful to found the characterization of compounds [26]. When the carbon and hydrogen are in a plane interaction was vibration above 1200 cm⁻¹ usually moves in the opposite direction. [7, 8]. The C-H out of the plane usually occurs in a region 700-1000 cm⁻¹ [19, 10]. In our flavonol molecule the C-H symmetrical stretching vibration out of the plane was observed between the regions 3027.75-3094.4 cm⁻¹, but the
C-H in a plane was symmetrically vibrated between the regions 3181.27-3236.82 cm\(^{-1}\) this is an agreement with literature survey. In a region 3236.82-526.53 cm\(^{-1}\) all C-H out of the plan was rocking vibrations. Also, al hydrogen was rocking vibration in flavonol molecules in a region between 1181.68-1256.21 cm\(^{-1}\).

Table 2. Various vibration of atoms calculated by DFT (LanL2MB)

<table>
<thead>
<tr>
<th>St. NO</th>
<th>vibration assignments</th>
<th>observed frequency (cm(^{-1}))</th>
<th>St. NO</th>
<th>vibration assignments</th>
<th>observed frequency (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(C-H) out</td>
<td>41.77</td>
<td>32</td>
<td>(all H) ro</td>
<td>1181.68</td>
</tr>
<tr>
<td>2</td>
<td>(C-H) out</td>
<td>60.72</td>
<td>33</td>
<td>(all H) ro</td>
<td>1200.46</td>
</tr>
<tr>
<td>3</td>
<td>(C-H) out</td>
<td>148.26</td>
<td>34</td>
<td>(all H) ro</td>
<td>1227.25</td>
</tr>
<tr>
<td>4</td>
<td>(C-H) out</td>
<td>181.71</td>
<td>35</td>
<td>(all H) out,ro</td>
<td>1256.21</td>
</tr>
<tr>
<td>5</td>
<td>(C-H) out</td>
<td>246.98</td>
<td>36</td>
<td>(C1-O8)Sy,s</td>
<td>1281.71</td>
</tr>
<tr>
<td>6</td>
<td>(O7-H17)ro</td>
<td>271.63</td>
<td>37</td>
<td>(C4-C12)Sy,s</td>
<td>1326.77</td>
</tr>
<tr>
<td>7</td>
<td>(N14-H15,16)ro</td>
<td>286.72</td>
<td>38</td>
<td>(C12-C13)Sy,s</td>
<td>1358.67</td>
</tr>
<tr>
<td>8</td>
<td>(N14-H15,16)ro</td>
<td>307.55</td>
<td>39</td>
<td>(C-C)in,Sy</td>
<td>1278.63</td>
</tr>
<tr>
<td>9</td>
<td>(C-H) out,ro</td>
<td>312.8</td>
<td>40</td>
<td>(all H)out,ro</td>
<td>1322.75</td>
</tr>
<tr>
<td>10</td>
<td>(C-H) out,ro</td>
<td>369.13</td>
<td>41</td>
<td>(C-C)in,Sy</td>
<td>1393.75</td>
</tr>
<tr>
<td>11</td>
<td>(C-H) out,ro</td>
<td>428.62</td>
<td>42</td>
<td>(C-C)in,Sy</td>
<td>1501.59</td>
</tr>
<tr>
<td>12</td>
<td>(C-H) out,ro</td>
<td>458.24</td>
<td>43</td>
<td>(C-C)in,Sy</td>
<td>1567.00</td>
</tr>
<tr>
<td>13</td>
<td>(C-H) out,ro</td>
<td>473.85</td>
<td>44</td>
<td>(C13-H21,22)sc</td>
<td>1596.03</td>
</tr>
<tr>
<td>14</td>
<td>(C-H) out,ro</td>
<td>490.4</td>
<td>45</td>
<td>(C12-H19,20)sc</td>
<td>1705.81</td>
</tr>
<tr>
<td>15</td>
<td>(C-H) out,ro</td>
<td>526.53</td>
<td>46</td>
<td>(C=C)in,Sc</td>
<td>1746.85</td>
</tr>
<tr>
<td>16</td>
<td>(N14-H15,16)ro</td>
<td>569.12</td>
<td>47</td>
<td>(C=C)in,Sc</td>
<td>2048.16</td>
</tr>
<tr>
<td>17</td>
<td>(C-C=C)in,ro</td>
<td>595.44</td>
<td>48</td>
<td>(C=C)in,Sc</td>
<td>3712.96</td>
</tr>
<tr>
<td>18</td>
<td>(C-C=C)in,ro</td>
<td>649.6</td>
<td>49</td>
<td>(N14-H15,16)sc</td>
<td>3724.18</td>
</tr>
<tr>
<td>19</td>
<td>(C-C=C)in,ro</td>
<td>723.66</td>
<td>50</td>
<td>(C12-H19,20)Sc</td>
<td>3027.75</td>
</tr>
<tr>
<td>20</td>
<td>(C-C=C)in,ro</td>
<td>731.78</td>
<td>51</td>
<td>(C13-H21,22)asym</td>
<td>4123.97</td>
</tr>
<tr>
<td>21</td>
<td>(C-H) ro</td>
<td>794.48</td>
<td>52</td>
<td>(C12-H19,20)asym</td>
<td>4261.73</td>
</tr>
<tr>
<td>22</td>
<td>(C-H) ro</td>
<td>844.21</td>
<td>53</td>
<td>(C13-H21,22)asym</td>
<td>4352.29</td>
</tr>
<tr>
<td>23</td>
<td>(C-H) ro</td>
<td>857.95</td>
<td>54</td>
<td>(C5-H9)sym</td>
<td>4463.35</td>
</tr>
<tr>
<td>24</td>
<td>(C12-C13)sym</td>
<td>884.88</td>
<td>55</td>
<td>(C3-H10)sym</td>
<td>3199.5</td>
</tr>
<tr>
<td>25</td>
<td>(C12-C13)sym</td>
<td>896.45</td>
<td>56</td>
<td>(C2-H11)sym</td>
<td>3236.82</td>
</tr>
<tr>
<td>26</td>
<td>(C12-C13)sym</td>
<td>964.37</td>
<td>57</td>
<td>(N14-H15,16)sym</td>
<td>3551.73</td>
</tr>
<tr>
<td>27</td>
<td>(C-H)in,Sc</td>
<td>976</td>
<td>58</td>
<td>(O8-H18)sym</td>
<td>3626.92</td>
</tr>
<tr>
<td>28</td>
<td>(C12-H19,20)ro</td>
<td>1020.82</td>
<td>59</td>
<td>(N14-H15,16)asym</td>
<td>3672.03</td>
</tr>
<tr>
<td>29</td>
<td>(C13-N14)sy</td>
<td>1103.82</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>(O7-H17)ro</td>
<td>1126.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>(C13-N14)sym</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3.3. C-N vibration

In this study of flavonol structure was shown the vibration of C-N in a region 996.46 cm\(^{-1}\) was symmetrical and in a region, 1152.66 cm\(^{-1}\) was scissoring.

3.4. NMR analysis

The \(^{13}\)C NMR chemical shifts used to identify chemical compounds [35]. GIAO (Gauge Including Atomic Orbital) is the faster procedure to calculation upon the basis set used. A GIAO method was preferable for many aspects state of the subject [19]. NMR was used to...
calculation chemical shift for the title compound best on TMS HF/LanL2MB(d) GIAO, TMS B3LYP/LanL2MB(2d, P)GIAO, and CH4 HF/LanL2MB(d) GIAO for carbon atoms. Hydrogen best on TMS HF/LanLMB(d) GIAO, TMS B3LYP/LanLMB(2d, P)GIAO and oxygen best on the H2O B3LYP/LanL2MB(2d, P) GIAO, H2O HF/LanL2MB(d) GIAO. Table 3 showed the 13C NMR for all references. According to TMS HF/LanL2MB(d) reference, the carbon was ordered from C3>C1>C4>C6>C5>C2>C12>C13 that means carbon number C3 was higher ppm lower filed but C13 was lower ppm higher filed. However, for TMS b3LYP/LanL2MB(2d, P) reference to carbon atoms was order from C6>C1>C3>C4 >C2>C5>C13>12 in this reference C6 was observed at higher ppm lower filed but C12 was lower ppm higher filed. For the reference, CH4 HF/6-31 G(d), C1>C6>C4>C3>C2>C5>C13>C12, carbon number one (C1) was found in higher ppm and carbon number twelve found in lower ppm higher filed.

Table 3. The observed C NMR chemical shifts in ppm for Flavonol

Table 4. The observed H NMR chemical shifts in ppm for Flavonol

4. CONCLUSION

In this work, all basis sets with both HF and DTF methods investigated to calculation bandgap energy for flavonol molecule. Proposed the better basis set is LanL2MB according to the literature previous. The IR shows the vibration for all atoms that is good agreement with the kinds of literature. NMR has determined the identity of the molecular structure. The peaks of atoms in NMR were the relation with the types of references which was used on it. For example, C1 has different shifted in a ppm for all three references. The reference H2O HF/LanL2MB(d)GIAO and H2O B3LYP/LanL2MB(2d, P)GIAO show the oxygen's ppm and it is closed to each other.
REFERENCES

[12] USDA’s Database on the Flavonoid Content

[15] [11] p. 223 Table 1

