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Abstract

Enzymatic inhibition is one of the key regulatory mechanisms in cellular metabolism, especially the
enzymatic competitive inhibition by product. This inhibition process helps the cell regulate enzymatic
activities. In this paper, we derive a mathematical model describing the enzymatic competitive inhibition by
product. The model consists of a coupled system of nonlinear ordinary di�erential equations for the species
of interest. Using nondimensionalization analysis, a formula for product formation rate for this mechanism
is obtained in a transparent manner. Further analysis for this formula yields qualitative insights into the
maximal reaction velocity and apparent Michaelis-Menten constant. Integrating the model numerically, the
e�ects of the model parameters on the model output are also investigated. Finally, a potential application
of the model to realistic enzymes is brie�y discussed.
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1. Introduction

Enzymes are biocatalysts naturally present in living organisms. Enzymes are capable of increasing the
rates of the chemical reactions by reducing the activation energy of reactions [1, 2]. They are usually involved
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in cellular metabolism to produce the metabolites needed for the cells . Cells use many regulatory mechanisms
to regulate the concentrations of metabolites at physiological levels. Enzymatic inhibition processes are very
common mechanisms in cellular metabolism [3, 4].

There are three main inhibition processes of enzymes and they are competitive inhibition, allosteric (non-
competitive) inhibition, and uncompetitive inhibition processes. In the competitive inhibition process, the
enzyme molecule has one binding site for the substrate and inhibitor. Inhibitor molecules compete with
substrate molecules for the binding sites of enzyme molecules. The binding of a inhibitor molecule to an
enzyme molecule prevents the substrate molecules from binding to the enzyme molecule and form an enzyme-
inhibitor complex, so this enzyme molecule is not able to catalyse reactions to form product. Competitive
product inhibition of an enzyme is an competitive inhibition process in which the product plays the role of
inhibitor [3, 4, 5]. Mini-hexokinase I is one of the enzymes that are inhibited by their products [6, 7].

Figure 1 graphically depicts the enzymatic reactions for the kinetic mechanism of competitive product
inhibition of an enzyme. In the model, the enzyme molecule has one binding site that can accommodate both
the substrate and the product. When the product of the active site binds to the binding site, it prevents
the substrate molecules from binding to the binding site. A minimal set of chemical reactions representing
competitive product inhibition is given by

S + E
k1−−⇀↽−−
k−1

ES
k0−→ E + P,

P + E
k2−−⇀↽−−
k−2

EP,
(1)

where E, S, and P denote an enzyme molecule, a substrate molecule, and a product molecule, respectively.
The complexes ES and EP have the obvious interpretation; see Figure 1.

It is well known that the Michaelis-Menten formula for the product formation rate of enzymatic reactions
is derived from a simple model for the kinetic mechanism of an enzyme, and it is a widely used tool in
studying the kinetic mechanism of enzymes [5].

The remainder of this paper is organised as follows. In Section 2, we describe the formulation of the
mathematical model. The non-dimensionalization analysis of the model is described in Section 3, and
the e�ects of the model parameters on the product formation rate are given in Section 4. In Section 5, an
application of the model to the phosphorylation of glucose by mini-hexokinase I is brie�y introduced. Finally,
we �nish with several conclusions in Section 6.

2. The mathematical model

In this section, we develop a minimal model that describes the kinetic mechanism of competitive product
inhibition of an enzyme. The model is based on the mechanism described in Section 1. Although the formula
for the product formation rate is already available in the literature [8, 9, 10], we shall derive it in a transparent
manner by non-dimensionalising the equations and making rational approximations. We begin by listing our
modelling assumptions.

2.1. Modelling assumptions

(i) It is assumed throughout that the mixture of substrate and enzyme is well-stirred. This implies that
di�usive e�ects in the degradation process can be neglected, and that the concentrations of the various
species in the mixture can be described by functions of time only. This further implies that the evolution
of the system can be modelled by a coupled system of nonlinear ordinary di�erential equations, and
that a partial di�erential equations model is not required [11].

(ii) We assume mass action kinetics throughout; this implies that the rate of a reaction is taken to be
proportional to the product of the concentrations of the reactants. We emphasize here that more
complex formulas, such as the Michaelisâ��Menten formula for the rate of product production in
an enzyme-catalysed reaction, are derivable from more fundamental mass action considerations under
simplifying assumptions [5, 11].
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NOMENCLATURE

[X]− the concentration of a species X; a function of time (mM)

E − a molecule of the enzyme

S − a molecule of the substrate

ES − an enzyme-substrate complex

EP − an enzyme-product complex

P − a molecule of the product

k0 − catalytic rate for the enzyme acting on a substrate

molecule (s−1)

k1 − adsorption rate of substrate molecules to free enzyme

molecules (mM−1s−1)

k−1 − desorption rate of substrate molecules from enzyme-substrate

complexes (s−1)

k2 − adsorption rate of product molecules to free enzyme

molecules (mM−1s−1)

k−2 − desorption rate of product molecules from enzyme-product

complexes (s−1)

2.2. The governing ordinary di�erential equations

Applying the law of mass action in the usual way, the corresponding governing ordinary di�erential
equations are given by

d[E]

dt
= −k1[E][S]− k2[E][P ] + k0[ES] + k−1[ES] + k−2[EP ], (2a)

d[ES]

dt
= −(k0 + k−1)[ES] + k1[E][S], (2b)

d[EP ]

dt
= −k−2[EP ] + k2[E][P ], (2c)

d[S]

dt
= −k1[E][S] + k−1[ES], (2d)

d[P ]

dt
= −k2[E][P ] + k0[ES] + k−2[EP ], (2e)

where [X] = [X](t) denotes the concentration of species X at time t.
It is not necessary to discuss all of these equations here. However, we do brie�y discuss two of them to

illustrate how the governing equations are constructed. The chemical reactions for the model are displayed
in Figure 1. We begin by considering the equation for S. This is given by

d[S]

dt
=

a©︷ ︸︸ ︷
−k1[E][S] +

b©︷ ︸︸ ︷
k−1[ES],

where
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(a) Reaction

Enzyme

Active site

Substrate Enzyme-substrate

complex

Substrate catalysed to

form product

Product

(b) Inhibition

Enzyme-product

complex

Product molecule

obstructs the binding

of substrate molecule

Figure 1: Diagram of reactions and inhibition. The enzyme here has one binding site that can accommodate both the substrate
and the product. In (a) a substrate binds to a free enzyme molecule to form an enzyme-substrate complex. The enzyme
then catalyses the substrate to form a product. In (b) binding of a product molecule to a free enzyme molecule to form an
enzyme-product complex prevents the enzyme molecule from binding with a substrate.

a© - this term accounts for the reduction in concentration of S due to enzyme binding.

b© - the increase in concentration of S due to enzyme unbinding from the complex ES.

Next consider the equation for the enzyme E, given by

d[E]

dt
=

1©︷ ︸︸ ︷
−k1[E][S]

2©︷ ︸︸ ︷
−k2[E][P ] +

3©︷ ︸︸ ︷
k0[ES] +

4©︷ ︸︸ ︷
k−1[ES] +

5©︷ ︸︸ ︷
k−2[EP ],

where

1© - this term accounts for the reduction in concentration of E due to enzyme binding to the substrate S.

2© - the reduction in concentration of E due to enzyme binding to the product P .

3© - the increase in concentration of E due to enzyme catalysing the complex ES and releasing the product
then.

4© - the increase in concentration of E due to enzyme unbinding from the complex ES.

5© - the increase in concentration of E due to enzyme unbinding from the complex EP .

The remaining equations (2b), (2c), and (2e) are interpreted similarly. These equations are to be solved
subject to the initial conditions

[E](t = 0) = e0,

[S](t = 0) = s0,

[ES](t = 0) = 0,

[EP ](t = 0) = 0,

[P ](t = 0) = 0,
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where e0, s0 are positive constants corresponding to the initial concentrations of enzyme and substrate,
respectively. Summing the �rst three equations, (2a) + (2b) + (2c), in (2) and integrating yields

[E] + [ES] + [EP ] = e0, (3)

which is an expression of conservation of enzyme.

3. Nondimensionalization analysis

We non-dimensionalize the equations by introducing the dimensionless variables

e =
[E]

e0
, c1 =

[ES]

e0
, c2 =

[EP ]

e0
, s =

[S]

s0
, p =

[P ]

s0
, τ = e0k1t.

The governing equations may be written in the equivalent dimensionless form

ε
dc1
dτ

= −(s+ k̂0 + k̂−1)c1 − sc2 + s, (4a)

ε
dc2
dτ

= k̂2

(
−pc1 − (p+ k̂−2/k̂2)c2 + p

)
, (4b)

ds

dτ
= k̂−1c1 − s(1− c1 − c2)), (4c)

dp

dτ
= k̂0c1 + k̂−2c2 − k̂2p(1− c1 − c2), (4d)

where
ε =

e0
s0
,

k̂0 =
k0
k1s0

,

k̂−1 =
k−1
k1s0

,

k̂2 =
k2
k1
,

k̂−2 =
k−2
k1s0

,

(5)

are dimensionless parameters.
We have omitted the equation for e here since this can be determined from the dimensionless form for

(4), given by
e+ c1 + c2 = 1.

These equations are solved subject to the initial conditions

e(t = 0) = 1,

s(t = 0) = 1,

c1(t = 0) = 0,

c2(t = 0) = 0,

p(t = 0) = 0.

(6)

In applications, the amount of substrate initially present typically greatly exceeds the enzyme present,
so that e0 � s0. Hence, it is of value to consider the behavior of (4),(6) in the limit ε → 0. There is an



Vinh Quang Mai, Thái Anh Nhan, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 58�71. 63

initial transient at τ = O(ε) as ε→ 0, but this behavior is of limited practical interest, and its discussion is
omitted here. For τ = O(1), we have at leading order as ε→ 0 that (see (4))

e+ c1 + c2 = 1,

−pc1 − (p+ k̂−2/k̂2)c2 + p = 0,

−(s+ k̂0 + k̂−1)c1 − sc2 + s = 0,

and these expressions may be manipulated to give

c1 =
s

s+ (k̂0 + k̂−1)(1 + pk̂2/k̂−2)
,

c2 =
p

p+ (1 + s/(k̂0 + k̂−1))k̂−2/k̂2
.

Substituting these expressions into (4) gives

dp

dτ
=

k̂0s

s+ (k̂0 + k̂−1)(1 + pk̂2/k̂−2)
. (7)

Reverting to dimensional variables, the rate of formation of product is now given by

v =
d[P ]

dt
= k1e0s0

dp

dτ
(8)

and using (7), this leads to

v =
d[P ]

dt
=

Vmax[S]

[S] +Km

(
1 +

[P ]

KD

) , (9)

where

Vmax = k0e0, Km =
k0 + k−1

k1
, KD =

k−2
k2

.

Here Vmax = k0e0 is the maximum production rate for the enzyme, Km is the Michaelis constant for the
enzyme in the absence of product inhibition, and KD is the dissociation constant for product binding to the
enzyme. Notice that we can write (9) as

v =
Vmax[S]

[S] +Kapp
m

, (10)

where

Kapp
m = Km

(
1 +

[P ]

KD

)
(11)

is the apparent Michaelis-Menten constant that takes account of competitive product inhibition. It is note-
worthy here that the maximal production rate for the enzyme Vmax is una�ected by product inhibition.
However, the apparent Michaelis-Menten constant increases linearly with product concentration; see Figure
2. Figure 3 shows the Lineweaver-Burk plots of the product formation rate formula (10) for [P ] = 0 and
one value with [P ] > 0. It can be seen that the maximal product formation rate does not depend on the
product concentration, while the slope of the line corresponding to [P ] > 0 is greater than that of the line
corresponding to [P ] = 0, as would be expected since the presence of product slows the speed of product
formation.



Vinh Quang Mai, Thái Anh Nhan, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 58�71. 64

K
a
p
p

m
=

5
.0

K
a
p
p

m
=

1
0
.0

K
a
p
p

m
=

2
0
.0

Vmax

Vmax/2

[S]

v

Figure 2: Plots of the rate of product formation for the case of competitive product inhibition. The relevant formula is given in
equation (9), and the plots shown illustrate the e�ect of the product concentration on the product formation rate. The parameter
values used to generate these plots are given by Vmax = 4.0 mM/s, Km = 5.0 mM , KD = 1.0 mM , and [P ] = 0.0, 1.0, 3.0 mM ,
with corresponding values Kapp

m = 5.0 mM , Kapp
m = 10.0 mM , Kapp

m = 20.0 mM , respectively.

4. The e�ects of the model parameters on the model output

In this section, we numerically integrate the model to study the e�ects of the model parameters on the
output by using the odeint solver [12] of the module integrate of the Scipy library [13] of Python [14].
The product concentration is considered as the model output. The initial conditions used here are given by:

[E](t = 0) = 0.01 mM,

[S](t = 0) = 10.0 mM,

[P ](t = 0) = 0.0 mM,

[EP ](t = 0) = 0.0 mM,

[ES](t = 0) = 0.0 mM,

and the values of model parameters are set as follows:

k0 = 1000.0 s−1,

k1 = 10000.0 mM−1s−1, k−1 = 3000.0 s−1,

k2 = 5000.0 mM−1s−1, k−2 = 1000.0 s−1.

To investigate the e�ects of the catalytic rate constant k0 on the output, we numerically solved the model
for the three values k0, 1.3k0, and 0.7k0, while the values of other parameters are �xed. The same process
was applied to the rest of parameters. Figure 4 shows the output for the di�erent values of k0. The blue
line corresponds to the value k0 = 1000.0 s−1, the red dashed line corresponds to the value k0 = 1300.0 s−1,
and the green dashed-dotted line corresponds to the value k0 = 700.0 s−1. It can be seen that the output is
proportional to the value of k0, that is the higher the value of k0 is, the higher the output is.
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1/v

1/Vmax

inhibitor

no inhibitor
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: Y-intercept

Competitive inhibition

Km increased

Vmax unchanged

Figure 3: Lineweaver-Burk plots of the product formation rate formula (10) for [P ] = 0 and [P ] > 0.
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Figure 4: The e�ects of the catalytic rate constant k0 on the model output. The blue line corresponds to the value k0 =
1000.0 s−1, the red dashed line corresponds to the value k0 = 1300.0 s−1, and the green dashed-dotted line corresponds to the
value k0 = 700.0 s−1. The values of other parameters are referred to the main text.
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In Figure 5, we plot concentrations of product for the di�erent values of k1. The blue line corresponds
to the value k1 = 10000.0 mM−1s−1, the red dashed line corresponds to the value k1 = 13000.0 mM−1s−1,
and the green dashed-dotted line corresponds to the value k1 = 7000.0 mM−1s−1. It can be seen that the
output is proportional to the value of k1, that is the higher the value of k1 is, the higher the output is.
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Figure 5: The e�ects of the binding rate constant k1 of the product on the model output. The blue line corresponds to the value
k1 = 10000.0 mM−1s−1, the red dashed line corresponds to the value k1 = 13000.0 mM−1s−1, and the green dashed-dotted
line corresponds to the value k1 = 7000.0 mM−1s−1. The values of other parameters are referred to the main text.

Figure 6 shows concentrations of product for the di�erent values of k2. The blue line corresponds to the
value k2 = 5000.0 mM−1s−1, the red dashed line corresponds to the value k2 = 6500.0 mM−1s−1, and the
green dashed-dotted line corresponds to the value k2 = 3500.0 mM−1s−1. It can be seen that the output is
inversely proportional to the value of k2, that is the higher the value of k2 is, the lower the output is. This
implies that reducing the binding rate constant of the product to the enzyme may be a potential approach
to accelerate the rate of the enzymatic reaction.

In Figure 7, we plot concentrations of product for the di�erent values of k−2. The blue line corresponds
to the value k−2 = 1000.0 s−1, the red dashed line corresponds to the value k−2 = 1300.0 s−1, and the green
dashed-dotted line corresponds to the value k−2 = 700.0 s−1. It can be seen that the output is proportional
to the value of k−2, that is the higher the value of k−2 is, the lower the output is. This implies that increasing
the unbinding rate constant of the product from the enzyme-product complex may be a potential approach
to accelerate the rate of the enzymatic reaction.

In the next section, we provide a brief introduction of a potential application of the model to a real
enzyme.

5. Model and glucose phosphorylation by mini-hexokinase I

Glucose glycolysis is a key pathway for the production of energy in a cell, and glycolytic intermediates
form precursors for the biosynthesis of other key cellular constituents, such as glycogen, nucleotide sugars,
and hyaluronan. The �rst step of glycolysis is the transformation of glucose into glucose-6-phosphate. This
is achieved via a phosphorylation that is catalysed by an enzyme called hexokinase. There are four isozymes
of hexokinase found in mammalian tissue [15, 16], and these are usually referred to as hexokinase I, II, III,
and IV (glucokinase).
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Figure 6: The e�ects of the binding rate constant k2 of the product on the model output. The blue line corresponds to the
value k2 = 5000.0 mM−1s−1, the red dashed line corresponds to the value k2 = 6500.0 mM−1s−1, and the green dashed-dotted
line corresponds to the value k2 = 3500.0 mM−1s−1. The values of other parameters are referred to the main text.
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Figure 7: The e�ects of the binding rate constant k−2 of the product on the model output. The blue line corresponds to the
value k−2 = 1000.0 s−1, the red dashed line corresponds to the value k−2 = 1300.0 s−1, and the green dashed-dotted line
corresponds to the value k2 = 700.0 s−1. The values of other parameters are referred to the main text.
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The product of glucose phosphorylation, glucose-6-phosphate (G6P ), inhibits the activity of hexokinase
I, II, and III [17]. Only the C domain of hexokinase I contains the catalytic site, whereas the N domain does
not [6, 17, 18]. Hexokinase I has binding sites for adenosine triphosphate (ATP ), glucose, and G6P in both
N and C domains [6, 7]. Furthermore, the binding sites for ATP and G6P have a common part, so they
compete together for binding sites [6].

Figure 8 represents a single hexokinase I molecule, with blue being used for the N terminal domain and
green for the C terminal domain. Each hexokinase I molecule possesses binding sites for glucose, ATP , and
G6P in the both C and N domains, even though the C domain only is catalytically active [17, 18, 19]. In
Figure 8, the binding sites for glucose on the C and N domains are depicted by the t shape, and the binding
sites for ATP , glucose-6-phosphate, and inorganic phosphate are represented by a ∨ cleft.

Figure 8: Schematic representation of the hexokinase I enzyme. The C and N domains are coloured green and light blue,
respectively. t: binding sites for glucose; ∨: binding sites for ATP and G6P .

In 1969, J. Ning, D. L. Purich, and H. J. Fromm [20] proposed a random Bi Bi kinetic mechanism for
hexokinase I. This mechanism can be represented by the following set of chemical equations

EA EC

E EAB ECD E,

EB ED

KB K′
AKD

KC

k1

k2

K′
C

K′
D

KA K′
B

(12)

where here E, A, B, C, D represent hexokinase enzyme, ATP , glucose, adenosine diphosphate (ADP ),
and G6P , respectively. Moreover, KX , K ′X with X = A,B,C,D are the dissociation constants for the four
species. Finally, k1 and k2 are forward and backward rate constants, respectively, for the catalytic reaction.
Many investigators have found experimental evidence in support of the Bi Bi mechanism for hexokinase I
[17, 21].

The model just described may be applicable to a mini-hexokinase I system. A mini-hexokinase molecule
consists of the C terminal half only of the hexokinase I enzyme [19, 22], and this corresponds to the enzyme
species E in our model above; see Figure 9. The active site here is the binding site for ATP , so that ATP
corresponds to the substrate S in the model. The product P here is G6P since G6P competes with ATP for
the ATP binding site. However, the correspondence between the model and the mini-hexokinase I system
falls down here since G6P is not a direct product of ATP binding - recall that a glucose molecule must also
be bound to its site in the C terminal domain in order for G6P to be formed. However, G6P would be the
e�ective product of ATP binding if ATP binding is the rate-limiting step for product formation. This would
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be the case for su�ciently high concentrations of glucose, for example. The model also does not take account
of phosphate binding, and so would only apply to the mini-hexokinase system if phosphate concentrations
are su�ciently low. However, in these circumstances, the rate of production of G6P may be approximated
by (see (9))

Glucose binding site

G6P , ATP binding site

C domain

of Hexokinase I

Figure 9: Mini-hexokinase I.

v =
Vmax[ATP ]

[ATP ] +KATP
m (1 + [G6P ]/KG6P

D )
. (13)

Figure 10 displays plots of this formula for di�erent concentrations of the product G6P . The parameters
values used here are k0 = 60 s−1, KATP

m = 0.68 mM , KG6P
D = 0.05 mM [23], [HK] = 0.05 mM , and

[G6P ] = 0.0, 0.05, 0.2 mM .

Vmax

Vmax/2

[ATP ]

v

[G6P ] = 0.0 mM

[G6P ] = 0.05 mM

[G6P ] = 0.2 mM

Figure 10: Plots of the product formation rate for di�erent concentrations of product G6P . The relevant formula is given in
equation (13). The parameters values used here are k0 = 60 s−1, KATP

m = 0.68 mM , KG6P
D = 0.05 mM , [HK] = 0.05 mM ,

and [G6P ] = 0.0, 0.05, 0.2 mM .

6. Conclusions

Enzymatic competitive inhibition is one of the key regulatory mechanisms that cells use to regulate
the concentrations of metabolites in physiological levels, especially the competitive product inhibition of an
enzyme. Hence, from the point of view of applications, the development of reliable mathematical models for
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the enzymatic competitive inhibition by product is clearly desirable. Although the formula for the product
formation rate is already available in the literature [8, 9], we derive it in a transparent manner by non-
dimensionalizing the equations and making rational approximations in this paper. The e�ects of the model
parameters on the model output were investigated using a Python software to numerically integrate the
model. The model was seen to model, under appropriate conditions, the phosphorylation of glucose by mini-
hexokinase I. Also, the model may be applied to describe the reaction of β-galactosidase [24]. The system
under consideration may be further studied in the form of fractional di�erential equations, such as Caputo
fractional di�erential equations [25, 26].
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